

Maintaining Databases
Version 7.2

DN1001059.1101

FOCUS for S/390

Maintaining Databases

Maintaining Databases
1 Introduction to Maintain ...1-1

Using Maintain to Manage Data...1-2
Accessing Data Sources ...1-4

Reading From Data Sources..1-4
Writing to Data Sources ..1-5

Working With Maintain Procedures...1-6
Developing Procedures..1-6
Storing Procedures ..1-7
Executing Procedures ..1-8

Maintain Performance ..1-8
2 Maintain Concepts..2-1

Set-based Processing ..2-2
Which Processes Are Set-based?...2-3
How Does Maintain Process Data in Sets? ...2-4
Creating and Defining Database Stacks: An Overview...2-5
Creating a Database Stack...2-6
Defining a Database Stack’s Data Source Columns..2-6
Creating a Database Stack’s User-defined Columns ...2-9
Copying Data Into and Out of a Database Stack ...2-10
Referring to Specific Stack Rows Using an Index ..2-11
Looping Through a Stack ..2-12
Sorting a Stack ..2-13
Editing Stack Values ...2-13
The Default Database Stack: The Current Area ..2-14
Maximizing Database Stack Performance...2-15

Controlling a Procedure’s Flow..2-16
Executing Other Maintain Procedures..2-17

Passing Variables Between Procedures...2-18
Accessing Data Sources in the Child Procedure ...2-20
Data Source Position ...2-20
Optimizing Performance: Data Continuity and Memory Management...2-21

Winforms and Event-driven Processing ...2-23
H ow to Use Winforms...2-24

Designing Event-driven Applications ...2-26
Creating Event-driven Applications ..2-27

Reading From a Data Source..2-27
Repositioning Your Location in a Data Source...2-28

Writing to a Data Source ..2-29
Evaluating the Success of a Simple Data Source Command...2-29
Evaluating the Success of a Stack-based Write Command ...2-30

Contents

 Information Builders

Transaction Processing...2-31
Why Is Transaction Integrity Important? ..2-32
Defining a Transaction ..2-33
Evaluating If a Transaction Was Successful ...2-37
Concurrent Transaction Processing...2-38
Ensuring Transaction Integrity for FOCUS Data Sources...2-40
Ensuring Transaction Integrity for DB2 Data Sources..2-45

Classes and Objects ..2-50
What Are Classes and Objects?...2-51
Defining Classes..2-54
Reusing Classes in Class Libraries..2-55
Declaring Objects..2-56

3 Tutorial: Coding a Procedure ...3-1
Two Ways to Follow the Tutorial ...3-3
Building the Sample Application ..3-3

Step 1: Beginning and Ending the Procedure ...3-5
� Goal ..3-5
� Methods: MAINTAIN and END Commands...3-5
� Solution ..3-5

Step 2: Selecting Records ...3-6
� Goal ..3-6
� Methods: NEXT and MATCH ...3-6
� Solution ..3-8

Step 3: Collecting Transaction Values ...3-9
� Goal ..3-9
� Methods: WINFORM and NEXT ..3-9
� Solution ..3-9

Step 4: Writing Transactions to the Data Source..3-11
� Goal ..3-11
� Methods: Write Commands, COMMIT, and ROLLBACK ...3-11
� Solution ..3-12

Step 5: Issuing the Procedure ...3-13
� Goal ..3-13
� Methods: CALL, COMPILE, RUN..3-13
� Solution ..3-14

Step 6: Browsing Through a Stack and Using Triggers ...3-15
� Goal ..3-15
� Methods: Winform Painter, Triggers, IF, FocIndex, FocCount..3-15
� Solution ..3-16

Step 7: Displaying and Editing an Entire Stack in a Winform ...3-18
� Goal ..3-18
� Methods: Multiple Stacks and Stack Editors (Grids) ...3-18
� Solution ..3-20

 Contents

Maintaining Databases

4 Tutorial: Painting a Procedure ...4-1
Step 1: Creating a New Winform ...4-2

Description of the Application ..4-2
How to Open the Painter ...4-2
Adjusting Winform Appearance..4-3
Naming the Procedure ...4-6
Selecting Master Files ...4-8
Defining the Winform’s Properties ...4-10
Using the Painter’s Menus ..4-15
Saving Your Work and Exiting ...4-17

Step 2: Adding Fields ...4-18
Adding the First Field ...4-18
Adding Additional Fields ..4-25
Editing, Moving, and Resizing Controls ...4-26

Step 3: Adding a Grid...4-27
Adding Columns ...4-28
Changing Stacks..4-29
Protecting and Unprotecting Columns ..4-29

Step 4: Adding Text..4-31
Step 5: Adding Buttons and Triggers ...4-33

Adding the First Button and Trigger ...4-33
Adding Additional Buttons and Triggers ..4-37

Step 6: Coding Triggers and Other Functions ..4-38
Painter-generated Code ...4-39
Top Function ...4-40
PrevCar Function...4-42
NextCar Function ..4-43
GetBody Function ...4-44

Step 7: Running the Maintain Request ...4-45
5 Using the Winform Painter..5-1

Using the Painter ..5-2
Using Dialog Boxes ..5-2
Using Entry Fields...5-3
Using List Boxes ...5-4
Using Check Boxes ...5-5
Using the Control Box...5-5
Using Radio Buttons ...5-6
Using Command Buttons ..5-7
Using Combo Boxes..5-7
Using Drop Boxes ...5-8
Supporting Colors ...5-8
Supporting Borders ...5-8
Files Used by the Winform Painter ...5-9
How to Access the Painter...5-9
Saving and Exiting Your Work ...5-10

Contents

 Information Builders

Using the Design Screen ..5-11
Parts of the Design Screen...5-12
Function Key Reference..5-14

File Menu ...5-15
New ...5-16
Open ..5-17
Save ...5-18
Save As..5-18
Import..5-19
Regen...5-21
Select Master ...5-21
Preferences ..5-22
Exit ..5-26

Edit Menu ...5-26
Edit Object ..5-27
Move ...5-33
Copy ..5-34
Resize ..5-34
Delete ..5-34

Forms Menu ...5-35
New ...5-36
Switch To ..5-36
Copy To...5-37
Rename..5-38
Delete ..5-38
Properties...5-39
Using Triggers, Button Short Cuts, and System Actions ..5-44
Triggers ...5-46
Actions ..5-47
Size..5-49
Zoom ...5-50
Move ...5-50

Objects Menu ...5-51
Field...5-52
Text ...5-62
Grid ...5-63
Browser ...5-66
Frame...5-67
Button..5-68
Checkbox...5-71
Listbox...5-73
Combobox ...5-76
Radio Group ..5-79
Gen Segment ...5-82
Gen Master ..5-84

 Contents

Maintaining Databases

Cases Menu ..5-85
Help Menu..5-89

6 Language Rules Reference...6-1
Case Sensitivity ..6-2
Specifying Names...6-3
Reserved Words ...6-5
What Can You Include in a Procedure? ...6-6
Multi-Line Commands ...6-6
Terminating a Command’s Syntax ...6-7
Adding Comments..6-8

7 Command Reference ..7-1
Language Summary..7-2

Defining a Procedure...7-2
Defining a Maintain Function (a Case) ...7-2
Blocks of Code ..7-2
Transferring Control..7-3
Executing Procedures ..7-3
Loops...7-3
Winforms...7-3
Defining Classes..7-4
Creating Variables...7-4
Assigning Values...7-4
Manipulating Stacks ..7-4
Selecting and Reading Records ...7-5
Conditional Actions...7-5
Writing Transactions ...7-5
Using Libraries of Classes and Functions ...7-6
Messages and Logs..7-6

BEGIN..7-7
CALL ...7-9
CASE..7-12

Invoking a Function: Flow of Control...7-14
Using a Function’s Return Value ..7-14
Effects of Function Parameters ...7-15
The Top Function ..7-15

COMMIT ...7-16
COMPILE ..7-17
COMPUTE...7-18

Using COMPUTE to Invoke Functions...7-22
COPY ...7-23
DECLARE..7-27

Local and Global Declarations ..7-29
DELETE...7-30
DESCRIBE...7-34
END..7-36

Contents

 Information Builders

EX...7-37
FocCount ..7-38
FocCurrent..7-38
FocError ...7-38
FocErrorRow..7-39
FocFetch ...7-39
FocIndex...7-39
GOTO...7-40

Using GOTO With Data Source Commands...7-42
GOTO and ENDCASE..7-42
GOTO and PERFORM ...7-43

IF ..7-44
Coding Conditional COMPUTE Commands ..7-46

INCLUDE ..7-47
Data Source Position ...7-50
Null Data ...7-50

INFER ..7-51
Defining Non-Data Source Columns...7-52

MAINTAIN..7-53
Specifying Data Sources With the MAINTAIN Command ..7-54
Calling a Procedure From Another Procedure ..7-55

MATCH ...7-56
How the MATCH Command Works...7-58

MODULE...7-59
NEXT ...7-60

Subscripted Variables in WHERE Expressions ..7-63
Copying Data Between Data Sources..7-65
Loading Multi-Path Transaction Data ...7-66
Retrieving Multiple Rows: The FOR Phrase...7-66
Using Selection Logic to Retrieve Rows...7-67
NEXT After a MATCH...7-67
Data Source Navigation Using NEXT: Overview...7-68
Unique Segments...7-75

ON MATCH...7-76
ON NEXT...7-77
ON NOMATCH ...7-78
ON NONEXT...7-79
PERFORM ...7-80

Using PERFORM to Invoke Maintain Functions..7-81
Using PERFORM With Data Source Commands ...7-81
Nesting PERFORM Commands..7-81
Avoiding GOTO With PERFORM ...7-81

RECOMPILE ...7-82
REPEAT...7-83

Branching Within a Loop ..7-89
REPOSITION...7-90

 Contents

Maintaining Databases

REVISE..7-91
ROLLBACK ..7-94

DBMS Combinations ..7-95
RUN ...7-96
SAY..7-97

Writing Segment and Stack Values ...7-98
Choosing Between the SAY and TYPE Commands ...7-98

STACK CLEAR...7-99
STACK SORT..7-100
TYPE..7-101

Including Variables in a Message..7-102
Embedding Horizontal Spacing Information...7-102
Embedding Vertical Spacing Information...7-102
Coding Multi-Line Message Strings ...7-103
Justifying Variables and Truncating Spaces..7-103
Writing Information to a File ..7-104

UPDATE ..7-105
Update and Transaction Variables...7-107
Data Source Position ...7-108
Unique Segments...7-108

WINFORM...7-109
Managing the Flow of Control in a Winform..7-112
Displaying Default Values in a Winform..7-113
Dynamically Changing Winform Control Properties ..7-114

8 Expressions Reference..8-1
Types of Expressions You Can Write ..8-2

Expressions and Variable Formats ..8-3
Writing Numeric Expressions ..8-3

Order of Evaluation...8-5
Evaluating Numeric Expressions ..8-5
Identical Operand Formats ..8-6
Different Operand Formats ...8-7
Continental Decimal Notation...8-7

Writing Date Expressions...8-8
Formats for Date Values..8-9
Evaluating Date Expressions...8-9
Selecting the Format of the Result Variable..8-10
Manipulating Dates in Date Format ..8-10
Using a Date Constant in an Expression ...8-11
Extracting a Date Component ...8-11
Combining Variables With Different Components in an Expression..8-12
Different Operand Date Formats ...8-12
Using Addition and Subtraction in a Date Expression ..8-13

Contents

 Information Builders

Writing Alphanumeric Expressions..8-14
Concatenating Character Strings ...8-15
Evaluating Alphanumeric Expressions..8-15

Writing Logical Expressions ..8-17
Relational Expressions ..8-17
Boolean Expressions ...8-17
Evaluating Logical Expressions ..8-18

Writing Conditional Expressions..8-20
Handling Null Values in Expressions...8-21

Assigning Null Values: The MISSING Constant..8-21
Conversion in Mixed-Format Null Expressions ..8-22
Testing Null Values...8-22

9 Built-in Functions Reference ...9-1
Types of Functions ...9-2

Character Built-in Functions ...9-2
Date and Time Built-in Functions ...9-4
Decoding Built-in Functions ...9-4
Grid Built-in Functions ...9-4
Numeric Built-in Functions...9-5

Accessing Built-in Functions..9-6
Specifying Arguments for Built-in Functions ..9-8
Alphabetical List of Built-in Functions ..9-8

ABS: Calculating Absolute Value...9-8
ChangeColBcolor and ChangeColFcolor: Setting the Colors of a Grid Column9-9
CurStkRowNum, CurStkColNum, CurGrdRowNum, CurGrdColNum: Determining the Current Row or

Column Number in a Grid ..9-10
DECODE: Changing Coded Values to Associated Values ...9-11
HHMMSS: Returning the Current Time ...9-12
Initial_HHMMSS: Returning the Time the Application Was Started ...9-13
Initial_TODAY: Returning the Date the Application Was Started ...9-13
INT: Finding the Greatest Integer ...9-14
LCWORD, LCWORD2: Converting a String to Mixed Case...9-15
LENGTH: Determining the Length of a String...9-16
LJUST: Left-justifying a String ..9-16
LOG: Calculating the Natural Logarithm..9-17
LOWER: Converting Text to Lowercase ..9-18
MASK: Extracting or Adding Characters ...9-18
MAX and MIN: Finding the Maximum or Minimum Value...9-20
OVRLAY: Overlaying a Substring Within a String..9-21
POSIT: Finding Substring Position ...9-22
RJUST: Right-justifying a String ..9-23
SELECTS: Decoding a Value From a Stack ...9-24
SetStackMode: Preventing End Users From Adding Rows to Grids ..9-25
SOUNDEX: Comparing Strings Phonetically...9-26
SQRT: Calculating the Square Root..9-27

 Contents

Maintaining Databases

STRAN: Substituting One Substring for Another ...9-27
STRCMP: Comparing Strings Using the EBCDIC or ASCII Collating Sequence9-28
STRICMP: Comparing Strings Using the EBCDIC or ASCII Collating Sequence, But Ignoring Case

Differences ...9-29
STRNCMP: Comparing Substrings Using the EBCDIC or ASCII Collating Sequence9-29
STRTOKEN: Returning Substrings Based on Delimiters...9-30
SUBSTR: Extracting a Substring ..9-30
TODAY and TODAY2: Returning the Current Date..9-31
TRIM: Trimming Trailing Blanks...9-32
TRIMLEN: Determining the Length of a String Excluding Trailing Blanks ..9-32
UPCASE: Converting Text to Uppercase ...9-33

10 Modifying Data Sources With MODIFY..10-1
Introduction ..10-2
Additional MODIFY Facilities...10-6

Multiple User Access ..10-8
Managing Your Data: Advanced Features ..10-11
MODIFY Command Syntax ...10-13
Executing MODIFY Requests...10-14
Other Ways of Maintaining FOCUS Data Sources ...10-18
The EMPLOYEE Data Source..10-19

Describing Incoming Data..10-19
Reading Fixed-Format Data: The FIXFORM Statement ..10-21
Reading in Comma-delimited Data: The FREEFORM Statement ..10-35
Prompting for Data One Field at a Time: The PROMPT Statement ...10-41
Invoking the FIDEL Facility: The CRTFORM Statement ..10-51
Entering Text Data via TED..10-52
Specifying the Source of Data: The DATA Statement..10-56
Reading Selected Portions of Transaction Data Sources: The START and STOP Statements10-56

Modifying Data: MATCH and NEXT..10-58
The MATCH Statement ..10-58
Adding, Updating, and Deleting Segment Instances ...10-63
Performing Other Tasks Using MATCH...10-68
Modifying Segments in FOCUS Structures ..10-70
Selecting the Instance After the Current Position: The NEXT Statement...10-85

Computations: COMPUTE and VALIDATE...10-90
Computing Values: The COMPUTE Statement..10-90
Validating Transaction Values: The VALIDATE Statement ..10-97
Special Functions ..10-105

Messages: TYPE, LOG, and HELPMESSAGE ...10-115
Displaying Specific Messages: The TYPE Statement...10-115
Logging Transactions: The LOG Statement..10-123
Displaying Messages: The HELPMESSAGE Attribute..10-129

Contents

 Information Builders

Case Logic..10-131
Rules Governing Cases ...10-133
Executing a Case at the Beginning of a Request Only: The START Case..10-135
Branching to Different Cases: The GOTO, PERFORM, and IF Statements.....................................10-136
Case Logic Applications ...10-145
Tracing Case Logic: The TRACE Facility ..10-155

Multiple Record Processing ...10-156
The REPEAT Method ...10-157
Manual Methods..10-169

Advanced Facilities ..10-187
Modifying Multiple Data Sources in One Request: The COMBINE Command10-188
Compiling MODIFY Requests: The COMPILE Command..10-196
Active and Inactive Fields ...10-197
Protecting Against System Failures...10-205
Displaying MODIFY Request Logic: The ECHO Facility ...10-207
Dialogue Manager Statistical Variables ..10-212
MODIFY Query Commands ...10-211
Managing MODIFY Transactions: COMMIT and ROLLBACK ...10-211

MODIFY Syntax Summary..10-215
MODIFY Request Syntax ...10-215
Transaction Statement Syntax ...10-217
MATCH and NEXT Statement Actions..10-218

11 Designing Screens With FIDEL ..11-1
Introduction ..11-2

Using FIDEL With MODIFY ...11-2
Using FIDEL With Dialogue Manager ...11-4
Screen Management Concepts and Facilities ..11-5
Using FIDEL Screens: Operating Conventions...11-6

Describing the CRT Screen ..11-7
Specifying Elements of the CRTFORM..11-8
Data Entry, Display and Turnaround Fields ..11-14
Controlling the Use of PF Keys...11-20
Specifying Screen Attributes...11-25
Using Labeled Fields...11-28
Specifying Cursor Position..11-33
Determining Current Cursor Position for Branching Purposes ...11-36
Annotated Example: MODIFY ...11-38
Annotated Example: Dialogue Manager ...11-40

 Contents

Maintaining Databases

Using FIDEL in MODIFY ...11-41
Conditional and Non-Conditional Fields...11-42
Using FIXFORM and FIDEL in a Single MODIFY ...11-46
Generating Automatic CRTFORMs..11-47
Using Multiple CRTFORMs: LINE..11-52
CRTFORMs and Case Logic ..11-58
Specifying Groups of Fields..11-60
Handling Errors ...11-68
Logging Transactions ..11-72
Additional Screen Control Options ...11-73

Using FIDEL in Dialogue Manager ...11-77
Allocating Space on the Screen for Variable Fields ..11-77
Starting and Ending CRTFORMS: BEGIN/END ...11-78
Clearing the Screen in Dialogue Manager...11-79
Changing the Size of the Message Area: -CRTFORM TYPE...11-80
Annotated Example: -CRTFORM...11-81

Using the FOCUS Screen Painter...11-83
Entering Screen Painter ...11-83
Entering Data Onto the Screen ..11-87
Identifying Fields: ASSIGN..11-91
Viewing the Screen: FIDEL ..11-93
Generating CRTFORMs Automatically..11-93
Terminating Screen Painter ...11-95

12 Creating and Rebuilding Databases..12-1
Creating New Databases: The CREATE Command ..12-2
Rebuilding Databases: The REBUILD Command ...12-4

Controlling the Frequency of REBUILD Messages..12-7
Optimizing File Size: The REBUILD Subcommand ...12-8
Changing Database Structure: The REORG Subcommand..12-13
Indexing Fields: The INDEX Subcommand...12-21
Creating an External Index: The EXTERNAL INDEX Subcommand...12-26

Concatenating Index Databases...12-29
Positioning Indexed Fields ..12-29
Activating an External Index...12-30

Checking Database Integrity: The CHECK Subcommand...12-32
Confirming Structural Integrity Using ? FILE and TABLEF..12-36

Changing the Database Creation Date and Time: The TIMESTAMP Subcommand.................................12-38
Converting Legacy Dates: The DATE NEW Subcommand...12-40

How DATE NEW Converts Legacy Dates ...12-42
What DATE NEW Does Not Convert...12-44
Using the New Master File Created by DATE NEW..12-44
Action Taken on a Date Field During REBUILD/DATE NEW ...12-47

Migrating to a Fusion Database: The MIGRATE Subcommand..12-47
Creating a Fusion Multi-Dimensional Index: The MDINDEX Subcommand ...12-47

Contents

 Information Builders

13 Directly Editing FOCUS Databases With SCAN...13-1
Introduction ..13-2

SCAN vs. MODIFY, MAINTAIN, HLI, and FSCAN..13-3
Current Position Concept ..13-4
What You See in SCAN Display Lines...13-6
Ways to Move Through Databases..13-7

The SCAN Session ...13-12
Entering SCAN Mode ...13-12
Locating Records...13-13
Displaying Field Names and Field Contents ...13-14
Adding Segment Instances ..13-15
Moving Segment Instances ...13-15
Changing Field Contents ...13-15
Deleting Fields and Segments ...13-16
Saving Changes Made in SCAN Sessions...13-16
Ending the Session ..13-16
Auxiliary SCAN Functions ...13-17

Subcommand Summary..13-18
14 Directly Editing FOCUS Databases With FSCAN ..14-1

Introduction ..14-2
Entering FSCAN ...14-2
The FSCAN Facility and FOCUS Structures ..14-5
General Rules for Using FSCAN ..14-9

FSCAN Functions ..14-12
Scrolling the Screen ..14-13
Selecting a Specific Instance by Defining a Current Instance...14-16
Displaying Descendant Segments: The CHILD, PARENT, and JUMP Commands...........................14-23
Displaying a Single Instance on One Screen: The SINGLE and MULTIPLE Commands14-25
Modifying the Database ..14-26
Repeating a Command: ? and = ..14-36
Saving Changes: The SAVE Without Exiting FSCAN Command ...14-37
Exiting FSCAN: The END, FILE, QQUIT, and QUIT Commands..14-37
The FSCAN HELP Facility...14-38

Syntax Summary ..14-39
Summary of Commands..14-39
Summary of PF Keys ..14-46
Summary of Prefix Area Commands ..14-47

A Master Files and Diagrams...A-1
Creating Sample Data Sources ..A-2
The EMPLOYEE Data Source ..A-3

The EMPLOYEE Master File ..A-4
The EMPLOYEE Structure Diagram...A-5

The JOBFILE Data Source..A-6
The JOBFILE Master File ..A-6
The JOBFILE Structure Diagram...A-6

 Contents

Maintaining Databases

The EDUCFILE Data Source ..A-7
The EDUCFILE Master File ..A-7
The EDUCFILE Structure Diagram...A-7

The SALES Data Source ...A-8
The SALES Master File ...A-8
The SALES Structure Diagram..A-9

The PROD Data Source...A-10
The PROD Master File...A-10
The PROD Structure Diagram..A-10

The CAR Data Source ...A-11
The CAR Master File ...A-11
The CAR Structure Diagram..A-12

The LEDGER Data Source ...A-13
The LEDGER Master File..A-13
The LEDGER Structure Diagram ..A-13

The FINANCE Data Source ..A-14
The FINANCE Master File ..A-14
The FINANCE Structure Diagram...A-14

The REGION Data Source ..A-15
The REGION Master File ..A-15
The REGION Structure Diagram ...A-15

The COURSES Data Source ...A-16
The COURSES Master File ...A-16
The COURSES Structure Diagram ..A-16

The EMPDATA Data Source ..A-17
The EMPDATA Master File ..A-17
The EMPDATA Structure Diagram...A-17

The EXPERSON Data Source...A-18
The EXPERSON Master File...A-18
The EXPERSON Structure Diagram..A-18

The TRAINING Data Source ..A-19
The TRAINING Master File ..A-19
The TRAINING Structure Diagram...A-19

The PAYHIST File..A-20
The PAYHIST Master File...A-20
The PAYHIST Structure Diagram ...A-20

The COMASTER File ...A-21
The COMASTER Master File..A-22
The COMASTER Structure Diagram ..A-23

The VideoTrk and MOVIES Data Sources ...A-24
VideoTrk Master File ...A-24
MOVIES Master File ...A-24
VideoTrk Structure Diagram..A-25
MOVIES Structure Diagram ..A-26

Contents

 Information Builders

The VIDEOTR2 Data Source..A-26
The VIDEOTR2 Master File ..A-26
The VIDEOTR2 Access File..A-27
The VIDEOTR2 Structure Diagram...A-28

The Gotham Grinds Data Sources ...A-29
The GGDEMOG Data Source..A-29
The GGORDER Data Source...A-30
The GGPRODS Data Source ...A-31
The GGSALES Data Source ..A-32
The GGSTORES Data Source..A-33

B Error Messages .. B-1
Accessing Error Files .. B-2
Displaying Messages Online ... B-3

I Index .. I-1

Cactus, EDA/SQL, FIDEL, FOCCALC, FOCUS, FOCUS Fusion, FOCUS Vision, Hospital-Trac, Information Builders, the
Information Builders logo, Parlay, PC/FOCUS, SmartMart, SmartMode, SNAPpack, TableTalk, WALDO, Web390, WebFOCUS
and WorldMART are registered trademarks and EDA, iWay, and iWay Software are trademarks of Information Builders, Inc.

Acrobat and Adobe are registered trademarks of Adobe Systems Incorporated.
Allaire and JRun are trademarks of Allaire Corporation.
NOMAD is a registered trademark of Aonix.
UniVerse is a registered trademark of Ardent Software, Inc.
IRMA is a trademark of Attachmate Corporation.
Baan is a registered trademark of Baan Company N.V.
SUPRA and TOTAL are registered trademarks of Cincom Systems, Inc.
Impromptu is a registered trademark of Cognos.
Alpha, DEC, DECnet, NonStop, and VAX are registered trademarks and Tru64, OpenVMS, and VMS are trademarks of Compaq
Computer Corporation.
CA-ACF2, CA-Datacom, CA-IDMS, CA-Top Secret, and Ingres are registered trademarks of Computer Associates International,
Inc.
MODEL 204 and M204 are registered trademarks of Computer Corporation of America.
Paradox is a registered trademark of Corel Corporation.
StorHouse is a registered trademark of FileTek, Inc.
HP MPE/iX is a registered trademark of Hewlett Packard Corporation.
Informix is a registered trademark of Informix Software, Inc.
ACF/VTAM, AIX, AS/400, CICS, DB2, DRDA, Distributed Relational Database Architecture, IBM, MQSeries, MVS/ESA, OS/2,
OS/390, OS/400, RACF, RS/6000, S/390, VM/ESA, VSE/ESA and VTAM are registered trademarks and DB2/2, Hiperspace, IMS,
MVS, QMF, SQL/DS, WebSphere, z/OS and z/VM are trademarks of International Business Machines Corporation.
INTERSOLVE and Q+E are registered trademarks of INTERSOLVE.
Orbix is a registered trademark of Iona Technologies Inc.
Approach and DataLens are registered trademarks of Lotus Development Corporation.
ObjectView is a trademark of Matesys Corporation.
ActiveX, FrontPage, Microsoft, MS-DOS, PowerPoint, Visual Basic, Visual C++, Visual FoxPro, Windows, and Windows NT are
registered trademarks of Microsoft Corporation.
Teradata is a registered trademark of NCR International, Inc.
Netscape, Netscape FastTrack Server, and Netscape Navigator are registered trademarks of Netscape Communications Corporation.
CORBA is a trademark of Object Management Group, Inc.
Oracle is a registered trademark and Rdb is a trademark of Oracle Corporation.
PeopleSoft is a registered trademark of PeopleSoft, Inc.
INFOAccess is a trademark of Pioneer Systems, Inc.
Progress is a registered trademark of Progress Software Corporation.
Red Brick Warehouse is a trademark of Red Brick Systems.
SAP and SAP R/3 are registered trademarks and SAP Business Information Warehouse and SAP BW are trademarks of SAP AG.
Silverstream is a trademark of Silverstream Software.
ADABAS is a registered trademark of Software A.G.
CONNECT:Direct is a trademark of Sterling Commerce.
Java and all Java-based marks, NetDynamics, Solaris, SunOS, and iPlanet are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.
PowerBuilder and Sybase are registered trademarks and SQL Server is a trademark of Sybase, Inc.
Unicode is a trademark of Unicode, Inc.
UNIX is a registered trademark of The Open Group in the United States and other countries.

Due to the nature of this material, this document refers to numerous hardware and software products by their trade names. In most,
if not all cases, these designations are claimed as trademarks or registered trademarks by their respective companies. It is not this
publisher’s intent to use any of these names generically. The reader is therefore cautioned to investigate all claimed trademark
rights before using any of these names other than to refer to the product described.

Maintaining Databases

Preface
This documentation describes FOCUS data management facilities and environments for
FOCUS Version 7.2. It is intended for database administrators, application developers,
and other information technology professionals who will be creating, restructuring, or
directly editing FOCUS and Fusion data sources. This manual is part of the FOCUS for
S/390® documentation set.

References to MVS™ apply to all supported versions of the OS/390®, z/OS™, and MVS
operating environments. References to VM apply to all supported versions of the
VM/ESA® and z/VM™ operating environments.

The documentation set consists of the following components:

• The Creating Reports manual describes FOCUS Reporting environments and
features.

• The Describing Data manual explains how to create the metadata for the data
sources that your FOCUS procedures will access.

• The Developing Applications manual describes FOCUS Application Development
tools and environments.

• The Maintaining Databases manual describes FOCUS data management facilities
and environments.

• The Using Functions manual describes internal functions and user-written
subroutines.

• The Overview and Operating Environments manual contains an introduction to
FOCUS and FOCUS tools and describes how to use FOCUS in the VM/CMS and
MVS (OS/390) environments.

The users’ documentation for FOCUS Version 7.2 is organized to provide you with a
useful, comprehensive guide to FOCUS.

Chapters need not be read in the order in which they appear. Though FOCUS facilities
and concepts are related, each chapter fully covers its respective topic. To enhance your
understanding of a given topic, references to related topics throughout the documentation
set are provided. The following pages detail documentation organization and
conventions.

Preface

 Information Builders

How This Manual Is Organized
This manual includes the following chapters:

Chapter/Appendix Contents

1 Introduction to Maintain Provides an overview of Maintain, FOCUS’s
premier facility for developing database transaction
applications.

2 Maintain Concepts Explains essential Maintain concepts including
stacks and set-based processing, Winforms and
event-driven processing, transaction integrity, and
classes and objects.

3 Tutorial: Coding a
Procedure

Demonstrates how to code a simple Maintain
procedure using basic Maintain logic to read and
write to a data source.

4 Tutorial: Painting a
Procedure

Demonstrates how to develop an event-driven
Maintain procedure, including forms, using the
Winform Painter.

5 Using the Winform
Painter

Describes how to use the Winform Painter to
develop Maintain procedures, including Winforms.

6 Language Rules
Reference

Describes the basic rules for using the Maintain
language, including rules for naming, adding
comments, terminating commands, and continuing
commands onto multiple lines.

7 Command Reference Describes the Maintain language’s commands and
system variables, including syntax definitions and
examples.

8 Expressions Reference Documents each type of expression in the Maintain
language, including operators and rules.

9 Built-in Functions
Reference

Describes all Maintain built-in functions, including
arguments and return values.

10 Modifying Data Sources
With MODIFY

Describes MODIFY, FOCUS’s legacy facility for
developing database transaction applications.

11 Designing Screens With
FIDEL

Describes how to create full-screen data entry forms
for MODIFY and Dialogue Manager procedures.

12 Creating and Rebuilding
Databases

Documents how to create and restructure FOCUS
and Fusion data sources using the CREATE and
REBUILD commands.

 Summary of New Features

Maintaining Databases

Chapter/Appendix Contents

13 Directly Editing FOCUS
Databases With SCAN

Describes how to use SCAN, an interactive line
editor, to edit FOCUS data sources.

14 Directly Editing FOCUS
Databases With FSCAN

Describes how to use FSCAN, an interactive
full-screen editor, to edit FOCUS data sources.

A Master Files and
Diagrams

Contains Master Files and diagrams of sample data
sources used in the documentation examples.

B Error Messages Describes how to access FOCUS error messages.

Summary of New Features
The new FOCUS features and enhancements described in this documentation set are
listed in the following table.

New Feature Manual Chapter

Field-based Reformatting Creating Reports Chapter 1, Creating Tabular
Reports

Increased Report Width Creating Reports Chapter 1, Creating Tabular
Reports

ACROSS-TOTAL Creating Reports Chapter 4, Sorting Tabular
Reports

Tiles Creating Reports Chapter 4, Sorting Tabular
Reports

DEFINE FILE SAVE and
DEFINE FILE RETURN

Creating Reports Chapter 6, Creating Temporary
Fields

Forecast Creating Reports Chapter 6, Creating Temporary
Fields

Creating Comma-
Delimited Files

Creating Reports Chapter 11, Saving and Reusing
Report Output

Creating Tab-Delimited
Files

Creating Reports Chapter 11, Saving and Reusing
Report Output

Long Master File Names Creating Reports Chapter 11, Saving and Reusing
Report Output

JOIN WHERE Creating Reports Chapter 13, Joining Data Sources

Preface

 Information Builders

New Feature Manual Chapter

KEEPDEFINES Creating Reports Chapter 13, Joining Data Sources

Long Master File Names Describing Data Chapter 1, Understanding a Data
Source Description

4K Alpha Fields Describing Data Chapter 4, Describing an
Individual Field

Extended Currency
Symbol Support

Describing Data Chapter 4, Describing an
Individual Field

SUFFIX =
COMT/COMMA/TABT

Describing Data Chapter 5, Describing a
Sequential, VSAM, or ISAM Data
Source

AUTODATE Describing Data Chapter 6, Describing a FOCUS
Data Source

CDN Developing
Applications

Chapter 1, Customizing Your
Environment

CENT-ZERO Developing
Applications

Chapter 1, Customizing Your
Environment

Exit on Error Developing
Applications

Chapter 1, Customizing Your
Environment

KEEPDEFINES Developing
Applications

Chapter 1, Customizing Your
Environment

PCOMMA Developing
Applications

Chapter 1, Customizing Your
Environment

Unlimited -INCLUDEs Developing
Applications

Chapter 2, Managing an
Application With Dialogue
Manager

SQUEEZ Function Using Functions Chapter 3, Character Functions

STRIP Function Using Functions Chapter 3, Character Functions

TRIM Function Using Functions Chapter 3, Character Functions

DYNAM ALLOC
LONGNAME

Overview and
Operating
Environments

Chapter 5, OS/390 and MVS
Guide to Operations

 Documentation Conventions

Maintaining Databases

Documentation Conventions
The following conventions apply throughout this manual:

Convention Description

THIS TYPEFACE Denotes a command that you must enter in uppercase, exactly
as shown.

this typeface Denotes a value that you must supply.

{ } Indicates two choices. You must type one of these choices,
not the braces.

| Separates two mutually exclusive choices in a syntax line.
Type one of these choices, not the symbol.

[] Indicates optional parameters. None of them is required, but
you may select one of them. Type only the information within
the brackets, not the brackets.

underscore Indicates the default value.

... Indicates that you can enter a parameter multiple times. Type
only the information, not the ellipsis points.

.

.

.

Indicates that there are (or could be) intervening or additional
commands.

Related Publications
See the Information Builders Publications Catalog for the most up-to-date listing and
prices of technical publications, plus ordering information. To obtain a catalog, contact
the Publications Order Department at (800) 969-4636.

You can also visit our World Wide Web site, http://www.informationbuilders.com, to
view a current listing of our publications and to place an order.

Preface

 Information Builders

Customer Support
Do you have questions about FOCUS?

Call Information Builders Customer Support Service (CSS) at (800) 736-6130 or
(212) 736-6130. Customer Support Consultants are available Monday through Friday
between 8:00 a.m. and 8:00 p.m. EST to address all your FOCUS questions. Information
Builders consultants can also give you general guidance regarding product capabilities
and documentation. Please be ready to provide your six-digit site code number (xxxx.xx)
when you call.

You can also access support services electronically, 24 hours a day, with InfoResponse
Online. InfoResponse Online is accessible through our World Wide Web site,
http://www.ibi.com. It connects you to the tracking system and known-problem
repository at the Information Builders support center. Registered users can open, update,
and view the status of cases in the tracking system and read descriptions of reported
software issues. New users can register immediately for this service. The technical
support section of www.ibi.com also provides usage techniques, diagnostic tips, and
answers to frequently asked questions.

To learn about the full range of available support services, ask your Information Builders
representative about InfoResponse Online, or call (800) 969-INFO.

Information You Should Have
To help our consultants answer your questions most effectively, be ready to provide the
following information when you call:

• Your six-digit site code number (xxxx.xx).

• The FOCEXEC procedure (preferably with line numbers).

• Master File with picture (provided by CHECK FILE).

 Customer Support

Maintaining Databases

• Run sheet (beginning at login, including call to FOCUS), containing the following
information:

• ? RELEASE

• ? FDT

• ? LET

• ? LOAD

• ? COMBINE

• ? JOIN

• ? DEFINE

• ? STAT

• ? SET/? SET GRAPH

• ? USE

• For MVS, ? TSO DDNAME

• For VM, CMS QFI

• The exact nature of the problem:

• Are the results or the format incorrect; are the text or calculations missing or
misplaced?

• The error message and code, if applicable.

• Is this related to any other problem?

• Has the procedure or query ever worked in its present form? Has it been changed
recently? How often does the problem occur?

• What release of the operating system are you using? Has it, FOCUS, your security
system, or an interface system changed?

• Is this problem reproducible? If so, how?

• Have you tried to reproduce your problem in the simplest form possible? For
example, if you are having problems joining two databases, have you tried executing
a query containing just the code to access the database?

• Do you have a trace file?

• How is the problem affecting your business? Is it halting development or
production? Do you just have questions about functionality or documentation?

Preface

 Information Builders

User Feedback
In an effort to produce effective documentation, the Documentation Services staff at
Information Builders welcomes any opinion you can offer regarding this manual. Please
use the Reader Comments form at the end of this manual to relay suggestions for
improving the publication or to alert us to corrections. You can also use the Document
Enhancement Request Form on our Web site, http://www.informationbuilders.com.

Thank you, in advance, for your comments.

Information Builders Consulting and Training
Interested in training? Information Builders Education Department offers a wide variety
of training courses for this and other Information Builders products.

For information on course descriptions, locations, and dates, or to register for classes,
visit our World Wide Web site (http://www.informationbuilders.com) or call (800)
969-INFO to speak to an Education Representative.

Maintaining Databases 1-1

CHAPTER 1

Introduction to Maintain

Topics:

• Using Maintain to Manage Data

• Accessing Data Sources

• Working With Maintain Procedures

• Maintain Performance

Maintain is FOCUS’s premier facility for maintaining data
sources. It has been designed to meet the needs of the FOCUS
community for building sophisticated and robust applications
reliably and efficiently.

Application developers who are new to Maintain but familiar
with MODIFY should note that Maintain replaces MODIFY as
FOCUS’s main data source maintenance tool. You will
recognize some of the basic commands, and will be pleased to
note the extensions and changes that put increased power at your
fingertips.

Introduction to Maintain

1-2 Information Builders

Using Maintain to Manage Data
Maintain combines power and simplicity in a single data management facility. It
incorporates the following features:

• Object-oriented development. You can define classes and declare objects that
model the real-world entities, such as customers and business transactions, with
which your enterprise deals. Object-oriented development saves you time by making
it easier for you to reuse source code by means of property inheritance and class
libraries, and enables you to leverage the powerful Maintain language by creating
your own data types.

• Set-based processing. You can manipulate a group of data source records at the
same time. You can define the group as a sequential range of records, as all records
that satisfy selection criteria, or a combination of the two. For example, with one
simple command you can select and retrieve all of the records for the first 100
employees who have the job code A25.

• Record-at-a-time processing. In addition to set-based processing, you can also
identify and work with one record at a time.

• Sophisticated graphical user interface (GUI). You can use the Winform Painter to
create sophisticated interactive forms, called Winforms, for entering data, displaying
information, and selecting options. You can design these Winforms to include
user-friendly features such as dialog boxes for requesting special information, check
boxes for making choices, list boxes for selecting values, buttons for invoking
functions, and entry fields with automatic data validation for entering valid values.

• Triggers and event-driven processing. The flow of control in conventional
processing is mostly pre-determined—that is, the application developer determines
the few paths that the application end user will be able to take through the procedure.

To make your application more responsive to the end user—via the graphical user
interface—Maintain provides triggers and event-driven processing. A trigger is a
specified event that invokes or triggers a function. Each time that the event (such as
an end user pressing a function key) occurs, the function is invoked. For example,
you might create a trigger for retrieving data: it would notice whenever an end user
presses the PF7 key while in a Winform at run time, and would react by retrieving the
specified data from the data source and displaying it in the Winform for the user to
edit.

 Using Maintain to Manage Data

Maintaining Databases 1-3

• Event-driven development. Developing a procedure by writing out sequential lines
of code may be sufficient for conventional linear processing, but event-driven
processing demands event-driven development. Developing an application in this
way enables you to build much of the application’s logic around the user interface.
For example, you could start by developing part of the user interface (a Winform),
then assign a trigger to a particular Winform event, specify the action (that is, the
function) associated with the trigger, and finally code the function—all from within
the Winform Painter!

• Flow-of-control. Maintain provides many different ways of controlling the flow of a
procedure, using enhanced versions of commands found in MODIFY as well as
entirely new commands and functions. For example, you can transfer control
unconditionally to functions, via PERFORM, and to procedures, via CALL; transfer
control conditionally using IF; declare functions (also known as cases) with CASE,
and simple blocks of code with BEGIN; and loop via REPEAT.

• Transaction Integrity. Maintain enables you to define multiple data source
operations as a single transaction, and to ensure that the entire transaction is written
to the data source only if all of its component operations were successful. Maintain
does this by respecting your DBMS’s native transaction integrity strategy.

• Modular processing. You can create several Maintain procedures which work
together, one procedure calling another.

These are just some of the features you can use to develop powerful, flexible, and robust
data source management applications.

Introduction to Maintain

1-4 Information Builders

Accessing Data Sources
To access a data source using Maintain you must identify the data source to:

• FOCUS. The standard FOCUS requirements apply: you need a Master File that
describes the data source, supplemented—for some types of data sources—by an
Access File. For detailed information about Master and Access Files, see the
Describing Data manual and the FOCUS Interface documentation for the types of
data sources that you are accessing.

• The Maintain procedure. You identify data sources to a Maintain procedure by
specifying them following the FILE keyword in the procedure’s MAINTAIN
command. For example, if you wish to read records from a data source named
AutoTeller, and update a data source named Accounts, the procedure would begin
with the following command:

MAINTAIN FILES AutoTeller AND Accounts

The MAINTAIN command is described in Chapter 7, Command Reference.

Reading From Data Sources
Maintain can read many kinds of data sources, including DB2, Teradata, and FOCUS
databases, and VSAM and fixed-format sequential data files. Maintain reads data sources
using the NEXT and MATCH commands

Maintain can read data sources to which the operating system does not permit write
access.

Maintain can read individual data sources and joined data sources. Maintain supports
joins that are defined in the Master File. For information about defining joins in the
Master File, see the FOCUS Interface documentation for the types of data sources that
you wish to join, and the Describing Data manual for FOCUS data sources.

 Accessing Data Sources

Maintaining Databases 1-5

If a database administrator has applied FOCUS DBA security to a data source, and you
wish to read:

• A cross-referenced FOCUS database joined in the Master File, the DBA
specification must grant you access privileges. Any type of access—read (R), write
(W), read/write (RW), or update (U)—is sufficient.

• All other types of data sources, such as joined host data sources, relational tables
joined via a join defined in the Master File, and simple (unjoined) data sources, the
DBA specification must grant you access privileges of write (W), read/write (RW),
or update (U). Each of these enables you to read from and write to the data source;
with regard to Maintain, these three DBA access privileges are equivalent.

Maintain supports DBA except for the VALUE and NOPRINT attributes. See the
Describing Data manual for information about DBA.

Writing to Data Sources
Maintain can write to many kinds of data sources, including DB2, Teradata, and FOCUS
databases, and VSAM data files. Maintain writes to data sources using the INCLUDE,
UPDATE, REVISE, and DELETE commands.

If your database administrator has applied FOCUS DBA security to a data source, the
DBA specification must grant you access privileges of write (W), read/write (RW), or
update (U). Each of these enables you to write to and read from the data source using any
Maintain data source command; with regard to Maintain, these three DBA access
privileges are equivalent.

Maintain supports DBA except for the VALUE and NOPRINT attributes. See the
Describing Data manual for information about DBA.

Introduction to Maintain

1-6 Information Builders

Working With Maintain Procedures
A Maintain application can include multiple procedures. Each procedure comprises one
FOCEXEC file and, optionally, a WINFORMS file containing the procedure’s Winforms.
This section gives you a brief overview of how to develop, store, and execute Maintain
procedures.

Developing Procedures
FOCUS provides you with several ways to develop a Maintain procedure:

• Event-driven development. Most data source procedures are event-driven: a user
performs an event—such as entering data, clicking a button, or selecting a list item—
and this event triggers some logic. You can develop such procedures most effectively
if you follow the same model: first identify an action that the user needs to perform,
then develop the user interface to enable it, and finally code the logic that performs it.

For example, consider a data entry procedure in which the user will need to enter data
and write it to the data source. You could create a Winform with entry fields and a
command button, then assign a trigger with a function to the button, and finally code
the function to update the data source. You perform all of these steps seamlessly
within the Winform Painter. The Painter even generates some of the code for you.

• Process-driven development. You can develop the procedure’s data source logic
separately from its user interface logic: code the Maintain procedure using an editor
such as TED, and develop the Winforms using the Winform Painter.

Because each Maintain procedure must reside in its own FOCEXEC, you cannot create ad
hoc procedures at the FOCUS command prompt. For more information about using the
Winform Painter to develop procedures, see Chapter 4, Tutorial: Painting a Procedure,
and Chapter 5, Using the Winform Painter. For more information about using TED, see
the Overview and Operating Environments manual.

 Working With Maintain Procedures

Maintaining Databases 1-7

Storing Procedures
Each Maintain procedure is stored in two files:

• FOCEXEC. The procedure’s business logic is stored in a FOCEXEC file. The file
should contain a single Maintain request: it should not contain multiple requests, and
should not contain other elements such as Dialogue Manager commands or SET
commands. For more information about FOCEXECs, see the Developing
Applications manual.

• WINFORMS. Most of the procedure’s presentation logic is stored as Winforms in a
WINFORMS file. You create and edit Winforms using the Winform Painter. You
should make changes to WINFORMS files via the Painter only, and not attempt to
edit them directly: all changes made outside the Painter are lost the next time the file
is edited in the Painter. Under:

• CMS, the file type is WINFORMS. The file’s attributes are RECFM=F and
LRECL=80. When FOCUS searches for WINFORMS files it uses the standard
CMS search order.

• MVS, the file is stored in a PDS allocated to ddname WINFORMS; if you wish
you can concatenate several data sets together. If you neglect to allocate the
WINFORMS PDS, FOCUS will dynamically allocate it for you. The following
lines show sample commands for allocating WINFORMS under TSO:

ALLOC F(WINFORMS) DA(WINFORMS.DATA) SHR

and under MSO or MVS FOCUS:

DYNAM ALLOC FILE WINFORMS DATASET user.WINFORMS.DATA

The PDS’s DCB attributes are RECFM=FB, LRECL=80, and BLKSIZE a
multiple of LRECL. When FOCUS searches for a WINFORMS file, it first looks
for ddname WINFORMS. If ddname WINFORMS is not allocated, FOCUS
attempts to allocate the dataset prefix.WINFORMS.data to ddname
WINFORMS. If the specified member is not there, FOCUS displays an error
message.

Each procedure has one FOCEXEC file and—if it has a user interface—one WINFORMS
file. The two files share the same file name (under CMS) or member name (under MVS).
For example, the Payroll procedure is stored in the files PAYROLL FOCEXEC and
PAYROLL WINFORMS.

Introduction to Maintain

1-8 Information Builders

Executing Procedures
FOCUS provides you with the flexibility of executing a Maintain procedure from
different kinds of environments, and employing different control techniques.

In addition, you can accelerate execution by compiling a procedure using the COMPILE
command. You may wish to work with the procedure in its regular form while you are
developing it, and then—once it is finished—compile it to make it faster.

You can execute a procedure from the following environments:

• The FOCUS command prompt. You can execute a Maintain procedure at the
FOCUS command prompt by issuing the EXEC command (for uncompiled
procedures) or the RUN command (for compiled procedures).

• Maintain procedures. You can execute one Maintain procedure from another by
issuing the CALL command in the parent procedure. If the child procedure exists in
both compiled and uncompiled form, Maintain executes the compiled version. You
can pass data between the two procedures.

• Other types of procedures. You can execute a Maintain procedure from a
non-Maintain procedure by issuing the EXEC command (for uncompiled procedures)
or the RUN command (for compiled procedures) in the calling procedure. You can
issue the command in the calling procedure’s FOCEXEC file, or in an Execution
window in the calling procedure’s FMU or TRF file. When using EXEC you can pass
data to the Maintain procedure.

Alternatively, you can execute an uncompiled Maintain procedure by naming it in a
Menu window (via the Window Painter’s FOCEXEC Name option) in the calling
procedure’s FMU or TRF file.

The EXEC command, Execution and Menu windows, and the Window Painter are all
described in the Developing Applications manual. The CALL, COMPILE, and RUN
commands are described in Chapter 7, Command Reference.

Maintain Performance
If you wish to maximize Maintain efficiency, exploit Maintain features. Refrain from
coding a Maintain procedure as if you were using the MODIFY language. For example,
you will achieve higher performance if you use set-based processing in place of
record-at-a-time processing whenever applicable.

Another way to optimize Maintain performance is to keep all Winforms in a single
Maintain procedure, reducing memory consumption. This applies mostly to CMS.

Maintaining Databases 2-1

CHAPTER 2

Maintain Concepts

Topics:

• Set-based Processing

• Controlling a Procedure’s Flow

• Executing Other Maintain
Procedures

• Winforms and Event-driven
Processing

• Reading From a Data Source

• Writing to a Data Source

• Transaction Processing

• Classes and Objects

To fully exploit the potential and productivity of Maintain, you
should become familiar with some basic Maintain concepts,
including:

• Processing data in sets by using stacks.

• Controlling the flow of a Maintain application and the
procedures within it.

• Developing presentation logic using Winforms and triggers.

• Reading and writing to data sources.

• Ensuring transaction integrity.

• Creating classes and objects.

Maintain Concepts

2-2 Information Builders

Set-based Processing
Maintain provides the power of set-based processing, enabling you to read, manipulate,
and write groups of records at a time. You manipulate these sets of data using a data
structure called a database stack.

A database stack is a simple temporary table. Generally, columns in a database stack
correspond to data source fields, and rows correspond to records, or path instances, in that
data source. You can also create your own “user-defined” columns.

The intersection of a row and a column is called a cell and corresponds to an individual
field value. The database stack itself represents a data source path.

For example, consider the following Maintain command:

FOR ALL NEXT Emp_ID Pay_Date Ded_Amt INTO PayStack
WHERE Employee.Emp_ID EQ SelectedEmpID;

This command retrieves Emp_ID and the other root segment fields, as well as the
Pay_Date, Gross, Ded_Code, and Ded_Amt fields from the Employee data source and
holds them in a database stack named PayStack. Because the command specifies FOR
ALL, it retrieves all of the records at the same time; you do not need to repeat the
command in a loop. Because it specifies WHERE, it retrieves only the records you
need—in this case, the payment records for the currently-selected employee.

You could just as easily limit the retrieval to a sequence of data source records, such as
the first six payment records that satisfy your selection condition,

FOR 6 NEXT Emp_ID Pay_Date Ded_Amt INTO PayStack
WHERE Employee.Emp_ID EQ SelectedEmpID;

or even restrict the retrieval to employees in the MIS department earning salaries above a
certain amount:

FOR ALL NEXT Emp_ID Pay_Date Ded_Amt INTO PayStack
WHERE (Employee.Department EQ 'MIS') AND

(Employee.Curr_Sal GT 23000);

 Set-based Processing

Maintaining Databases 2-3

Which Processes Are Set-based?
You can use set-based processing for the following types of operations:

• Selecting records. You can select a group of data source records at one time using
the NEXT command with the FOR prefix. Maintain retrieves all of the data source’s
records that satisfy the conditions you specified in the command and then
automatically puts them into the database stack that you specified.

• Collecting transaction values. You can use Winforms to display, edit, and enter
values for groups of rows. The rows are retrieved from a database stack, displayed in
the Winform, and, when the user is finished, are placed back into a stack. You can
also use the NEXT command to read values from a transaction file into a stack.

• Writing transactions to the data source. You can include, update, or delete a group
of records at one time using the INCLUDE, UPDATE, REVISE, or DELETE
commands with the FOR prefix. The records come from the database stack that you
specify in the command.

• Manipulating stacks. You can copy a set of records from one database stack to
another and sort the records within a stack.

Maintain Concepts

2-4 Information Builders

The following diagram illustrates how these operations function together in a procedure:

 Read data from
 database to stack

➊ ➋ Display stack on form

➍ Close form when finished➎ Write data from
 stack to database

➌ Use form to enter
 and edit data

 NEXT INTO Stack

 UPDATE FROM Stack

A B C

StackDatabases
 WINFORM CLOSE Form

WINFORM SHOW Form

Form

The diagram is explained in detail below:

1. The procedure selects several records from the data source and, for each record,
copies the values for fields A, B, and C into the database stack. It accomplishes this
using the NEXT command.

2. The procedure displays a Winform on the screen. The Winform shows multiple
instances of fields A, B, and C; the field values shown on the screen are taken from
the stack. This is accomplished using the WINFORM SHOW command.

3. The procedure user views the Winform and enters and edits data. As the Winform
responds to the user’s activity, it automatically communicates with the procedure and
updates the stack with the new data.

4. The procedure user clicks a button to exit the Winform; the button accomplishes this
by triggering the WINFORM CLOSE command.

5. The procedure writes the values for fields A, B, and C from the stack to the selected
records in the data source. The procedure accomplishes this using the UPDATE
command.

How Does Maintain Process Data in Sets?
Maintain processes data in sets using two features:

• The command prefix FOR. When you specify FOR at the beginning of the NEXT,
INCLUDE, UPDATE, REVISE, and DELETE commands, the command works on a
group of records, instead of on just one record.

• Stacks. You use a database stack to hold the data from a group of data source or
transaction records. For example, a stack can hold the set of records that are output
from one command (such as NEXT or WINFORM) and provide them as input to
another command (such as UPDATE). This enables you to manipulate the data as a
group.

 Set-based Processing

Maintaining Databases 2-5

Creating and Defining Database Stacks: An Overview
Maintain makes working with stacks easy by enabling you to create and define a database
stack dynamically, simply by using it. For example, when you specify a particular stack as
the destination stack for a data source retrieval operation, that stack is defined as
including all of the fields in all of the segments referred to by the command. Consider the
following NEXT command, which retrieves data from the VideoTrk data source into the
stack named VideoTapeStack:

FOR ALL NEXT CustID INTO VideoTapeStack;

Because the command refers to the CustID field in the Cust segment, all of the fields in
the Cust segment (from CustID through Zip) are included as columns in the stack. Every
record retrieved from the data source is written as a row in the stack.

Example Creating and Populating a Simple Database Stack
If you are working with the VideoTrk data source, and you want to create a database stack
containing the ID and name of all customers whose membership expired after June 24,
1992, you could issue the following NEXT command:

FOR ALL NEXT CustID INTO CustNames WHERE ExpDate GT 920624;

The command does the following:

1. Selects (NEXT) all VideoTrk records (FOR ALL) that satisfy the membership
condition (WHERE).

2. Copies all of the fields from the Cust segment (referenced by the CustID field) from
the selected data source records into the CustNames stack (INTO).

The resulting CustNames stack looks like this (some intervening columns have been
omitted to save space):

CustID LastName … Zip

0925 CRUZ … 61601

1118 WILSON … 61601

1423 MONROE … 61601

2282 MONROE … 61601

4862 SPIVEY … 61601

8771 GARCIA … 61601

8783 GREEN … 61601

9022 CHANG … 61601

Maintain Concepts

2-6 Information Builders

Creating a Database Stack
You create a database stack:

• Implicitly, by specifying it in a NEXT or MATCH command as the destination
(INTO) stack, or by associating it in the Winform Painter with a control.

Winforms are introduced in Winforms and Event-driven Processing on page 2-23;
the Winform Painter used to design and create Winforms is described in Chapter 5,
Using the Winform Painter.

• Explicitly, by specifying it in an INFER command.

For example, this NEXT command creates the EmpAddress stack:

FOR ALL NEXT StreetNo INTO EmpAddress;

Defining a Database Stack’s Data Source Columns
When you define a database stack, you can include any field in a data source path.
Maintain defines a stack’s data source columns by performing the following steps:

1. Scanning the procedure to identify all of the NEXT, MATCH, and INFER commands
that use the stack as a destination and all the controls that use the stack as a source or
destination.

2. Identifying the data source fields that these commands and controls move in or out of
the stack:

• NEXT commands move the fields in the data source field list and WHERE
phrase.

• MATCH commands move the fields in the data source field list.

• INFER commands move all the fields specified by the command.

• Controls move all the fields specified by the control.

3. Identifying the data source path that contains these fields.

4. Defining the stack to include columns corresponding to all the fields in this path.

You can include any number of segments in a stack, as long as they all come from the
same path. When determining a path, unique segments are interpreted as part of the parent
segment. The path can extend through several data sources that have been joined together.
Maintain supports joins that are defined in the Master File. For information about
defining joins in the Master File, see the FOCUS Interface documentation for the types of
data sources that you wish to join, and the Describing Data manual for FOCUS data
sources. (Maintain can read data sources that have been joined to a host data source, but
cannot write to them.)

 Set-based Processing

Maintaining Databases 2-7

The highest specified segment is known as the anchor and the lowest specified segment is
known as the target. Maintain creates the stack with all of the segments needed to trace
the path from the root segment to the target segment:

• It automatically includes all fields from all of the segments in the path that begins
with the anchor and continues to the target.

• If the anchor is not the root segment, it automatically includes the key fields from the
anchor’s ancestor segments.

Example Defining Data Source Columns in a Database Stack
In the following source code, a NEXT command refers to a field (Last_Name) in the
EmpInfo segment of the Employee data source, and reads that data into EmpStack;
another NEXT command refers to a field (Salary) in the PayInfo segment of Employee
and also reads that data into EmpStack:

NEXT Last_Name INTO EmpStack;
.
.
.
FOR ALL NEXT Salary INTO EmpStack;

Based on these two NEXT commands, Maintain defines a stack named EmpStack, and
defines it as having columns corresponding to all of the fields in the EmpInfo and PayInfo
segments:

Emp_ID Last_Name … Ed_Hrs Dat_Inc … Salary JobC
ode

071382660 STEVENS … 25.00 82/01/01 … $11,000.00 A07

071382660 STEVENS … 25.00 81/01/01 … $10,000.00 A07

Example Establishing a Path Using Keys and Anchor and Target
Segments
The following code populates CustMovies, a database stack that contains video rental
information for a given customer. The first NEXT command identifies the customer. The
second NEXT command selects a field (TransDate) from the second segment and a field
(Title) from the bottom segment of a path that runs through the joined VideoTrk and
Movies data sources:

NEXT CustID WHERE CustID IS '7173';

FOR ALL NEXT TransDate Title INTO CustMovies
WHERE Category IS 'COMEDY';

Maintain Concepts

2-8 Information Builders

The structure of the joined VideoTrk and Movies data sources looks like this:

Movinfo KU

CUST S1

TransDate

TransDat SH1

ProdCode
TransCode
Quantity
TransTot

Sales S2
MovieCode
Copy
ReturnDate
Fee

Rentals S2

MovieCode
Title ...
Copies

CustID
LastName...
ZIP

In this NEXT command, the TransDat segment is the anchor and the MovInfo segment is
the target. The resulting CustMovies stack contains all the fields needed to define the data
source path from the root segment to the target segment:

• The anchor’s ancestor segment, Cust (key field only).

• All segments from the anchor through the root: TransDat, Rentals, MovInfo (all
fields).

The stack looks like this:

CustID TransDate MovieCode … Title … Copies

7173 91/06/18 305PAR … AIRPLANE … 2

7173 91/06/30 651PAR … MY LIFE AS
A DOG

… 3

 Set-based Processing

Maintaining Databases 2-9

Creating a Database Stack’s User-defined Columns
In addition to creating database stack columns that correspond to data source fields, you
can also create database stack columns that you define yourself. You can define these
columns in two ways:

• Within a procedure. You can create a stack column (as well as a user-defined field)
by issuing a COMPUTE command. You can also use the COMPUTE command to
assign values to stack cells.

Because all Maintain variables are local to a procedure, you must redefine variables
in each procedure in which you use them. For user-defined stack columns, you
accomplish this by simply reissuing the original COMPUTE command in each
procedure to which you are passing the stack. (You only need to specify the
variable’s format; do not specify its value, which is passed with the stack.)

• Within the Master File. You can define a virtual field in a Master File by using the
DEFINE attribute. The field is then available in every procedure that accesses the
data source. The virtual field is treated as part of the data source segment in which it
is defined, and Maintain automatically creates a corresponding column for it—a
virtual column—in every stack that references that segment.

Unlike other kinds of stack columns, you cannot update a virtual column or field, and
you cannot test it in a WHERE phrase.

Example Creating a User-defined Column
Consider a database stack named Pay that contains information from the Employee data
source. If you want to create a user-defined column named Bonus and set its value to 10
percent of each employee’s current salary, you could issue the COMPUTE command to
create the new column, and then issue another COMPUTE to derive the value. You place
the second COMPUTE within a REPEAT loop to execute it once for each row in the
stack:

COMPUTE Pay.Bonus/D10.2;
REPEAT Pay.FocCount Row/I4=1;

COMPUTE Pay(Row).Bonus = Pay(Row).Curr_Sal * .10;
ENDREPEAT Row=Row+1;

Maintain Concepts

2-10 Information Builders

Copying Data Into and Out of a Database Stack
You can copy data into and out of a database stack in the following ways:

• Between a stack and a data source. You can copy data from a data source into a
stack using the NEXT and MATCH commands. You can copy data in the opposite
direction, from a stack into a data source, using the INCLUDE, UPDATE, and
REVISE commands. In addition, the DELETE command, while not actually copying
a stack’s data, reads a stack to determine which records to remove from a data
source. For more information about these commands, see Chapter 7, Command
Reference.

• Between a stack and a Winform. You can copy data from a stack into a Winform,
and from a Winform into a stack, by specifying the stack as the source or destination
of the data displayed by the Winform. This technique makes it easy for an application
user to enter and edit stack data at a terminal. For more information about using
stacks with Winforms, see Chapter 5, Using the Winform Painter.

• From a transaction file to a stack. You can copy data from a transaction file to a
stack using the NEXT command. For more information about this command, see
Chapter 7, Command Reference.

• Between two stacks. You can copy data from one stack to another using the COPY
and COMPUTE commands. For more information about these commands, see
Chapter 7, Command Reference.

You can use any of these commands to copy data by employing the command’s INTO
and FROM phrases. FROM specifies the command’s data source (the source stack), and
INTO specifies the command’s data destination (the destination stack).

Example Copying Data Between a Database Stack and a Data Source
In this NEXT command,

FOR ALL NEXT CustID INTO CustStack;

the INTO phrase copies the data (the CustID field and all of the other fields in that
segment) into CustStack. The following UPDATE command,

FOR ALL UPDATE ExpDate FROM CustStack;

uses the data from CustStack to update records in the data source.

 Set-based Processing

Maintaining Databases 2-11

Referring to Specific Stack Rows Using an Index
Each stack has an index that enables you to refer to specific rows. For example, in an
earlier example we created the CustNames stack by issuing a NEXT command to retrieve
records from the VideoTrk data source:

FOR ALL NEXT CustID LastName INTO CustNames
WHERE ExpDate GT 920624;

The first record retrieved from VideoTrk becomes the first row in the database stack, the
second record becomes the second row, and so on.

 CustID LastName … Zip

1 0925 CRUZ … 61601

2 1118 WILSON … 61601

3 1423 MONROE … 61601

4 2282 MONROE … 61601

5 4862 SPIVEY … 61601

6 8771 GARCIA … 61601

7 8783 GREEN … 61601

8 9022 CHANG … 61601

You can refer to a row in the stack by using a subscript. The following example refers to
the third row, in which CustID is 1423:

CustNames(3)

You can use any integer value as a subscript; an integer literal (such as 3), an integer field
(such as TransCode), or an expression that resolves to an integer (such as TransCode +
2).

You can even refer to a specific column in a row (that is, to a specific stack cell) by using
the stack name as a qualifier:

CustNames(3).LastName

If you omit the row subscript, the position defaults to the first row. For example,

CustNames.LastName

is equivalent to

CustNames(1).LastName

Maintain Concepts

2-12 Information Builders

Maintain provides two system variables associated with each stack. These variables help
you manipulate single rows and ranges of rows:

• FocCount. This variable’s value is always the number of rows currently in the stack
and is set automatically by Maintain. This is very helpful when you loop through a
stack, as described in the following section, Looping Through a Stack on page 2-12.
FocCount is also helpful for checking if a stack is empty:

IF CustNames.FocCount EQ 0 THEN PERFORM NoData;

• FocIndex. This variable points to the current row of the stack. When a stack is
displayed in a Winform, the Winform sets FocIndex to the row currently selected in
the grid or browser. Outside of a Winform, the developer sets the value of FocIndex.
By changing its value, you can point to any row you wish. For example, in one
Maintain function you can increment FocIndex for the Rental stack:

IF Rental.FocIndex LT Rental.FocCount
THEN COMPUTE Rental.FocIndex = Rental.FocIndex + 1;

You can then invoke a second function that uses FocIndex to retrieve desired records
into the MovieList stack:

FOR ALL NEXT CustID MovieCode INTO MovieList
WHERE VideoTrk.CustID EQ Rental(Rental.FocIndex).CustID;

The syntax

stackname(stackname.FocIndex)

is identical to

stackname()

so you can code the previous WHERE phrase more simply as follows:

WHERE VideoTrk.CustID EQ Rental().CustID

Looping Through a Stack
The REPEAT command enables you to loop through a stack. You can control the process
in different ways, so that you can loop according to several factors:

• The number of times specified by a literal or by the value of a field or expression.

• The number of rows in a stack, by specifying the stack’s FocCount variable.

• While an expression is true.

• Until an expression is true.

• Until the logic within the loop determines that the loop should be exited.

You can also increment counters as part of the loop.

 Set-based Processing

Maintaining Databases 2-13

Example Using REPEAT to Loop Through a Stack
For example, the following REPEAT command loops through the Pay stack once for each
row in the stack and increments the temporary field Row by one for each loop:

REPEAT Pay.FocCount Row/I4=1;
COMPUTE Pay(Row).NewSal = Pay(Row).Curr_Sal * 1.10;

ENDREPEAT Row=Row+1;

Sorting a Stack
You can sort a stack’s rows using the STACK SORT command. You can sort the stack by
one or more of its columns and sort each column in ascending or descending order. For
example, the following STACK SORT command sorts the CustNames stack by the
LastName column in ascending order (the default order):

STACK SORT CustNames BY LastName;

Editing Stack Values
There are two ways in which you can edit a stack’s values:

• Winforms. You can display a stack in a grid and edit its fields directly on the screen.

• COMPUTE command. You can use the COMPUTE command, or a simple
assignment statement, to assign a value to any of a stack’s cells. For example, the
following command assigns the value 35,000 to the cell at the intersection of row 7
and column NewSal in the Pay stack:

COMPUTE Pay(7).NewSal = 35000;

It is important to note that if you do not specify a row when you assign values to a stack,
Maintain defaults to the first row. Thus if the Pay stack has 15 rows, and you issue the
following command,

COMPUTE Pay.NewSal = 28000;

the first row receives the value 28000. If you issue this NEXT command,

FOR 6 NEXT NewSal INTO Pay;

the current row of Pay defaults to one, and so the six new values are written to rows one
to six of Pay; any values originally in the first six rows of Pay will be overwritten. If you
wish to append the new values to Pay—that is, to add them as new rows 16 through 21—
you would issue this NEXT command, which specifies the starting row:

FOR 6 NEXT NewSal INTO Pay(16);

If you want to discard the original contents of Pay and substitute the new values, it is best
to clear the stack before writing to it using the following command:

STACK CLEAR Pay;
FOR 6 NEXT NewSal INTO Pay;

Maintain Concepts

2-14 Information Builders

The Default Database Stack: The Current Area
For most fields and variables referenced by a Maintain procedure, Maintain creates a
corresponding column in the default database stack known as the Current Area.

The Current Area has only one row. The row includes values for the following:

• User-defined fields. Each user-defined field—that is, each scalar (non-stack)
variable created with the COMPUTE command—exists exclusively as a column in
the Current Area.

• Data source fields. Each data source field—that is, each field described in a Master
File accessed by the Maintain procedure—has a corresponding column in the Current
Area. When a data source command assigns a value—to a field via INCLUDE or
UPDATE, or from a field to a stack via NEXT or MATCH—the same value is
assigned to the corresponding column in the single row of the Current Area. The final
value in the Current Area is the last value written.

Developer’s Tip: Stacks are a superior way of accessing and manipulating data source
values, and they function more intuitively than the Current Area. It is recommended that
you use stacks instead of the Current Area to work with data source values.

For example, if you write 15 values of NewSal to the Pay stack, the values will also be
written to the NewSal column in the Current Area; since the Current Area has only one
row, its value will be the fifteenth (that is, the last) value written to the Pay stack.

The Current Area is the default stack for all FROM and INTO phrases in Maintain
commands. If you do not specify a FROM stack, the values come from the single row in
the Current Area; if you do not specify an INTO stack, the values are written to the single
row of the Current Area, so that only the last value written remains.

The standard way of referring to a stack column is by qualifying it with the stack name
and a period:

stackname.columnname

Because the Current Area is the default stack, you can explicitly reference its columns
without the stack name, by prefixing the column name with a period:

.columnname

 Set-based Processing

Maintaining Databases 2-15

Within the context of a WHERE phrase, an unqualified name refers to a data source field
(in a NEXT command) or a stack column (in a COPY command). To refer to a Current
Area column in a WHERE phrase you should reference it explicitly by qualifying it with a
period. Outside of a WHERE phrase it is not necessary to prefix the name of a Current
Area column with a period, as unqualified field names will default to the corresponding
column in the Current Area.

For example, the following NEXT command compares Emp_ID values taken from the
Employee data source with the Emp_ID value in the Current Area:

FOR ALL NEXT Emp_ID Pay_Date Ded_Code INTO PayStack
WHERE Employee.Emp_ID EQ .Emp_ID;

If the Current Area contains columns for fields with the same field name but located in
different segments or data sources, you can distinguish between the columns by qualifying
each one with the name of the Master File and/or segment in which the field is located:

file_description_name.segment_name.column_name

If the Current Area contains columns for a user-defined field and a data source field that
have the same name, you can qualify the name of the data source field column with its
Master File and/or segment name; an unqualified reference will refer to the user-defined
field column.

Maximizing Database Stack Performance
When you use database stacks, there are several things you can do to optimize
performance:

• Filter out unnecessary rows. When you read records into a stack, you can prevent
the stack from growing unnecessarily large by using the WHERE phrase to filter out
unneeded rows.

• Clear stacks when done with data. Maintain automatically releases a stack’s
memory at the end of a procedure, but if in the middle of a procedure you no longer
need the data stored in a stack, you can clear it immediately by issuing the STACK
CLEAR command, freeing its memory for use elsewhere.

• Do not reuse a stack for an unrelated purpose. When you specify a stack as a data
source or destination in certain contexts (in the NEXT, MATCH, and INFER
commands, and in the Winform Painter for controls), you define the columns that the
stack will contain. If you use the same stack for two unrelated purposes, it will be
created with the columns needed for both, making it unnecessarily wide.

Maintain Concepts

2-16 Information Builders

Controlling a Procedure’s Flow
Maintain provides many different ways of controlling a procedure’s flow of execution.
You can:

• Nest a block of code. In commands in which you can nest another command—such
as in an IF command—you can nest an entire block of commands in place of a single
one by defining the block using the BEGIN command. BEGIN is described in
Chapter 7, Command Reference.

• Loop through a block of code a set number of times, while a condition remains true
or until it becomes true, using the REPEAT command. REPEAT is described in
Chapter 7, Command Reference.

• Branch unconditionally to a block of code called a Maintain function (“Maintain
functions” are often referred to more briefly as functions, and are also known as
cases). You define the function using the CASE command, and can invoke it in a
variety of ways. When the function terminates, it returns control to the command
following the function invocation. The CASE command is described in Chapter 7,
Command Reference.

Alternatively, you can branch to a function, but not return upon termination, by
invoking the function using the GOTO command. GOTO is described in Chapter 7,
Command Reference.

• Branch conditionally using the IF command. If the expression you specify in the IF
command is true, the command executes a PERFORM or GOTO command nested in
the THEN phrase, which branches to a function. IF is described in Chapter 7,
Command Reference.

Alternatively, you can nest a different command, such as a BEGIN command
defining a block of code, to be conditionally executed by the IF command.

• Trigger a function or system action in response to a user event. When a user
performs the event in a Winform at run time, the event triggers the function or system
action that you have specified. Event-driven processing is described in Winforms and
Event-driven Processing on page 2-23.

 Executing Other Maintain Procedures

Maintaining Databases 2-17

Executing Other Maintain Procedures
You can call one Maintain procedure from another with the CALL command. (Maintain
procedure here means any procedure of Maintain language commands.) CALL simplifies
the process of modularizing an application; software designed as a group of related
modules tends to be easier to debug, easier to maintain, and lends itself to being reused by
other applications—all of which increase your productivity.

CALL also makes it easy to partition an application, deploying each type of logic on the
platform on which it will run most effectively.

The following diagram illustrates how to describe the relationship between called and
calling procedures. It describes a sequence of five procedures from the perspective of the
middle procedure, C FOCEXEC. (Note that a root procedure is also called the starting
procedure.)

MAINTAIN...
CALL B...
END

A
MAINTAIN...
CALL C...
END

B C D

MAINTAIN...
CALL D...
END

MAINTAIN...
CALL E...
END

E

MAINTAIN...
END

root
procedure

parent
procedure

of C

Ancestors of Procedure C Descendants of Procedure C

child
procedure

of C

leaf
procedure

Maintain Concepts

2-18 Information Builders

Example Calling Another Maintain Procedure
Consider the EMPUPDAT procedure:

MAINTAIN FILE Employee
FOR ALL NEXT Emp_ID INTO EmpStack;
.
.
.
CALL NewClass;
.
.
.
END

This calls the NEWCLASS procedure:

MAINTAIN
.
.
.
END

In this example, EMPUPDAT is the parent procedure and NEWCLASS is the child
procedure. When the child procedure—and any procedures that it, in turn, has invoked—
has finished executing, control returns to the parent.

Passing Variables Between Procedures
All user variables (both stacks and simple, or scalar, variables) are local to a procedure,
not global to the application. In other words, to protect them from unintended changes in
other parts of an application, you cannot directly reference a variable outside of the
procedure in which it is found (with the exception of the FocError, FocErrorRow,
FocFetch, and FocCurrent transaction variables). However, you can access a variable’s
data in other procedures, simply by passing it as an argument from one procedure to
another.

To pass variables as arguments, you only need to name them in the CALL command, and
then again in the corresponding MAINTAIN command. Some variable attributes must
match in the CALL and MAINTAIN commands:

• Sequence. The order in which you name stacks and simple variables must be
identical in the CALL and corresponding MAINTAIN commands.

• Data type. Stack columns and simple variables must have the same data type (for
example, integer) in both the parent and child procedures.

• Stack column names. The names of stack columns do need to match; if a column
has different names in the parent and child procedures, it is not passed.

 Executing Other Maintain Procedures

Maintaining Databases 2-19

Other attributes need not match:

• Stack and scalar variable names. The names of stacks and simple variables
specified in the two commands need not match.

• Other attributes. All other data attributes, such as length and precision, do not need
to match.

• Simple variables. If you pass an individual stack cell, you must receive it as a simple
Current Area variable.

Once you have passed a variable to a child procedure, you need to define it in that
procedure. How you define it depends upon the type of variable:

• User-defined columns and fields. You must redefine each user-defined variable
using a COMPUTE command. You only need to specify the variable’s format, not its
value. For example, the following COMPUTE command redefines the Counter field
and the FullName column:

COMPUTE Counter/A20;
EmpStack.FullName/A15;

• Data source and virtual stack columns. You can define a stack’s data source
columns and virtual columns in one of two ways: implicitly, by referring to the stack
columns in a data source command, or explicitly, by referring to them using the
INFER command. For example:

INFER Emp_ID Pay_Date INTO EmpStack;

The INFER command declares data source fields and the stack with which they are
associated. You can specify one field for each segment you want in the stack or
simply one field each from the anchor and target segments of a path you want in the
stack.

While INFER reestablishes the stack’s definition, it does not retrieve any records
from the data source.

Once a variable has been defined in the child procedure, its data becomes available. If
you refer to stack cells that were not assigned values in the parent procedure, they are
assigned default values (such as spaces or zeros) in the child procedure, and Maintain
displays a message warning that they have not been explicitly assigned any values.

When the child procedure returns control back to the parent procedure, the values of
stacks and simple variables specified as INTO variables are passed back to the parent.
The values of stacks and simple variables specified only as FROM variables are not
passed back.

Maintain Concepts

2-20 Information Builders

Example Passing Data Between Maintain Procedures
For example, this procedure,

MAINTAIN FILE Employee
FOR ALL NEXT Emp_ID INTO EmpStack;
.
.
.
CALL NewClass FROM EmpStack CourseStack INTO CourseStack;
.
.
.
END

calls the NEWCLASS procedure:

MAINTAIN FROM StudentStack CourseStack INTO CourseStack
.
.
.
END

EmpStack and CourseStack in the parent procedure correspond to StudentStack and
CourseStack in the child procedure.

Accessing Data Sources in the Child Procedure
If a child procedure accesses a data source, whether retrieving or writing records, you
must specify the data source in the MAINTAIN command. This is done the same way as
for a stand-alone procedure. For example:

MAINTAIN FILES Employee AND EducFile FROM StuStk INTO CoursStk
.
.
.
END

Data Source Position
Each Maintain procedure tracks its own position in the data source. When you first call a
procedure, Maintain positions you at the beginning of each segment in each data source
accessed within that procedure; after navigating through a data source you can reposition
to the beginning of a segment by issuing the REPOSITION command. Each procedure’s
data source positions are independent of the positions established in other procedures.

When a child procedure returns control to its parent, by default it clears its data source
positions. You can specify that it retain its positions for future calls by using the KEEP
option, as described in Optimizing Performance: Data Continuity and Memory
Management on page 2-21.

 Executing Other Maintain Procedures

Maintaining Databases 2-21

Optimizing Performance: Data Continuity and Memory
Management

By default, when you terminate a child procedure, Maintain clears its data from memory
to save space. You can optimize your application’s performance by specifying, each time
you terminate a child procedure, how you want Maintain to handle the procedure’s data.
You have two options, based on how often you will call a given procedure over the course
of an application:

• If you will call the procedure frequently, use the KEEP option to make the procedure
run faster by retaining its data between calls.

This option provides data continuity; the procedure’s data carries over from the end
of one invocation to the beginning of the next. That is, the next time you call the
procedure, its variables and data source position pointers start out with the same
values that they held when the procedure was last terminated. You can use these
values or, if you wish, reinitialize them using the DECLARE (or COMPUTE) and
REPOSITION commands.

Of course, variables passed by the parent procedure are not affected by data
continuity, since the child procedure receives them directly from the parent procedure
at the beginning of each call.

The KEEP option does not issue an implied COMMIT command at the end of a child
procedure. When a child procedure with an open logical transaction returns to its
parent procedure and specifies KEEP, the transaction continues into the parent.

• If you will call the procedure rarely, use the RESET option to reduce memory
consumption by freeing the procedure’s data at the end of each call.

This option does not provide data continuity; all of the procedure’s variables and data
source position pointers are automatically initialized at the beginning of each
procedure.

The RESET option issues an implied COMMIT command at the end of a child
procedure. When a child procedure with an open logical transaction returns to its
parent procedure using RESET, the transaction is closed at the end of the child
procedure.

For more information about transactions spanning procedures, see Designing
Transactions That Span Procedures on page 2-35.

Maintain Concepts

2-22 Information Builders

You can specify how a procedure will handle its data in memory by terminating it with the
GOTO END command qualified with the appropriate memory-management phrase. The
syntax is

GOTO END [KEEP|RESET];

where:

KEEP

Terminates the procedure, but keeps its data—the values of its variables and data
source position pointers—in memory. It remains in memory through the next
invocation, or (if it is not called again) until the application terminates. The
procedure does not issue an implied COMMIT command to close an open logical
transaction.

RESET

Terminates the procedure, clears its data from memory, and issues an implied
COMMIT command to close an open logical transaction. This is the default.

You can use both options in the same procedure. For example, when you are ready to end
a child procedure, you could evaluate what logic the procedure will need to perform when
it is next called and then branch accordingly either to keep data in memory, saving time
and providing data continuity, or else to clear data from memory to conserve space.

 Winforms and Event-driven Processing

Maintaining Databases 2-23

Winforms and Event-driven Processing
Maintain introduces a new graphical environment for displaying and editing data, and a
new paradigm for developing applications. At the heart of both of these features are
Winforms. This is a sample Winform:

Winforms are windows that you can use to display, enter, and edit data. You can also use
Winforms to present choices to users and to control the flow of your application. For
those familiar with MODIFY, this is similar to the role that CRTFORMs and Dialogue
Manager Windows play in a MODIFY application, but Winforms go far beyond them.
Winforms offer the following features to the Maintain developer:

• Full graphical environment. Winforms provide a full graphical environment,
complete with drop-and-click menus, multiple button types, and scroll bars.

• Flexibility and features. Winforms combine the field-oriented features of
CRTFORMs with the control-oriented features of Dialogue Manager Windows, and
introduce additional features designed for stacks and functions. One user interface
now provides you with multiple solutions.

• Event-driven processing. Winforms are more responsive to the needs of a user
because they recognize many types of user activity on the screen—that is, many types
of screen events. A Winform recognizes what the user does on the screen with a
cursor and function keys; for example, it knows when a user selects an area on the
screen that has been defined as a button.

Maintain Concepts

2-24 Information Builders

Winforms also enable you to define triggers, which are links between these events
and the application's functions: each time a specified event occurs, Maintain
automatically invokes the corresponding function or system action. (Functions are
also known as cases.) If you use events to trigger the application's functions, you can
give the user more freedom—for example, over which editing tasks to perform, and
in which order. You can also give the user access to more functionality, and more
types of data, on a single screen. Event-driven processing gives the user more
flexibility over the application, even as it gives the application more control over the
user interface.

• Event-driven development. Maintain provides you with a simple way of developing
event-driven applications: event-driven development. Because much of an
application's flow can be controlled from Winforms, you can develop the application
as you paint the Winform: first design the visual layout, then define triggers, and
finally code the trigger functions—all from within the Winform Painter!

The following sections introduce you to using Winforms and creating event-driven
applications. Winforms, and the Winform Painter used to design and create them, are
described in greater detail in Chapter 5, Using the Winform Painter.

How to Use Winforms
Winforms are Graphical User Interface (GUI) windows, similar to the windows used in
Microsoft Windows. Winforms have standard window features, such as:

• A title bar that identifies the Winform.

• Scroll bars that enable you to move a grid's contents vertically and horizontally if
they extend beyond the grid's border.

• A control box, in the upper-left corner, that enables you to perform basic functions
such as moving and resizing the Winform.

You can display multiple Winforms on the screen. One Winform can be active at a time—
for example, to receive data from the keyboard—and you can transfer control from one
Winform to another.

Designing a Winform
When you design a Winform, you can set a number of properties, including:

• Pop-up. Do you want the Winform to disappear automatically once it becomes
inactive?

• Border. Do you want the Winform to have a visible border?

• Colors. If the Winform is to be displayed on monitors that support color, what color
do you wish individual fields, the Winform's background, and other screen elements
to be?

 Winforms and Event-driven Processing

Maintaining Databases 2-25

Winforms offer a diverse set of ways by which an end user can select options, invoke
procedures, display and edit fields, and get helpful information. For example, if you want
the user to select an option or procedure, you can use any of the following controls
(controls are referred to as objects in the Winform Painter):

• Command buttons. You can specify a function or special function to be performed
when the user presses a button. Common examples are Ok and Cancel buttons.

• Radio buttons. The user can select one of a mutually exclusive group of options. For
example, an applicant could identify his or her gender.

• List and combo boxes. The user can select an option from a dynamic list of choices.

• Check boxes. The user can select an option. For example, an administrator could
indicate if a student is paying by credit card.

If you wish to display or edit data, you can do so for:

• Individual fields. You can take the field's initial value from a stack or from the
Current Area. If you specify a stack, you can move through the field values one row
at a time, using the browser.

• An entire stack. You can display a stack in a grid. If the stack is larger than the grid,
you can move through it using scroll bars.

• Selected stack columns. If you need only limited information from the stack, you
can limit the grid to selected stack columns.

You can provide the end user with helpful information by:

• Including explanatory text on the screen.

• Drawing a frame around related items on the screen.

• Providing online help in the form of pop-up Winforms containing useful
information. You can invoke the help Winforms via a trigger, such as the PF1 key.

Using Winforms in Block Mode
Mainframe monitors—whether they are actual terminals or personal computers emulating
terminals—communicate with the host computer in block mode. Each time the user
presses Enter or a function key, all of the information on the screen is sent, as a single
block, to the host for processing. For example, if the user tabs to a new position on the
screen and then types data into three fields, the host does not become aware of these
actions until the user presses Enter or a function key.

This has important implications for using Winforms: to perform any action that requires
selecting an item on the screen, you need to position the cursor on the item—such as a
pull-down menu—and then press Enter or a function key.

Maintain Concepts

2-26 Information Builders

To perform an action that is triggered by a function key, simply press the key. If the
action depends upon the screen context, first position the cursor on the appropriate item,
and then press the function key. For example, in the Winform Painter the PF5 key moves
a control. If the cursor is in an empty spot on the screen, pressing PF5 does not
accomplish anything. If the cursor is on a grid, PF5 moves the grid; if the cursor is on a
field, PF5 moves the field.

Adjusting Winforms for Your Terminal Configuration
Different terminals and terminal emulators process screen information in different ways.
Some configurations support dashed lines instead of solid Winform borders. For solid
borders, SBORDER must be set to ON in your FOCUS session. (See the Developing
Applications manual for information about SET commands.)

If a Winform’s visual elements—such as check boxes and vertical scroll bars—are
displayed incorrectly on the screen, you can adjust the Winform facility’s terminal
emulator setting. To do so for:

• Terminals on which applications will be deployed, issue the following command at
the FOCUS command prompt:

EX MSETUP

• The Winform Painter when developing applications, select Terminal from the
Preferences option of the Winform Painter’s File menu.

For more information, see Chapter 5, Using the Winform Painter.

Optimizing Winform Performance
You can optimize Winform performance by deploying all Winforms in a single Maintain
procedure. This technique reduces memory consumption, and applies mostly to CMS.

Designing Event-driven Applications
The flow of control in conventional processing is mostly pre-determined—that is, the
programmer determines the few paths which the user will be able to take through the
procedure.

To make your application more responsive to the user—via the graphical user interface—
Maintain provides triggers and event-driven processing. A trigger is an action that is
invoked—triggered—by a specified event. Each time that the event occurs, the trigger
action (also known as an event handler) is invoked. In Maintain, the trigger action is a
function or system action, and the event is something the user does in a Winform. For
example, you might create a data retrieval trigger that notices whenever a user clicks a
certain button on a Winform, and reacts by invoking a function that reads a data source
and displays the data in the Winform.

 Reading From a Data Source

Maintaining Databases 2-27

Creating Event-driven Applications
Developing a request by writing out sequential lines of code may be sufficient for
conventional linear processing, but event-driven processing demands event-driven
development. Developing an application in this way enables you to build much of the
application's logic around the user interface. In effect, you paint the application as you
paint the interface in the Winform Painter. For example, you could start by developing a
Winform, then assigning a trigger to a particular Winform event, specifying the action
(that is, the function) associated with the trigger, and finally coding the function.

Reading From a Data Source
Most applications need to read data from a data source. Before reading, you first need to
select the record in which the data resides. There are five ways of selecting records:

• By field value for an entire set of records. Use the NEXT command. The WHERE
phrase enables you to select by value, and the FOR ALL phrase selects the entire set
of records that satisfy the WHERE selection condition. The basic syntax for this is:

FOR ALL NEXT fields INTO stack WHERE selection_condition;

• By field value for a sequence (subset) of records. Use the NEXT command. This is
similar to the technique for a set of records, except that it employs the FOR n phrase,
selecting—at the current position in the data source— the first n records that satisfy
the WHERE condition. The basic syntax for this is:

FOR n NEXT fields INTO stack WHERE selection_condition;

• By field value, one segment at a time, one record at a time. Use the MATCH
command. The basic syntax for this is:

MATCH fields [FROM stack] [INTO stack];

• Sequentially for a sequence (subset) of records. Use the NEXT command. This
technique employs the FOR n phrase to select the next n records. The basic syntax
for this is:

FOR n NEXT fields INTO stack;

• Sequentially, one segment instance at a time, one record at a time. Use the NEXT
command. The basic syntax for this is:

NEXT fields [INTO stack];

You can read from individual data sources, and from those that have been joined.
Maintain supports joins that are defined in the Master File. For information about
defining joins in the Master File, see the FOCUS Interface documentation for the types of
data sources that you wish to join, and the Describing Data manual for FOCUS data
sources.

Maintain Concepts

2-28 Information Builders

You can evaluate the success of a command that reads from a data source by testing the
FocError system variable, as described in Evaluating the Success of a Simple Data
Source Command on page 2-29.

The NEXT and MATCH commands are described in detail in Chapter 7, Command
Reference.

Repositioning Your Location in a Data Source
Each time you issue a NEXT command, Maintain begins searching for records from the
current position in the data source. For example, if your first data source operation
retrieved a set of records,

FOR ALL NEXT CustID INTO SmokeStack
WHERE ProdName EQ 'VCR DUST COVER';

then Maintain will have searched sequentially through the entire data source, so the
current position marker will now point to the end of the data source. If you then issue
another NEXT command,

FOR ALL NEXT LastName FirstName INTO CandyStack
WHERE ProdName EQ 'CANDY';

Maintain searches from the current position to the end of the data source; since the current
position is the end of the data source, no records are retrieved.

When you want a NEXT command to search through the entire data source (as is often
the case when you wish to retrieve a set of records) you should first issue the
REPOSITION command to move the current position marker to the beginning of the data
source.

Example Repositioning to the Beginning of the Data Source
The following REPOSITION command specifies the CustID field in the root segment,
and so moves the current position marker for the root segment chain and all of its
descendant chains back to the beginning of the chain (in effect, back to the beginning of
the data source):

REPOSITION CustID;
FOR ALL NEXT LastName FirstName INTO CandyStack

WHERE ProdName EQ 'CANDY';

 Writing to a Data Source

Maintaining Databases 2-29

Writing to a Data Source
Writing to a data source is the heart of transaction processing applications. Maintain
provides the following commands to write to a data source:

• INCLUDE, which adds the specified new segment instances to a data source.

• UPDATE, which updates the specified fields in a data source.

• REVISE, which adds new segment instances and updates the specified fields in
existing segment instances.

• DELETE, which removes the specified segment instances from a data source.

These commands are described in detail in Chapter 7, Command Reference.

Maintain requires that data sources to which it writes have unique keys.

Evaluating the Success of a Simple Data Source Command
When you issue a command that reads or writes to a data source, you should determine if
the command was successful. Reasons for a data source command not being successful
include attempting to insert a record that already exists, to update a record that does not
exist, to delete a record that does not exist, to read a record that does not exist, and being
interrupted by a system failure.

When you issue a command that reads or writes to a data source, if the command is:

• Successful, Maintain automatically sets the transaction variable FocError to 0 (zero),
and writes to the data source.

• Unsuccessful, Maintain sets FocError to a non-zero value, and does not write to the
data source.

Example Evaluating the Success of an UPDATE Command
The following function updates the VideoTrk data source for new video rentals. If the
UPDATE command is unsuccessful, the application invokes a function that displays a
message to the user. The line that evaluates the success of the command is shown in bold:

CASE UpdateCustOrder
UPDATE ReturnDate Fee FROM RentalStack;
IF FocError NE 0 THEN PERFORM ErrorMessage;

ENDCASE

Maintain Concepts

2-30 Information Builders

Evaluating the Success of a Stack-based Write Command
When you write a set of stack rows to a data source, if you specify more rows than there
are matching data source records, this does not invalidate the write operation: Maintain
attempts to write all the matching rows to the data source. For example, the following
UPDATE command specifies 15 rows, but there are only 12 matching rows; all 12 are
written to the data source.

FOR 15 UPDATE Curr_Sal FROM NewSalaries;

When you write a set of stack rows to a data source, if one row fails, the following
happens:

• The rows preceding the failed row are written to the data source.

• The rows following the failed row are ignored.

• FocError is set to a non-zero value, signaling an error.

• FocErrorRow is set to the number of the failed row.

Data source logic errors include attempting to insert an existing record, to update a
nonexistent record, and to delete a nonexistent record.

To determine if an entire stack was successfully written to the data source, test FocError
immediately following the data source command. If FocError is not 0, you can determine
which row caused the problem by testing FocErrorRow; you can then reprocess that row.

If you do not wish to take advantage of this flexibility, and instead prefer to invalidate all
the rows of the stack if any of them are unsuccessful, you can bracket the data source
command in a logical transaction that you can then roll back. Logical transactions are
discussed in Transaction Processing on page 2-31.

Row failure when committing to a data source. If a stack-based write command is part
of a logical transaction, and the write command succeeds when it is issued but fails when
the application tries to commit the transaction, Maintain of course rolls back all of the
write command’s rows, along with the rest of the transaction. (For example, a write
command might fail at commit time because another user has already changed one of the
records to which the command is writing.) Transaction processing is described in
Transaction Processing on page 2-31.

Example Evaluating a Stack-based Update Command
The NewSalaries stack has 45 rows. The following command updates the Employee data
source for all the rows in NewSalaries:

FOR ALL UPDATE Curr_Sal FROM NewSalaries;

If there is no data source record that matches the thirtieth row, Maintain updates the
records matching the first 29 rows and ignores rows 30 and higher.

 Transaction Processing

Maintaining Databases 2-31

Transaction Processing
You are familiar with individual data source operations that insert, update, or delete data
source segment instances. However, most applications are concerned with “real-world”
transactions, like transferring funds or fulfilling a sales order, that require several data
source operations. These data source operations may access several data sources, and may
be issued from several procedures. We call such a collection of data source operations a
logical transaction. (It is also known as a logical unit of work.)

This and related topics describe how Maintain ensures transaction integrity at the
application level. At the data source level, each database management system (DBMS)
implements transaction integrity in its own way; see your DBMS vendor’s documentation
for DBMS-specific information. For FOCUS data sources, this DBMS-specific
information is presented in Ensuring Transaction Integrity for FOCUS Data Sources on
page 2-40. For DB2, you can find some suggested strategies for writing Maintain
transactions to DB2 data sources in Ensuring Transaction Integrity for DB2 Data Sources
on page 2-45. For many other types of data sources, you can also apply the strategies
described in Ensuring Transaction Integrity for DB2 Data Sources, changing
DBMS-specific details when necessary.

Example Describing a Transfer of Funds as a Logical Transaction
A banking application would define a transfer of funds from one account to another as
one logical transaction comprising two update operations:

• Subtracting the funds from the source account (UPDATE Savings FROM

SourceAccts).

• Adding the funds to the target account (UPDATE Checking FROM TargetAccts).

Maintain Concepts

2-32 Information Builders

Procedure How to Process a Logical Transaction
To process a logical transaction, follow these steps:

1. DBMS requirements. Your data sources’ database management system (DBMS)
may require that you perform some tasks to enable transaction integrity; see your
database vendor’s documentation for information. You can set some native DBMS
parameters through FOCUS; for more information see the FOCUS Interface manual
for your DBMS.

For FOCUS data sources, you need to set the COMMIT environment variable to ON,
and to issue a USE command to specify which FOCUS Database Server will manage
concurrent access to the data source. For more information, see Ensuring
Transaction Integrity for FOCUS Data Sources on page 2-40.

2. Develop the transaction logic. Code the data source commands and related logic
that read from the data sources, write to the data sources, and evaluate the success of
each data source command.

3. Define the transaction boundary. Code a COMMIT command, and any other
supporting commands, to define the transaction’s boundary. For more information
see Defining a Transaction on page 2-33.

4. Evaluate the transaction’s success. Test the FocCurrent transaction variable to
determine if the transaction was successfully written to the data source, and then
branch accordingly. For more information, see Evaluating If a Transaction Was
Successful on page 2-37.

Why Is Transaction Integrity Important?
The advantage of describing a group of related data source commands as one logical
transaction is that the transaction is valid and written to the data source only if all of its
component commands are successful. When you attempt to commit a transaction, you are
ensured that if part of the transaction fails, none of the transaction will be written to the data
source. This is called transaction integrity..

When is transaction integrity important? Whenever a group of commands are related and
are only meaningful within the context of the group. In other words, whenever the failure
of any one command in the transaction at commit time would invalidate the entire
transaction.

Transaction integrity is an all-or-nothing proposition: either all of the transaction is
written to the data source when you commit it, or all of it is rolled back.

 Transaction Processing

Maintaining Databases 2-33

Example Why Transaction Integrity Is Essential to a Bank
Consider a banking application that transfers funds from a savings account to a checking
account. If the application successfully subtracts the funds from the savings account, but
is interrupted by a system problem before it can add the funds to the checking account,
the money would “disappear,” unbalancing the bank’s accounts.

The two update commands (subtracting and adding funds) must be described as parts of a
single logical transaction, so that the subtraction and addition updates are not written to
the data source independently of each other.

Defining a Transaction
You define a logical transaction by issuing a COMMIT or ROLLBACK command
following the transaction’s last data source command. (For simplicity, the remainder of
this topic refers to COMMIT only, but unless stated otherwise, both commands are
meant.) For example, the beginning of your application is the beginning of its first logical
transaction. The data source commands that follow are part of the transaction. When the
application issues its first COMMIT command, it marks the end of the first transaction.

The data source commands that follow the first COMMIT become part of the second
logical transaction; the next COMMIT to be issued marks the end of the second
transaction, and so on.

The COMMIT command defines the transaction’s boundary. All data source commands
issued between two COMMIT commands are in the same transaction. (This explanation
describes the simplest case, in which a transaction exists entirely within a single
procedure. When a transaction spans procedures, you have several options for deciding
how to define a transaction’s boundary, as described in When an Application Ends With
an Open Transaction on page 2-37.)

Example Defining a Simple Transfer of Funds Transaction
For example, transferring money from a savings account to a checking account requires
two update commands. If you want to define the transfer, including both updates, as one
logical transaction, you could use the following function:

CASE TransferMoney
UPDATE Savings FROM SourceAccts
UPDATE Checking FROM TargetAccts
COMMIT

ENDCASE

Maintain Concepts

2-34 Information Builders

When Does a Data Source Command Cause a Transaction to
Fail?
A data source command can fail for many reasons—for example, an UDPATE command
might try to write to a record that never existed because a key was mistyped, or an INCLUDE
command might try to add a record that has already been added by another user.

In some cases, when a command fails, you might want to keep the transaction open and
simply resolve the problem that caused the command to fail. For example, in the first
case—attempting to update a record that doesn’t exist—you might wish to ask the
application end user to correctly re-enter the customer code (which is being used as the
record’s key). In other cases, you might wish to roll back the entire transaction.

If a data source command fails, it will only cause the logical transaction that contains it to
be automatically rolled back in certain circumstances. The deciding factor is when a data
source command fails. If a data source command fails when the transaction:

• Is open (that is, when the application issues the data source command), the
transaction remains open, and the failed data source command does not become part
of the transaction. This means that, if the application later attempts to commit the
transaction, because the failed data source command is not part of the transaction, it
will not affect the transaction’s success or failure.

You can evaluate the success of a data source command in an open transaction by
testing the value of the FocError system variable immediately after issuing the
command. If you wish the failure of the data source command to roll back the
transaction, you can issue a ROLLBACK command.

• Is being closed (that is, when the application tries to commit the transaction), the
failure of the data source command to be written to the data source causes the
transaction to fail, and the entire transaction is automatically rolled back.

Canceling a Transaction
A transaction that is ongoing and has not yet been committed is called an open
transaction. If you ever need to cancel an open transaction, you can do so by issuing a
ROLLBACK command. ROLLBACK voids any of the transaction’s data source
commands that have already been issued, so that none of them are written to the data
source.

Transactions and Data Source Position
When a logical transaction is committed or rolled back, it resets all position markers in all
the data sources that are accessed by the transaction’s procedures. (Resetting a data
source’s position markers points them to the beginning of the data source’s segment
chains.)

 Transaction Processing

Maintaining Databases 2-35

How Large Should a Transaction Be?
A transaction is at its optimal size when it includes only those data source commands that
are mutually dependent upon each other for validity. If you include “independent”
commands in the transaction and one of the independent commands fails when you try to
commit the transaction, the dependent group of commands will be needlessly rolled back.

For example, in the following banking transaction that transfers funds from a savings
account to a checking account,

CASE TransferMoney
UPDATE Savings FROM SourceAccts
UPDATE Checking FROM TargetAccts
COMMIT
ENDCASE

you should not add an INCLUDE command to create a new account, since the validity of
transferring money from one account to another does not depend upon creating a new
account.

Another reason for not extending transactions unnecessarily is that, in a multi-user
environment, the longer a transaction takes, the more likely it is to compete for records
with transactions submitted by other users. Transaction processing in a multi-user
environment is described in Concurrent Transaction Processing on page 2-38.

Designing Transactions That Span Procedures
Logical transactions can span multiple Maintain procedures. If a Maintain procedure with
an open transaction passes control to a non-Maintain procedure (for example, a report
procedure), the open transaction is suspended; when control next passes to a Maintain
procedure, the transaction picks up from where it had left off.

When a transaction spans several procedures, you will usually find it easier to define the
transaction’s boundaries if you commit it in the highest procedure in the transaction (that
is, in the procedure closest to the root procedure). Committing a transaction in a
descendant procedure of a complex application, where it is more difficult to track the flow
of execution, makes it difficult to determine the transaction’s boundaries (that is, to know
which data source commands are being included in the transaction).

Maintain Concepts

2-36 Information Builders

When a child procedure returns control to its parent procedure, and the child has an open
logical transaction, you have two options:

• You can continue the child’s open transaction into the parent procedure when the
child returns control to the parent. Simply specify the KEEP option when you return
control with the GOTO END command.

• You can close the child’s open transaction automatically at the end of the child
procedure. By default, Maintain issues an implied COMMIT command to close the
open transaction. You can also specify this behavior explicitly by coding the RESET
option when you return control with the GOTO END command.

RESET and KEEP are both described in Chapter 7, Command Reference.

Example Moving a Transaction Boundary Using GOTO END KEEP
Consider a situation where procedure A calls procedure B, and procedure B then calls
procedure C. The entire application contains no COMMIT commands, so the initial
logical transaction continues from the root procedure (A) through the descendant
procedures (B and C). C and B both return control to their parent procedure using a
GOTO END command.

The table below shows how specifying or omitting the KEEP option when procedures B
and C return control affects the application’s transaction boundaries—that is, how the
choice between KEEP and the implied COMMIT determines where the initial transaction
ends, and how many transactions follow.

C returns to B with… B returns to A with… Transaction boundaries (||)

KEEP KEEP A-B-C-B-A one transaction

KEEP implied COMMIT A-B-C-B || A two transactions

implied COMMIT KEEP A-B-C || B-A two transactions

implied COMMIT implied COMMIT A-B-C || B || A three transactions

 Transaction Processing

Maintaining Databases 2-37

Designing Transactions That Span Data Source Types
If a transaction writes to multiple types of data sources, each database management
system (DBMS) evaluates its part of the transaction independently. When a COMMIT
command ends the transaction, the success of the COMMIT against each data source type
is independent of the success of the COMMIT against the other data source types. This is
known as a broadcast commit.

For example, if you issue a Maintain procedure against the FOCUS data sources
Employee and JobFile and a DB2 data source named Salary, the success or failure of the
COMMIT against Salary is independent of its success against Employee and JobFile. It is
possible for it to be successful against Salary and write that part of the transaction, while
being unsuccessful against Employee and JobFile and roll back that part of the
transaction.

When an Application Ends With an Open Transaction
If an application terminates while a logical transaction is still open, Maintain issues an
implied COMMIT command to close the open transaction, ensuring that any data source
commands issued after the last explicit COMMIT are accounted for. (The only exception
is if your FOCUS session abnormally terminates: Maintain does not issue the implied
COMMIT, and any remaining uncommitted data source commands are rolled back.)

Evaluating If a Transaction Was Successful
When you close a transaction by issuing a COMMIT or ROLLBACK command, you
need to determine if the command was successful. If a COMMIT command is successful,
then the transaction it closes has been successfully written to the data source; if a
ROLLBACK command is successful, then the transaction it closes has been successfully
rolled back.

The system variable FocCurrent provides the return code of the most recently issued COMMIT
or ROLLBACK command. By testing the value of FocCurrent immediately following a
COMMIT or ROLLBACK command, you can determine if the transaction was successfully
committed or rolled back. If the value of FocCurrent is:

• Zero, the command was successful.

• Not zero, the command was unsuccessful.

FocCurrent is global to all the procedures in a transaction, and so does not need to be
passed as an argument between procedures.

Maintain Concepts

2-38 Information Builders

Example Evaluating the Success of a Transaction
The following function commits a transaction to a data source. If the transaction is
unsuccessful, the application invokes another function that writes to a log and then begins
a new transaction. The line that evaluates the success of the transaction is shown in bold:

CASE TransferMoney
UPDATE AcctBalance FROM SourceAccts
UPDATE AcctBalance FROM TargetAccts
COMMIT
IF FocCurrent NE 0 THEN PERFORM BadTransfer

ENDCASE

Concurrent Transaction Processing
Several applications or users often need to share the same data source. This sharing can
lead to problems if they try to access a record concurrently—that is, if they try to process
the same data source record at the same time.

To ensure the integrity of a data source, concurrent transactions must execute as if they
were isolated from each other; one transaction’s changes to a data source must be
concealed from all other transactions until that transaction is committed. To do otherwise
runs the risk of open transactions being exposed to interim inconsistent images of the data
source, and consequently corrupting the data source.

To prevent users from corrupting the data in this way, the database management system
needs to coordinate concurrent access. There are many strategies for doing this. No matter
which type of data source you use, Maintain respects your DBMS’s concurrency strategy
and lets it coordinate access to its own data sources.

For more information about how your DBMS handles concurrent access, see your DBMS
vendor’s documentation. For FOCUS data sources, this information is presented in
Ensuring Transaction Integrity for FOCUS Data Sources on page 2-40. For DB2, you
can find some suggested strategies for writing Maintain transactions to DB2 data sources
in Ensuring Transaction Integrity for DB2 Data Sources on page 2-45. For many other
types of data sources, you can also apply the strategies described in Ensuring Transaction
Integrity for DB2 Data Sources, changing DBMS-specific details when necessary.

 Transaction Processing

Maintaining Databases 2-39

Example Why Concurrent Access to a Data Source Needs to Be
Carefully Managed
Consider the following two applications that access the Employee data source:

• The Promotion application reads a list of employees who have received promotions
and updates their job codes to correspond to their new positions.

• The Salary application, run once at the beginning of each year, checks every
employee’s job code and gives each employee an annual raise based on his or her job
title. For example, assistant managers (job code A15) will earn $30,000 in the new
year, and managers (A16) will earn $40,000.

Joan Irving is an assistant manager. Consider what happens when these two applications
try to access and update the same record at the same time, without any coordination:

1. The Promotion application reads Irving’s record and, based on information in a
transaction file that she has been promoted to manager, computes her new job code
(A16).

2. The Salary application reads Irving’s record and, based on her job code in the data
source (A15), computes her new salary ($30,000).

3. The Promotion application writes the new job code (A16) to the data source.

4. The Salary application writes the new salary ($30,000) to the data source.

Remember the earlier business rule (assistant managers earn $30,000, managers earn
$40,000). Because two applications accessed the same record at the same time without
any coordination, the rule has been broken (Joan Irving has a manager’s job code but an
assistant manager’s salary). The data source has become internally inconsistent.

Maintain Concepts

2-40 Information Builders

Ensuring Transaction Integrity for FOCUS Data Sources
Each database management system (DBMS) supports transaction integrity in its own way.
The FOCUS DBMS manages concurrent access to FOCUS data sources using the
FOCUS Database Server, and uses certain commands to identify transaction integrity
attributes. (The FOCUS Database Server was formerly known as a sink machine or the
Simultaneous Usage facility on some platforms.)

To ensure transaction integrity for FOCUS data sources, perform the following tasks:

• Set COMMIT. Set the COMMIT environment variable to ON. This enables the
COMMIT and ROLLBACK commands for FOCUS data sources, and enables the use
of the FOCUS Database Server. For more information, see Setting COMMIT on page
2-40.

• Select which segments will be verified for changes. Set the PATHCHECK
environment variable to specify the type of segments for which the FOCUS Database
Server will verify change. This is optional: you can accept the default setting. For
more information, see Selecting Which Segments Will Be Verified for Changes on
page 2-42.

• Identify the FOCUS Database Server. Identify which FOCUS Database Server will
manage concurrent access to each FOCUS data source. For more information, see
Identifying the FOCUS Database Server on page 2-43.

• Activate the FOCUS Database Server. For more information, see the Simultaneous
Usage Reference Manual.

Setting COMMIT
You must have set the COMMIT environment variable to ON before using the COMMIT
and ROLLBACK commands for FOCUS data sources, and before using the FOCUS
Database Server. It is recommended that you set COMMIT at the beginning of the
Maintain application’s root procedure (preceding the MAINTAIN command), and that
you reset it to its initial value when the application finishes. This avoids interfering with
any MODIFY applications that your site may run.

 Transaction Processing

Maintaining Databases 2-41

Syntax How to Set COMMIT
The COMMIT environment variable enables transaction integrity for FOCUS data
sources. To set COMMIT, issue the SET COMMIT command using the following syntax

SET COMMIT={ON|OFF}

where:

ON

Enables the COMMIT and ROLLBACK commands for use with FOCUS data
sources, and enables the use of the FOCUS Database Server to ensure transaction
integrity.

OFF

Disables the COMMIT and ROLLBACK commands for use with FOCUS data
sources, and disables the use of the FOCUS Database Server to ensure transaction
integrity. This is the default.

Sharing Access to FOCUS Data Sources
The FOCUS DBMS ensures transaction integrity when multiple users are trying to access
the same data source concurrently. If you are processing a transaction and—in the interval
between beginning your transaction and completing it—the segments updated by your
application have been changed and committed to the data source by another user,
Maintain will roll back your transaction. This coordination is performed by the FOCUS
Database Server. You can test to see if your transaction was rolled back by checking the
value of the FocCurrent transaction variable, and then branch accordingly.

This strategy—in which FOCUS verifies that the records to which you wish to write have
not been written to by another user in the interim—is called change verification. It allows
many users to share write access to a data source, and grants update privileges for a given
record to the first user that attempts the update.

Change verification takes advantage of the fact that two users rarely try to update the
same record at the same time. Some DBMSs use strategies that lock out all but one user.
Others grant update privileges to the first user that retrieves a record, even if he or she is
the last one ready to update it—resulting in a performance bottleneck. In contrast, the
FOCUS DBMS strategy of change verification enables the maximum number of users to
access the same data concurrently, and makes it possible to write the maximum number of
transactions in the shortest time. The FOCUS Database Server and the change verification
strategy are designed for high-performance transaction processing.

Maintain Concepts

2-42 Information Builders

How the FOCUS Database Server and Change Verification
Work
The FOCUS Database Server’s change-verification strategy is an extension of basic
transaction processing. Each application user that accesses the FOCUS Database Server is
known as a client. To ensure transaction integrity, follow this simple change-verify
protocol:

1. As always, use the NEXT or MATCH commands to retrieve the data source records
you need for the current transaction. When the application issues these commands,
the server sends the application a private “client” copy of the records.

2. When the application issues a data source write command (such as INCLUDE,
UPDATE, REVISE, or DELETE) against the retrieved records, it updates its private
copy of the records.

3. When the application issues a COMMIT command to indicate the end of the
transaction, the application’s session sends a log of the transaction back to the server.
The server now checks to see if any of the segments that the transaction changed
have, in the interim, been changed and committed to the data source by other clients,
and if any segments that the transaction added have, in the interim, been added by
other clients. (You can customize which segments the FOCUS Database Server
checks for changes by setting the PATHCHECK environment variable, as described
in Selecting Which Segments Will Be Verified for Changes on page 2-42.)

The server takes one of the following actions:

• No conflict. If none of the records has been changed or added in the interim,
then the transaction is consistent with the current state of the data source. The
server writes the transaction to the data source and sets the application’s
FocCurrent transaction variable to zero to confirm the update.

• Conflict. If any records have been changed in the interim, then the transaction
might be inconsistent with the current state of the data source. The server ignores
the transaction’s changes to the data source—rolling back the transaction—and
alerts the application by setting FocCurrent to a non-zero number.

4. The application evaluates FocCurrent and branches to the appropriate function.

Selecting Which Segments Will Be Verified for Changes
When you use a FOCUS Database Server, you can customize the change verification
process by defining the segments for which the FOCUS Database Server will verify
changes. You define this using the PATHCHECK environment variable.

 Transaction Processing

Maintaining Databases 2-43

You can choose between:

• All segments in the path. The FOCUS Database Server verifies that all segments in
the path extending from the root segment to the target segment have not been
changed and committed in the interim by other users. This is the default setting.

• Modified segments only. The FOCUS Database Server determines which segments
you are updating or deleting, and verifies that those segments have not been changed
and committed in the interim by other users.

You can set PATHCHECK for each FOCUS Database Server, which affects all
applications that access FOCUS data sources managed by that FOCUS Database Server.
To set it, issue the SET PATHCHECK command in the FOCUS Database Server profile
(HLIPROF).

Syntax How to Set PATHCHECK
The PATHCHECK environment variable defines for which segments the FOCUS
Database Server will check for changes. To set PATHCHECK, issue the SET
PATHCHECK command in the FOCUS Database Server profile (HLIPROF), using the
following syntax

SET PATHCHECK={ON|OFF}

where:

ON

Instructs the FOCUS Database Server to verify that all segments in the path
extending from the root segment to the target segment have not been changed and
committed in the interim by other users. This is the default.

OFF

Instructs the FOCUS Database Server to check only segments that the current
transaction has updated or deleted, and verify that those segments have not been
changed and committed in the interim by other users.

Identifying the FOCUS Database Server
To identify which FOCUS Database Server will manage access to a given FOCUS data
source, you need to issue a USE command that associates the server with the data source.
You can issue the USE command in a FOCUS profile procedure (FOCPROF or
PROFILE), or at the beginning of the Maintain application’s root procedure preceding the
MAINTAIN command. For more information about FOCUS profile procedures, see the
FOCUS installation guide for your operating environment.

Maintain Concepts

2-44 Information Builders

Syntax How to Identify a FOCUS Database Server With USE
For each FOCUS database that will be managed by a FOCUS Database Server, you need
to associate the database with the server in a USE command:

USE
datafile ON server_id
[datafile ON server_id]
.
.
.
END

where:

datafile

Is the file specification of a database to be managed by the FOCUS Database Server.

server_id

Is the ddname of the communication data set that points to the FOCUS Database
Server job.

If you wish, you can identify multiple database/server pairs in one USE command.

Report Procedures and the FOCUS Database Server
When a FOCUS Database Server manages access to a FOCUS data source, each logical
transaction that accesses that data source works with its own private copy of the data
source’s records. For more information about how a FOCUS Database Server manages
access to a data source, see the Simultaneous Usage Reference Manual for your operating
environment. This ensures that the transaction sees a consistent image of the data source
that is isolated from changes being attempted by other users.

Non-Maintain procedures—for example, report procedures—are not part of a logical
transaction; when control passes from a Maintain procedure to a non-Maintain procedure,
the open transaction is suspended for the duration of the non-Maintain procedure.
Therefore, if the non-Maintain procedure reports against a FOCUS data source, it
accesses the live data source, not the open transaction’s private copy. Changes made by
the open transaction are not seen by the report, and changes committed by other users
since the open transaction began are seen by the report, though not necessarily by the
open transaction.

Sharing Data Sources With Legacy MODIFY Applications
A FOCUS data source being managed by a FOCUS Database Server can be accessed by
both Maintain applications and legacy MODIFY applications. Note that while MODIFY
allows creating records with duplicate keys, Maintain does not support FOCUS data
sources that have duplicate keys.

 Transaction Processing

Maintaining Databases 2-45

Ensuring Transaction Integrity for DB2 Data Sources
DB2 ensures transaction integrity by locking data source rows when they are read. The
behavior of a lock depends on a transaction’s isolation level; the techniques suggested
here for Maintain applications all use an isolation level of repeatable read. Repeatable
read involves a trade-off: it ensures absolute transaction integrity, but it can prevent other
users from accessing a row for long periods of time, creating performance bottlenecks.

Under repeatable read, a row is locked when it is retrieved from the data source, and is
released when the transaction that retrieved the row is either committed to the data source
or rolled back. A Maintain DB2 transaction is committed or rolled back each time a
Maintain application issues a COMMIT or ROLLBACK command. You explicitly code
COMMIT and ROLLBACK commands in your Maintain application; in some
circumstances the application may also issue these commands implicitly, as described in
Designing Transactions That Span Procedures on page 2-35, and in When an Application
Ends With an Open Transaction on page 2-37.

We recommend two strategies for writing transactions to DB2 data sources:

• Transaction locking. This locks each row for the duration of the transaction—from
the time a row is retrieved, until the transaction is committed. In effect, it relies on
DB2 to ensure transaction integrity. This is simpler to code, but keeps rows locked
for a longer period of time. This is the preferred strategy, unless the duration of its
locks interferes excessively with your data source concurrency requirements.

• Change verification. This locks each row while it is being retrieved, releases the
lock, and then relocks the row shortly before writing it to the data source. This
technique ensures transaction integrity by verifying, before writing each row, that the
row has not been changed by other users in the interim. This is more complex to
code, but locks rows for a shorter period of time, increasing data availability.

While these strategies are described for use with DB2 data sources, you can also apply
them to transactions against other kinds of data sources, changing DBMS-specific details
when necessary.

 Transaction Processing

Maintaining Databases 2-46

Reference How Maintain’s DB2 Logic Differs From Other IBI Products
If you are familiar with using the DB2 Data Adapter with Information Builders products
other than Maintain, note that Maintain works with DB2 a bit differently:

• Maintain enables you to issue COMMIT and ROLLBACK commands explicitly. It
also issues them implicitly in certain situations, as described in Designing
Transactions That Span Procedures on page 2-36, and in When an Application
Ends With an Open Transaction on page 2-38.

• Maintain does not support the command SQL DB2 SET AUTOCOMMIT to control
automatic commits.

• Because Maintain works on sets of rows, the FOCUS Interface to DB2 does not
automatically generate change verification logic.

Using Transaction Locking to Manage DB2 Row Locks
You can use the transaction locking strategy to manage DB2 row locks in Maintain
applications. When using transaction locking, your application locks each row with an
isolation level of repeatable read for the duration of the transaction—from the time it
retrieves the row, until the time it commits or rolls back the transaction.

The following illustration shows the duration of connections, threads, and logical units
of work when you use this strategy:

DB2 connection

thread

LUW

FOCUS session
F
I
N

MAIN
PROCEDURE
CALL PROC1

CALLED
PROC1
GOTO END KEEP

CALLED
PROC2
GOTO END KEEP

CALL PROC2 END OF MAIN

Optional COMMIT
Maintain

AUTOMATIC
COMMIT

 Transaction Processing

Maintaining Databases 2-47

If your applications are small in scope, comprising only a single procedure, the duration
of connections, threads, and logical units of work would look like this:

DB2 connection

thread

LUW

FOCUS session F
I
N

AUTOMATIC
COMMIT

LUW

MAINTAIN
FILE

PERFORM
CASE1

PERFORM
CASE2 END

MAINTAIN
FILE END

Maintain Maintain

AUTOMATIC
COMMIT

Compared to the change verification strategy, transaction locking is simpler to code, but
keeps rows locked for a longer period of time. This may cause other users to experience
time outs, in which case DB2 will return a -911 or -904 SQL code. You can mitigate the
effect of row locking by:

• Keeping the size of the transaction small, making it less likely that another user will
encounter a row locked by your transaction.

• Implementing the change verification strategy described in Using Change
Verification to Manage DB2 Row Locks on page 2-49.

• Having user applications check for a locked condition when retrieving rows, and
upon encountering a lock, re-issuing the retrieval request a specified number of times
in a loop. If the user application exceeds the specified number of attempts, have it
display a message to the user indicating that the row is in use, and suggesting that the
user try again later.

• Using standard database administration techniques such as report scheduling,
tablespace management, and data warehousing.

Maintain Concepts

2-48 Information Builders

Procedure How to Implement Transaction Locking for DB2
To implement the transaction locking strategy for managing DB2 row locks in Maintain
applications, bind the DB2 Interface plan with an isolation level of repeatable read. (The
isolation level is a FOCUS Interface to DB2 installation BIND PLAN parameter.) In your
Maintain application:

1. Read the rows. Retrieve all required rows. Retrieval locks the rows with an isolation
level of repeatable read.

2. Write the transaction to the data source. Apply the transaction’s updates to the
data source.

3. Be sure to terminate called procedures correctly. If a Maintain procedure calls
another Maintain procedure within the scope of a transaction, the called procedure
must return control using the GOTO END KEEP command. For more information
about GOTO END KEEP, see Designing Transactions That Span Procedures on
page 2-35.

Caution:

If any called procedure within the scope of a transaction returns control without
GOTO END KEEP, Maintain issues an implied COMMIT command, releasing all row
locks and making the application vulnerable to updates by other users. Be sure to
return control via GOTO END KEEP; otherwise, code each transaction within a
single procedure, so that the scope of each transaction does not extend beyond one
procedure, or use the change verification strategy described in Using Change
Verification to Manage DB2 Row Locks on page 2-49.

4. Close the transaction. When the transaction is complete, close it by issuing a
COMMIT or ROLLBACK command. The COMMIT or ROLLBACK command
releases all row locks.

 Transaction Processing

Maintaining Databases 2-49

Using Change Verification to Manage DB2 Row Locks
You can use the change verification strategy to manage DB2 row locks in Maintain
applications. When using change verification, your application retrieves all needed rows
into a stack, locking them in the process; releases the locks after retrieval; and then
performs all updates against the stack (not against the data source). This enables you to
work with the data in the stack as long as necessary without preventing other users from
accessing the data source. When you are ready to close the transaction, you re-retrieve the
original rows from the data source, relocking them in the process. You then compare their
current values in the data source to their original values when you first retrieved them,
and write the transaction to the data source if the values are the same—that is, if the rows
have not been changed by other users in the interim.

Change verification enables the maximum number of users to access the same data
concurrently, and makes it possible to write the maximum number of transactions in the
shortest time. It is able to do this because it is an optimistic locking protocol—that is, it is
optimized for the most common situation, in which at any moment, at most one user will
attempt to update a given row. Compared to the transaction locking strategy, this is more
complex to code, but locks rows for less time, increasing data availability.

The following illustration shows the duration of connections, threads, and logical units of
work when you use this strategy:

DB2 connection

thread

LUW

FOCUS session F
I
N

user
ROLLBACK

LUW

MAINTAIN
FILE copy stack and

gather updates
END

Maintain

AUTOMATIC
COMMIT

retrieval

reread rows,
compare stacks,
and update rows

Maintain Concepts

2-50 Information Builders

Procedure How to Implement Change Verification for DB2
To implement the change verification strategy for managing DB2 row locks in Maintain
applications, bind the DB2 Interface plan with an isolation level of repeatable read. (The
isolation level is a FOCUS Interface to DB2 installation BIND PLAN parameter.) In your
Maintain application:

1. Read the rows. Retrieve all required rows into a stack (for example, Stack1).
Retrieval locks the rows with an isolation level of repeatable read.

2. Free the row locks. Issue a ROLLBACK command immediately following retrieval
in order to release all row locks.

3. Copy the stack. Make a copy of the stack (for example, Stack2). You will use this
copy later when checking for changes.

4. Write the transaction to the stack. Apply the transaction’s updates to the rows in
the original stack (Stack1).

5. Re-read the rows. Re-retrieve the transaction’s rows from the data source into a new
stack (for example, Stack3). Retrieval relocks the rows with an isolation level of
repeatable read.

6. Verify changes. Compare the original data source values in the copy of the original
stack (that is, Stack2) to the current data source values (that is, Stack3) to verify that
other users have not changed these rows in the interim.

7. Write the transaction to the data source. If any of these rows have been changed
in the data source by another user, you can roll back the transaction or take some
other action, as your application logic requires. If none of the rows in the transaction
have been changed by other users in the interim, your application can apply the
transaction’s updates to the data source, and issue a COMMIT command to commit
the transaction.

The COMMIT or ROLLBACK command releases all row locks.

Classes and Objects
Most application development is modular: the developer creates complex systems
comprised of smaller parts. In conventional “procedural” development, these modules are
processes (such as procedures), and data is defined within each process. In
object-oriented development, the modules are models of real-world objects (such as a
customer or a shipping order), and both data and processes are defined within each
object. The object encapsulates the data and processes.

 Classes and Objects

Maintaining Databases 2-51

For example, if you are developing an order fulfillment system for a mail-order clothing
business, the objects might include customers, orders, and stock items. A customer
object’s data might include the customer’s ID code, phone number, and order history; the
customer’s processes might include a function that adds the customer to a new mailing
list, a function that updates the customer’s contact information, and a function that places
an order for the customer.

Object-oriented development—because it models the real-world objects with which your
enterprise deals, and encourages you to reuse application logic in a variety of ways—is a
more efficient way of developing applications. Maintain enables you to create
applications using object-oriented development, conventional development, or a hybrid of
these two methods, providing you with a flexible development path.

What Are Classes and Objects?
Most applications need many objects of the same type. For example, if your business has
500 customers, you need one object to represent each customer. No one would want to
design a customer object 500 times; clearly, you need a template that defines all customer
objects, so that you can design the template once, and use it often. For example you
would use the template each time you create a new customer object to represent a new
customer.

An object’s template is called its class. Each object is an instance of a class. In other
words, the class defines the type of object. In fact, when you create a class, the class
becomes a new data type. Just as you can use a built-in data type, such as integer or
alphanumeric, to define a simple variable, you can use a class data type to define an
object.

Example Comparing Classes and Built-in Data Types
Maintain supports two kinds of data types: built-in data types, and classes that you define
yourself. For example, just as you can use the built-in data type alphanumeric to define a
customer ID code

DECLARE CustID/A8;

you can use the class RetailCustomer to define an object as a customer:

DECLARE CustSmit8942/RetailCustomer;

Maintain Concepts

2-52 Information Builders

Class Properties: Member Variables and Member Functions
You define a class by describing its properties. Classes have two kinds of properties:

• Data, in the form of the class’s variables. Because these variables exist only as
members of the class, they are called member variables. (In some object-oriented
development environments these are also known as object attributes or instance
variables.)

A class’s member variables determine what the class is (as opposed to what it does).
Each object of that class can have different values for its member variables.

• Processes, implemented as functions (which are also known as cases). Because these
functions exist only as members of the class, they are called member functions. (In
some object-oriented development environments these are also known as methods.)

A class’s member functions define its behavior—that is, they determine what you can
do to objects of that class, and in what ways you can manipulate their data.

Example Member Variables for a Customer Class
An application for a mail-order clothing business has defined a customer class named
Customer. The class’s member variables might include the customer’s code, phone
number, and most recent order number:

DESCRIBE Customer =
(IDcode/A6,
Phone/I10,
LastOrder/A15);

.

.

.
ENDDESCRIBE

After declaring a new customer object for the customer Frances Smith

DECLARE CustFrSmith/Customer;

you could assign a value to Frances Smith’s IDcode member variable:

DECLARE CustFrSmith.IDcode = GetNewCustCode();

Each object can have different values for its member variables; for example, in this case,
each customer will have a different ID code.

 Classes and Objects

Maintaining Databases 2-53

Example Member Functions for a Customer Class
An application for a mail-order clothing business has defined a customer class named
Customer. The class’s member functions might include a function that adds the customer
to a new mailing list, a function that updates the customer’s contact information, and a
function that places an order for the customer:

DESCRIBE Customer =
(IDcode/A6,
Phone/I10,

.

.

.
LastOrder/A15);

CASE AddToList TAKES Name/A25, Address/A50, IDcode/A6;
.
.
.
ENDCASE

CASE UpdateContact ...

CASE PlaceOrder ...

ENDDESCRIBE

After declaring a new customer object for the customer Frances Smith

DECLARE CustFrSmith/Customer;

you could add Frances Smith to the mailing list using the AddToList member function:

CustFrSmith.AddToList();

Each object has the same member functions, and so the same behavior; for example, in
this case, each customer will be added to the mailing list using the function.

Inheritance: Superclasses and Subclasses
If you want to create a new class that is a special case of an existing class, you could
derive it from the existing class. For example, in a human resources application, a class
called Manager could be considered a special case of a more general class called
Employee: all managers are employees, and posses all employee attributes, plus some
additional attributes unique to managers. The Manager class is derived from the
Employee class, so Manager is a subclass of Employee, and Employee is the superclass of
Manager.

Maintain Concepts

2-54 Information Builders

A subclass inherits all of its superclass’s properties (that is, it inherits all of the
superclass’s member variables and member functions). When you define a subclass you
can choose to override some of the inherited member functions, meaning that you can
recode them to suit the ways in which the subclass differs from the superclass. You can
also add new member functions and member variables that are unique to the subclass.

Defining Classes
Before you can declare an object (an instance of a class), your procedure must have a
class definition for that type of object. If the class:

• Is already defined in a class library, simply import the library into your procedure.
(Class libraries are described in Reusing Classes in Class Libraries on page 2-55.)

• Is already defined in another procedure, simply copy and paste the definition into
a class library; you can then import the library into any procedure that needs it.

• Is not yet defined anywhere, you can define it using the DESCRIBE command.
Once it is defined, you can use it in that procedure, or copy it into a class library to
be imported into multiple procedures.

Syntax How to Define a Class or Subclass
You can define classes (including subclasses) using the DESCRIBE command. You must
issue the DESCRIBE command outside of a function—for example, at the beginning of
the procedure prior to all functions. (Functions are also known as cases.)

DESCRIBE classname = ([superclass +] memvar/type [, memvar/type] ...) [;]

[memfunction

[memfunction] ...

ENDDESCRIBE]

where:

classname

Is the name of the class that you are defining. The name is subject to the Maintain
language’s standard naming rules; see Chapter 6, Language Rules Reference for
more information.

superclass

Is the name of the superclass from which you wish to derive this class. Include only if
this definition is to define a subclass.

memvar

Names one of the class’s member variables. The name is subject to the Maintain
language’s standard naming rules; see Chapter 6, Language Rules Reference for
more information.

 Classes and Objects

Maintaining Databases 2-55

type

Is a data type (a built-in format or a class).

memfunction

Defines one of the class’s member functions. Member functions are defined the same
way as other Maintain functions, using the CASE command; see Chapter 7,
Command Reference for more information.

;

Terminates the definition if the definition omits member functions. If it includes
member functions, the semicolon is omitted and the ENDDESCRIBE command is
required.

ENDDESCRIBE

Ends the class definition if it includes member functions. If it omits member
functions, the ENDDESCRIBE command must also be omitted, and the definition
must be terminated with a semicolon.

Reusing Classes in Class Libraries
You can define a class once, but use it in multiple Maintain procedures, by storing its
definition in a class library. A library is a kind of non-executable procedure in which you
can store class definitions (as well as Maintain functions); you then import the library into
each Maintain procedure in which you want to use those classes.

Procedure How to Create a Class Library
To create a class library:

1. Create a new Maintain procedure (that is, a FOCEXEC containing only MAINTAIN
and END commands).

2. Create class definitions in the procedure. See Defining Classes on page 2-54 for more
information about creating class definitions.

or

Copy class definitions from other procedures and paste them into this procedure.

You can nest libraries to any depth using the MODULE IMPORT command. For
example, to nest library B within library A, issue a MODULE IMPORT B command
within library A. For more information about the MODULE IMPORT command, see
Chapter 7, Command Reference.

Note that a library cannot contain an explicit Top function.

Maintain Concepts

2-56 Information Builders

Syntax How to Import a Class Library
You can use the MODULE command to import libraries containing class definitions so
that the current procedure can use those classes. (Libraries can also contain other source
code, such as function definitions.) The syntax is

MODULE IMPORT (library_name [, library_name] ...);

where:

library_name

Is the name of the Maintain procedure that you wish to import as a source code
library. Specify its file name without an extension.
The library is a FOCEXEC file, and its naming and allocation requirements are those
for FOCEXEC files generally.

The MODULE command must immediately follow the procedure’s MAINTAIN
command.

Declaring Objects
Once a class definition exists, you can declare objects of that class. This is identical to
declaring simple variables of a built-in data type. You can declare objects using the
DECLARE command.

Syntax How to Declare an Object
You can declare a local or global object using the DECLARE command. To make the
declaration:

• Local, code the DECLARE command in the function to which you want it to be
local, following the function’s CASE command, and preceding all the other
commands in the function.

• Global, code the DECLARE command outside of any function (for example, at the
top of the procedure, following the MAINTAIN command and any MODULE
IMPORT commands, where it will be easy to find).

(You can also create global objects using the COMPUTE command. For information
about the COMPUTE command, see Chapter 7, Command Reference.)

To declare an object using the DECLARE command, use this syntax

DECLARE
[(]
objectname/class [= expression];
.
.
.
[)]

 Classes and Objects

Maintaining Databases 2-57

where:

objectname

Is the name of the object that you are creating. The name is subject to the Maintain
language’s standard naming rules; see Chapter 6, Language Rules Reference for
more information.

class

Is the name of the class of which this object will be an instance.

expression

Is an optional expression that will provide the object’s initial value. If the expression
is omitted, the object’s initial value is the default for that data type: a space or null
for date and alphanumeric data types, and zero or null for numeric data types.

()

Groups a sequence of declarations into a single DECLARE command. The
parentheses are required for groups of local declarations; otherwise they are optional.

Maintaining Databases 3-1

CHAPTER 3

Tutorial: Coding a Procedure

Topics:

• Step 1: Beginning and Ending the
Procedure

• Step 2: Selecting Records

• Step 3: Collecting Transaction Values

• Step 4: Writing Transactions to the
Data Source

• Step 5: Issuing the Procedure

• Step 6: Browsing Through a Stack
and Using Triggers

• Step 7: Displaying and Editing an
Entire Stack in a Winform

Maintain is a rich data maintenance language that offers many
sophisticated features. However, the basic design is simple
enough so that you can quickly learn the basic concepts and
syntax and begin developing useful applications right away.

Tutorial: Coding a Procedure

3-2 Information Builders

This chapter introduces you to Maintain’s basic concepts and syntax. As you follow the
chapter’s step-by-step approach, you build a simple Maintain procedure and become
familiar with:

• How to perform fundamental data maintenance operations.

• How different operations function together within a Maintain procedure.

• What the equivalent operations are in a MODIFY request.

This chapter describes the following data maintenance operations:

• Selecting records.

• Collecting transaction values.

• Manipulating stacks and fields.

• Controlling the flow of a procedure.

• Writing transactions.

• Issuing the procedure.

Each step in this chapter is divided into three parts:

� A Goal that briefly states what you want to accomplish in this part of the procedure.

� Methods that you can use to achieve your goal. This part provides you with
task-oriented instructions for using Maintain. If you are in a hurry to build the
application, you can skim or skip this section and move on to the Solution section.

� A Solution that implements a method and shows the resulting code used to build the
sample application. At each step in building the procedure, the code developed so far
appears in a box, and the commands added during that step appear in bold.

This chapter is not intended to provide the complete syntax or explanations of Maintain
commands, functions, and variables. For a complete reference see Chapter 6, Language
Rules Reference; Chapter 7, Command Reference; Chapter 8, Expressions Reference; and
Chapter 9, Built-in Functions Reference.

���� In this chapter and in Chapter 4, the symbol ���� indicates an instruction for you to
type text, select from a dialog box, or press a key.

 Step 1: Beginning and Ending the Procedure

Maintaining Databases 3-3

Two Ways to Follow the Tutorial
This tutorial builds a sample application in three stages. Each stage of the application is
stored in a pair of FOCEXEC and WINFORMS files (named VIDTAPE1, VIDTAPE2,
and VIDTAPE3) that are supplied with FOCUS.

There are two ways to use this quick-start tutorial:

• Follow the tutorial’s steps, entering the code for each step into a FOCEXEC using an
editor such as TED. When the instructions tell you to run the application, run the
version that you coded.

To follow the tutorial this way, you must create your own set of application files:

1. Choose a name for the application (for example, TUTOR).

2. Create a new FOCEXEC file using your personal application name and append
the number 1 to the name (for example, TUTOR1 FOCEXEC). You enter code
into this file during the tutorial.

3. Copy the three VIDTAPE# WINFORMS files that are supplied with FOCUS
and rename the copies with your new application name (for example, TUTOR1,
TUTOR2, and TUTOR3 WINFORMS).

• Follow the steps of the tutorial without entering any code. When the instructions tell
you to run the application, run the version that is supplied with FOCUS.

Building the Sample Application
Beginning with Step 1, you build a sample application containing a Maintain procedure
that accesses the VideoTrk data source. This data source contains customer, sales, and
rental information for a video rental shop. You build the procedure in stages, and each
stage illustrates a few basic concepts.

The initial goal is to create a procedure that:

1. Identifies customers whose membership is expiring during the first three weeks of
June.

2. Enables a shop clerk to edit membership and mailing information for these customers
using a form displayed on a screen.

3. Updates the data source with the edited customer information.

Tutorial: Coding a Procedure

3-4 Information Builders

After you build this basic application, you enhance it so that:

4. The clerk can browse through the customer list and display and edit information for
any customer.

Finally, you expand the application so that:

5. For each customer, the clerk can display and edit information about all of the video
tapes that the customer rented.

This sample illustrates basic Maintain processing. It does not illustrate event-driven
application development, which is presented in Chapter 4, Tutorial: Painting a
Procedure. Chapter 4 is intended as the second phase of your Maintain training and
assumes that you are already familiar with the material presented in Chapter 2, Maintain
Concepts, and in this chapter.

This application writes to the VideoTrk sample data source. If you need to create this data
source, see Appendix A, Master Files and Diagrams. If you do not have write-access to
VideoTrk, consult with the database administrator.

 Step 1: Beginning and Ending the Procedure

Maintaining Databases 3-5

Step 1: Beginning and Ending the Procedure

 ���� Goal
Before you develop the logic of the procedure, you must know how to begin and end it.

 ���� Methods: MAINTAIN and END Commands
All Maintain procedures begin and end with two simple commands (which must be in
uppercase) as illustrated in the following syntax definition:

MAINTAIN FILE filename
.
.
.
END

If you wish to work with several data sources in one procedure, you specify all of them in
the MAINTAIN command. Unlike the MODIFY facility, the COMBINE command is not
required. For example:

MAINTAIN FILES Employee AND EducFile AND JobFile
.
.
.
END

The MAINTAIN command has additional phrases used in other types of situations. As
with all Maintain commands, the complete syntax is described in Chapter 7, Command
Reference.

 ���� Solution
You now have the beginning and end of the sample Maintain procedure:

MAINTAIN FILE VideoTrk

END

��������If you have created your own set of application files, enter those commands into your
FOCEXEC file, for example, into TUTOR1 FOCEXEC.

Tutorial: Coding a Procedure

3-6 Information Builders

Step 2: Selecting Records

 ���� Goal
To update customer records, you first must identify and retrieve the records. You use the
NEXT command to select the records and copy the relevant information (customer ID,
name, address, and phone number) into the CustInfo stack.

 ���� Methods: NEXT and MATCH
To read data from a data source, you first must select the record where the data resides. In
MODIFY, there were two ways of doing this:

• By field value—one segment instance at a time, one record at a time—using
MATCH.

• Sequentially—one segment instance at a time, one record at a time—using NEXT.

For example, before MODIFY displays a record in a CRTFORM or writes it to the SPA,
you must select it using MATCH or NEXT. You also must identify the record before
MODIFY includes, updates, or deletes it. Thirdly, you can only identify one segment
instance, in one record, at a time.

Maintain releases you from these restrictions. In Maintain, there are five ways of selecting
records:

• By field value—for an entire set of records—using NEXT. The WHERE phrase
enables you to select by value, and the FOR ALL phrase selects the entire set of
records that satisfies the WHERE selection condition. The basic syntax for this is:

FOR ALL NEXT fields INTO stack WHERE selection_condition;

• By field value—for a sequence (subset) of records—using NEXT. This method is
similar to selecting by field value for an entire set except that it employs the FOR n
phrase, selecting—at the current position in the data source—the first n records that
satisfy the WHERE condition. The basic syntax for this is:

FOR n NEXT fields INTO stack WHERE selection_condition;

• By field value—one segment at a time, one record at a time—using MATCH.
This method works very much like MATCH in MODIFY, except that the values on
which you are matching can be taken from a source stack, and the fields that you
retrieve can be placed into a destination stack. The basic syntax for this is:

MATCH fields [FROM stack] [INTO stack];

 Step 2: Selecting Records

Maintaining Databases 3-7

• Sequentially—for a sequence (subset) of records—using NEXT. This method
employs the FOR n phrase to select the next n records. The basic syntax for this is:

FOR n NEXT fields INTO stack;

• Sequentially—one segment instance at a time, one record at a time—using
NEXT. This method works very much like NEXT in MODIFY, except that the fields
which you retrieve can be placed into a destination stack. The basic syntax for this is:

NEXT fields [INTO stack];

Specifying Data Source Position with the REPOSITION
Command
Each time you issue a NEXT command, Maintain begins searching for records from the
current position in the data source. For example, if your first data source operation
retrieved a set of records:

FOR ALL NEXT CustID INTO SmokeStack
WHERE ProdName EQ 'VCR DUST COVER';

Maintain has searched sequentially through the entire data source. The current position
marker now points to the end of the data source. If you issue another NEXT command:

FOR ALL NEXT LastName FirstName INTO CandyStack
WHERE ProdName EQ 'CANDY';

Maintain searches from the current position to the end of the data source. Because the
current position is the end of the data source, no records are found.

When you want a NEXT command to search through the entire data source (often the
case when you wish to retrieve a set of records), you must first issue the REPOSITION
command to move the current position marker to the beginning of the data source.

For example, the following REPOSITION command specifies the CustID field—which is
in the root segment—and so moves the current position marker for the root segment chain
and all of its descendant chains back to the beginning of the chain (in effect, back to the
beginning of the data source):

REPOSITION CustID;
FOR ALL NEXT LastName FirstName INTO CandyStack

WHERE ProdName EQ 'CANDY';

REPOSITION is similar to the MODIFY command of the same name.

Tutorial: Coding a Procedure

3-8 Information Builders

���� Solution
You add a NEXT command to retrieve the desired records. Each part of the command
plays a different role:

• FOR ALL selects a set of records.

• WHERE ExpDate GE 920601 AND ExpDate LE 920621 restricts the set to the
customers whose memberships are expiring during the first three weeks of June.

• INTO CustInfo copies all the fields from the specified segments—in this case, the
root segment—into the stack named CustInfo.

The procedure now looks like this:

MAINTAIN FILE VideoTrk

FOR ALL NEXT CustID INTO CustInfo
WHERE ExpDate GE 920601 AND ExpDate LE 920621;

END

��������If you have created your own set of application files, enter these additional
commands into your FOCEXEC file.

 Step 3: Collecting Transaction Values

Maintaining Databases 3-9

Step 3: Collecting Transaction Values

 ���� Goal
You now have a set of customer records—the CustInfo stack—to display so that the clerk
can update them. You do this using a Winform.

 ���� Methods: WINFORM and NEXT
After you select data source records, you can apply transaction values to update or delete
these records. You also can add new records without performing any prior record
selection.

There are two ways of collecting transaction values:

• Interactively at the screen. Users can enter values into Winforms using the
WINFORM command which provides a sophisticated graphical user interface.

• From a transaction file. Your procedure can read a file of transaction values using
NEXT. These files are a handy way of collecting transaction values from another
application.

NEXT is an expanded version of the MODIFY command of the same name. Its primary
role (selecting records) was described in Step 2. NEXT also replaces MODIFY’s
FIXFORM command.

WINFORM replaces the MODIFY CRTFORM command and provides a user interface
that is more powerful and easier to use.

 ���� Solution
You display a Winform named ShowCust that displays the CustInfo stack and enables the
clerk to edit membership, address, and phone information in the stack. For information
about designing and creating Winforms and a tutorial, see Chapter 4, Tutorial: Painting a
Procedure.

The Painter also adds a comment line which states

>> Generated Code Section

Do not add or edit any lines following the comment line. The Painter uses this section
(from this line through the end of the procedure) for Maintain functions that it generates.
(Maintain functions are often referred to more simply as functions, and are also known as
cases.) It also uses this section for comments describing the properties and layout of the
Winform, the Winform’s triggers, and stack and field bindings. These comments
document your application and are explained in Chapter 5, Using the Winform Painter.

Tutorial: Coding a Procedure

3-10 Information Builders

Note that if you have created your own set of application files, you do not see the
additional comments after the comment line just described.

You can omit the comments from your FOCEXEC by selecting the Preferences option
from the File menu in Winform Painter and then deselecting Pictorial View. In the interest
of simplicity, as the comments do not affect the logic of the procedure, they are not shown
in the following sample code.

Note that the Winform Painter changes the VideoTrk specification in the MAINTAIN
FILE command to all uppercase.

The procedure now looks like this:

MAINTAIN FILE VIDEOTRK

FOR ALL NEXT CustID INTO CustInfo
WHERE ExpDate GE 920601 AND ExpDate LE 920621;

WINFORM SHOW ShowCust;

-* >> Generated Code Section....
.
.
.
END

��������If you have created your own set of application files, enter these additional
commands into your FOCEXEC file.

The ShowCust Winform already has been created and is in the VIDTAPE1 WINFORMS
file. You can view it after you run the application in Step 5: Issuing the Procedure on
page 3-13.

 Step 4: Writing Transactions to the Data Source

Maintaining Databases 3-11

Step 4: Writing Transactions to the Data Source

 ���� Goal
Now that the customer information has been edited, you must write the updated
information to the data source. You do this using the UPDATE and COMMIT
commands.

 ���� Methods: Write Commands, COMMIT, and ROLLBACK
To make changes to a data source, you issue the write commands: INCLUDE, UPDATE,
REVISE, or DELETE. These perform the same functions as the MODIFY commands of
the same names. In Maintain, however, these commands are enhanced so that you can
perform a transaction for:

• A set of records, using the FOR ALL prefix and the FROM phrase.

• A sequence (subset) of records, using the FOR n prefix and the FROM phrase.

These phrases were described for other commands in Step 2: Selecting Records and Step
3: Collecting Transaction Values.

To guarantee the integrity of all the include, update, and delete operations comprising a
single logical transaction, you code a COMMIT command immediately following the last
step of the transaction. Then, if a system problem or another application interrupts the
logical transaction, it is rolled back—that is, cleared—without being written to the data
source. In this way, you can guarantee that no transaction component is ever written to the
data source unless all transaction components are—that is, unless it is part of a complete
and successful logical transaction.

Tutorial: Coding a Procedure

3-12 Information Builders

���� Solution
You add an UPDATE command to update the data source. Each part of the command
plays a different role:

• FOR ALL selects all of the rows in the stack with which to update the data source.

• FROM CustInfo takes the rows from the stack named CustInfo. The columns
specified in the command are used to update the data source.

You define the entire procedure as one logical transaction and issue a COMMIT
command to send the changes to the data source. The first stage of the procedure is now
finished and looks like this:

MAINTAIN FILE VIDEOTRK

FOR ALL NEXT CustID INTO CustInfo
WHERE ExpDate GE 920601 AND ExpDate LE 920621;

WINFORM SHOW ShowCust;

FOR ALL UPDATE LastName FirstName Street City State Zip
Phone FROM CustInfo;

COMMIT;

-* >> Generated Code Section....
.
.
.
END

��������If you have created your own set of application files, enter these additional
commands into your FOCEXEC file.

 Step 5: Issuing the Procedure

Maintaining Databases 3-13

Step 5: Issuing the Procedure

 ���� Goal
Now that you have completed the first stage of the procedure, you can issue it.

 ���� Methods: CALL, COMPILE, RUN
There are three ways of issuing a Maintain procedure:

• From the TED text editor. You can enter the procedure as a FOCEXEC in TED
and then issue the RUN command at the TED command line.

• At the FOCUS command line. You can save the procedure as a FOCEXEC and
enter the EX command to execute it at the FOCUS command line.

• Within another Maintain procedure. You can save the procedure as a FOCEXEC
and from a second procedure, enter the CALL command to execute it.

You can execute a procedure more efficiently, increasing the speed of execution, by first
compiling it using the COMPILE command. The command compiles both the FOCEXEC
and—if one exists—the associated Winform, generating a FOCCOMP file. You can
execute a compiled Maintain procedure by issuing the RUN command.

Tutorial: Coding a Procedure

3-14 Information Builders

 ���� Solution
You use the EX command to execute the procedure. You can execute the completed
procedure which is stored as VIDTAPE1 FOCEXEC on the release tape or supply the
name of the FOCEXEC where you stored your code.

��������If you have created your own set of application files:

1. Enter FILE at the TED command line to save your file and exit TED.

2. Enter the following at the FOCUS command prompt (substituting the name of your
FOCEXEC file for VIDTAPE1):

EX VIDTAPE1

The ShowCust Winform appears.

 Step 6: Browsing Through a Stack and Using Triggers

Maintaining Databases 3-15

Step 6: Browsing Through a Stack and Using Triggers

 ���� Goal
In the first stage of this application, you used a Winform that displays the CustInfo stack.
However, this Winform displays only one row of the stack and does not offer a way of
moving through the stack to display different rows.

Now you enhance the application so the clerk can browse through the stack by using
triggers. A trigger is logic that is invoked (“triggered”) by a specified event. Each time
that the event occurs, the logic is invoked. In Maintain, the invoked logic is a function or
a system action, and the event is something the user does in a Winform. (Triggers are also
known as event handlers.)

 ���� Methods: Winform Painter, Triggers, IF, FocIndex, FocCount
You can use the Winform Painter to generate a stack browser in your Winform, as
described in Chapter 5, Using the Winform Painter. The Winform facility manages the
browser automatically without inserting any code into the FOCEXEC.

To illustrate the principles of stack manipulation for this sample application, you code
your own browser. In addition to making the browser mechanism visible, this also enables
you to enhance the basic browser in Step 7.

Your browser uses the IF command, together with the FocIndex and FocCount stack
variables, to loop through the stack. You put this logic into a function and then assign the
function to a function-key trigger. Whenever a user presses a specified function key, the
trigger invokes the function, and the logic in the function moves through the stack one
row at a time.

The basic logic, shown here for the CustInfo stack, is:

IF CustInfo.FocIndex LT CustInfo.FocCount
THEN COMPUTE CustInfo.FocIndex = CustInfo.FocIndex + 1;

The IF command tests whether the current position in the stack (FocIndex) has reached
the last record in the stack (FocCount). If it has not, then it can continue to move forward
through the stack one row at a time, so it increases the current position by one. When
control leaves the function and returns to the Winform, the next row is displayed.

If, when browsing through the stack, you wish to return to the first row after displaying
the last row, you can add the following ELSE phrase to the generated IF command:

ELSE COMPUTE CustInfo.FocIndex = 1;

Tutorial: Coding a Procedure

3-16 Information Builders

 ���� Solution
You implement the stack browser by coding the following two functions. The
NextCustomer function moves forward through the stack one row at a time; the
PreviousCustomer function moves backward through the stack one row at a time.

Note that the browser functions are not called by any code in the procedure but instead
are invoked by a trigger from the Winform. (In this case, a user selects the Prev or Next
buttons on the screen or presses the corresponding F7 or F8 keys.) After the function
executes, control returns to the Winform. When the user exits the Winform (by pressing
PF4), control passes to the command that follows the WINFORM SHOW command.

MAINTAIN FILE VIDEOTRK

FOR ALL NEXT CustID INTO CustInfo
WHERE ExpDate GE 920601 AND ExpDate LE 920621;

WINFORM SHOW ShowCust;

FOR ALL UPDATE FirstName LastName Street City State Zip
Phone FROM CustInfo;

COMMIT;

CASE NextCustomer
IF CustInfo.FocIndex LT CustInfo.FocCount THEN

COMPUTE CustInfo.FocIndex = CustInfo.FocIndex + 1;
ENDCASE

CASE PreviousCustomer
IF CustInfo.FocIndex GT 1 THEN

COMPUTE CustInfo.FocIndex = CustInfo.FocIndex - 1;
ENDCASE

-* >> Generated Code Section....
.
.
.
END

��������If you have created your own set of application files:

1. Make a copy of your FOCEXEC file, rename it substituting “2” for “1” (for example,
TUTOR2 FOCEXEC), and enter these additional commands into it.

2. Enter FILE at the TED command line to save your file and exit TED.

3. Execute the new procedure (either the version supplied with FOCUS, named
VIDTAPE2 or your personal version that you named) at the FOCUS command line.

 Step 6: Browsing Through a Stack and Using Triggers

Maintaining Databases 3-17

The Winform appears. Four function keys appear at the bottom of the screen:

• F7 triggers the PreviousCustomer function.

• F8 triggers the NextCustomer function.

• F3 triggers the Exit system action.

It immediately exits both the Winform and the FOCEXEC.

If you trigger an immediate exit from the procedure, control does not continue to the
UPDATE command, and the data source is not updated.

• F4 triggers the Close Winform system action. It exits the Winform and returns to the
FOCEXEC.

Notice that Exit and Close Winform do not have functions in the procedure. They are
provided by the Winform facility; no code must be generated for them.

Tutorial: Coding a Procedure

3-18 Information Builders

Step 7: Displaying and Editing an Entire Stack in a
Winform

 ���� Goal
In the final stage of the application, you enable the clerk to display and edit information
about each customer’s video rentals. Adding this functionality illustrates how to use
multiple stacks and how to work with stack editors—called grids—to display and edit all
the rows of a stack at the same time within a Winform.

 ���� Methods: Multiple Stacks and Stack Editors (Grids)
Up until now you have worked with procedures that use only a single stack. You can
develop more powerful applications by using multiple stacks. For example, to achieve
your current goal, the application keeps your CustInfo stack—which contains each
customer’s membership information, name, address, and phone number—and creates a
second stack, named TapeInfo, to hold one customer’s videotape rental information.

For each row of CustInfo (representing one customer), the application retrieves all of the
customer’s tape rental data into TapeInfo. When the clerk finishes editing the data in
TapeInfo, the application writes the new data to the data source, clears the stack, and then
retrieves into it the tape rental data for the next customer.

However, to fully realize the power of stacks and set-based processing, you want to
display and edit an entire stack at one time. You can do this by placing a stack editor—
called a grid—in a Winform. The grid enables you to see multiple rows and columns at
one time. If there are too many rows or columns to fit within the grid box, the Winform
facility automatically provides scroll bars to scroll the hidden elements into view.

 Step 7: Displaying and Editing an Entire Stack in a Winform

Maintaining Databases 3-19

The following chart illustrates how you combine your existing application with multiple
stacks and a grid to achieve your goal:

Move to previous
row of CustInfo

Write TapeInfo
to database

Move to next
row of CustInfo

Write TapeInfo
to database

Retrieve intoTapeInfo the
tape rental data for the
current row of CustInfo

Retrieve customer data
into CustInfo

next

next

update update

Display in the Winform
the current row of

CustInfo, and a grid
with all of TapeInfo

Browse
next row

update

Browse
previous row

xit inf rE W o m

focindexfocindex

Write TapeInfo and
CustInfo to database

winform

7F F8

F4

ptS o

Start

Tr ggersi

Tutorial: Coding a Procedure

3-20 Information Builders

 ���� Solution
You add a function called GetRental to the version of the procedure in Step 6. For a given row
of CustInfo, Get Rental retrieves tape rental data into TapeInfo. (In the WHERE phrase in
GetRental, CustInfo().CustID refers to the value of CustID in the current row of CustInfo.)
Each time the function is invoked, it clears the current values of TapeInfo, repositions
VideoTrk to the beginning of the data source, and retrieves the records. Note that the default
value of FocIndex is 1; the first time that GetRental is invoked, it retrieves rental data for the
first customer in CustInfo.

You also add a command that performs a new function—UpdateRental—to the browser
functions, so that when the clerk triggers them from the Winform, the application writes
the updated rental information to the data source before advancing to the next customer in
the CustInfo stack.

Because you are no longer interested only in customers whose membership is expiring but
rather in all customers, you remove the WHERE phrase from the first NEXT command.

 Step 7: Displaying and Editing an Entire Stack in a Winform

Maintaining Databases 3-21

The final stage of the application follows:

MAINTAIN FILE VIDEOTRK

FOR ALL NEXT CustID INTO CustInfo;

PERFORM GetRental;

WINFORM SHOW ShowCust;

FOR ALL UPDATE FirstName LastName Street City State Zip
Phone FROM CustInfo;

PERFORM UpdateRental;

CASE GetRental
STACK CLEAR TapeInfo;
REPOSITION CustID;
FOR ALL NEXT CustID TransDate MovieCode INTO TapeInfo

WHERE VideoTrk.CustID EQ CustInfo().CustID;
ENDCASE

CASE UpdateRental
FOR ALL UPDATE ReturnDate Fee FROM TapeInfo;
COMMIT;

ENDCASE

CASE NextCustomer
PERFORM UpdateRental;
IF CustInfo.FocIndex LT CustInfo.FocCount THEN

COMPUTE CustInfo.FocIndex = CustInfo.FocIndex + 1;
PERFORM GetRental;

ENDCASE

CASE PreviousCustomer
PERFORM UpdateRental;
IF CustInfo.FocIndex GT 1 THEN

COMPUTE CustInfo.FocIndex = CustInfo.FocIndex - 1;
PERFORM GetRental;

ENDCASE

-* >> Generated Code Section....
.
.
.
END

Tutorial: Coding a Procedure

3-22 Information Builders

��������If you created your own set of application files:

1. Make a copy of your second FOCEXEC file, rename it substituting “3” for “2 (for
example, TUTOR3 FOCEXEC), and enter these additional commands into it.

2. Enter FILE at the TED command line to save your file and exit TED.

3. Execute the new procedure (either the version supplied with FOCUS, named
VIDTAPE3 or your personal version that you named) at the FOCUS command line.

The new Winform appears. The grid is located in the center of the form.

Maintaining Databases 4-1

CHAPTER 4

Tutorial: Painting a Procedure

Topics:

• Step 1: Creating a New Winform

• Step 2: Adding Fields

• Step 3: Adding a Grid

• Step 4: Adding Text

• Step 5: Adding Buttons and Triggers

• Step 6: Coding Triggers and Other
Functions

• Step 7: Running the Maintain
Request

In Chapter 3, Tutorial: Coding a Procedure, you developed a
Maintain application. To simplify the tutorial and focus on basic
transaction logic, you were provided with the completed
Winforms. Now that you are familiar with coding a basic
request, in this chapter you will develop a complete application.
You paint a Winform, generate code, and add triggers all in a
single application development environment: the Winform
Painter.

This chapter teaches you how to use many of the Painter’s
features and gives you hands-on experience with event-driven
processing and event-driven development. As you follow the
chapter’s step-by-step approach, you learn how to:

• Begin a Painter session and create a new procedure that
includes a Winform.

• Add fields, grids, text, and buttons to the Winform.

• Create triggers to respond to a user’s actions.

• Change previous design work.

• Generate and supply code.

Tutorial: Painting a Procedure

4-2 Information Builders

Step 1: Creating a New Winform
First, you learn about the application you are developing and how to begin a Winform
Painter session. Then, you create a new procedure that includes a Winform.

Description of the Application
The application you develop in this tutorial writes to the Car sample data source. If you
do not have write access to Car, consult with the database administrator.

You build an application user interface, that is, a Winform, that looks like the following:

The Country and Car fields appear at the top of the screen. Below these two fields, a grid
displays multiple rows of the Model, BodyType, Dealer_Cost, and Retail_Cost stack
columns.

You can press PF1 and PF2 to scroll through the Country and Car values. Inside the grid,
you can use scroll bars or function keys to scroll the data backward (PF7) and forward
(PF8).

How to Open the Painter
To open Maintain’s Winform Painter, you enter MPAINT at the FOCUS prompt.

You can provide the FOCEXEC name that displays the Winforms you want to paint. The
syntax is:

MPAINT focexec_name

For the purposes of this tutorial, do not supply the FOCEXEC name.

 Step 1: Creating a New Winform

Maintaining Databases 4-3

Enter MPAINT at the FOCUS prompt.

The Open Maintain dialog box appears.

If your screen does not display scroll bars similar to the ones in the Open Maintain dialog
box shown on page 4-6, or if the check boxes in subsequent screens do not look like the
one in the screen shown on page 4-4, exit the Winform Painter. Follow the instructions in
the following section, Adjusting Winform Appearance to specify the desired appearance.

If your screens appear similar to the screen captures, you can skip to The Painter Dialog
Boxes on page 4-6.

Adjusting Winform Appearance
Different terminals and terminal emulators process screen information in different ways.
Some configurations support dashed lines instead of solid Winform borders. For solid
borders, SBORDER must be set to ON in your FOCUS session. (See the Developing
Applications manual for information about SET commands.)

You can change the Winform Painter’s terminal emulator setting to display the options
that appear on the screen.

Tutorial: Painting a Procedure

4-4 Information Builders

System Setup Dialog Box

��������To change the terminal emulator setting, at the FOCUS command line, enter:

EX MSETUP

or, from the File menu while in the Painter, select Preferences and then Terminal.

FOCUS displays the following System setup dialog box and an Example window:

Five terminal emulations and an option for customized emulation are available. The
Example window in the upper right-hand corner of the screen provides examples of the
check box and the scroll bar for the currently selected emulation.

��������To select your terminal emulation:

1. Position the cursor in the appropriate box and press any key.

2. Press Enter. (To cancel what you have entered, press PF3.)

3. When you are finished, press PF4.

The box you selected displays an asterisk (*).

 Step 1: Creating a New Winform

Maintaining Databases 4-5

If you choose Custom, the Custom character set dialog box opens:

Initially, your cursor is on the input area for the left square bracket. You can type a value
or press PF1 to select from a list. When you change the characters, decimal (dec) and
hexadecimal (hex) values change automatically.

��������To reset the characters to the original settings:

1. Check the Reset button.

2. When you are finished entering your customized characters, press PF4.

3. To display a screen with mapping information, press PF1.

4. When the Left square bracket dialog box opens, to select a value from this box, move
your cursor to the appropriate character and press Enter.

Tutorial: Painting a Procedure

4-6 Information Builders

The Painter Dialog Boxes
To change any of your choices later in the session, you can use the Painter’s File and
Forms menus.

Dialog boxes request information about a task or supply information. After you specify
options, you click a button to carry out an action.

When the dialog box opens, the cursor is on the first option.

• To move to another option, you press the Tab key to move forward or press the
Shift+Tab keys to move backward.

• The PF3 key usually cancels an action or signals No.

• The PF4 key usually signals OK or Yes.

• When a dialog box offering several options has a default option, pressing Enter
always selects the default.

Naming the Procedure
A Maintain procedure that displays Winforms is composed of a pair of files: a FOCEXEC
file and a WINFORMS file. Each pair have the same name (file name in CMS or member
name in MVS): this is the name of the procedure. The Open Maintain dialog box asks you
to enter this name. If the FOCEXEC and WINFORMS files do not exist, the Painter
creates them.

The Open Maintain dialog box includes a combo box (a combination of the entry field
and the list box) and command buttons.

Entry Field. An entry field is a field where you type information. If a field permits a
value longer than the field’s width, you can scroll the field to enter more text. PF10
scrolls left and PF11 scrolls right.

 Step 1: Creating a New Winform

Maintaining Databases 4-7

List Box. A list box displays a list of choices. To select an item from the list, position the
cursor on the desired item and press Enter.

If the list is longer than the box, you can use the scroll bars to move through the list.

To scroll: Move the cursor to:

One line up or down The up or down arrow on the vertical scroll bar and press
Enter.

One screen up or down Just above or below the arrow on the vertical scroll bar
and press Enter.

One position left or right The right or left arrow on the horizontal scroll bar and
press Enter.

One screen left or right Just to the right or left of the arrow on the horizontal
scroll bar and press Enter.

When you scroll through a list, the scroll box moves up, down, left, or right to indicate
where you are in the list.

Combo Box. When an entry field appears together with a list box, the combination is
known as a combo box. You can enter a value by selecting it from the list box or by
typing it directly into the entry field.

Note: The combo boxes that you create inside the painter (by selecting Combo box from
the Objects menu) are different. In these, you cannot type directly into the entry field.

Command Buttons. You click a command button to initiate an immediate action, such as
issuing or canceling a command.

You click a button by positioning the cursor on the button and pressing Enter. If the
button has a shortcut key, it is faster to press the associated key. (A shortcut key is a
function key assigned to a button. When a button has a shortcut key, the key name is
usually displayed next to the button name.)

In the Open Maintain dialog box, you can name the procedure you wish to open by either:

• Typing the name of the FOCEXEC in the entry field and pressing Enter (or moving
the cursor to the OK button and pressing Enter).

Adding FOCEXEC is optional.

Pressing F2 also works if the FOCEXEC does not already exist. If it exists and you
press F2, you are asked if you want to use the existing FOCEXEC.

• Pressing Tab to position the cursor in the list box, then moving the cursor to the
desired procedure and pressing Enter.

If the list of FOCEXECs is too long to fit in the box, you can use search criteria to
narrow the list. For example if you want to see FOCEXECs that start with the letter
C, you can enter C*.

Tutorial: Painting a Procedure

4-8 Information Builders

If you do not see the procedure, you can press PF8 to scroll forward, PF7 to scroll
backward, or use the scroll bars. As you scroll through the list, notice that the scroll
box indicator moves to show where you are in the list.

If you press PF3 (or click the Cancel button), you exit from the Painter.

��������Type CARSPECS in the entry field and press Enter (or move the cursor to the OK
button and press Enter) as you will be creating a new procedure named CARSPECS.

Selecting Master Files
After you enter the name of the FOCEXEC, the Select Master Files dialog box appears.
This is where you select the data sources you access in this Winform. (This is the same
dialog box that appears if you chose Select Master from the File menu.) For the purposes
of this tutorial, you entered a name of a FOCEXEC that does not exist. When the
FOCEXEC exists, you are not prompted for the data source(s).

 Step 1: Creating a New Winform

Maintaining Databases 4-9

When the dialog box first opens, your cursor is positioned so you can type the name of
the file. You can either type the name (the word MASTER is optional), or you can select
from the list box. After you press Enter, the data source name appears in the box to the
right of the list of available Master Files. You may select up to 16 data sources.

The data sources selected determine which fields are displayed in the Field dialog box
that is used to add fields to the form.

If you add a data source you do not want, you can remove it by moving the cursor to the
data source name and pressing PF9. To remove several data sources, you can press PF12
(or click the Reset button) to clear all changes.

If your procedure will not access a data source (for example, a menu), you need not select
one. In that case when the dialog box opens, press PF4 or the OK button. If you press PF3
(or click the Exit button), you return to the Open Maintain dialog box.

When you have finished adding data sources, press PF4 or move the cursor to the OK
button and press Enter.

For the purposes of this tutorial, you access the Car sample data source.

��������Select CAR from the combo box on the left.

Tutorial: Painting a Procedure

4-10 Information Builders

Your screen should look similar to the following.

��������Press PF4 to indicate that you have finished or move the cursor to the OK button and
press Enter.

Defining the Winform’s Properties
The Winform Properties dialog box opens and requests information about the form. It
looks similar to the following.

 Step 1: Creating a New Winform

Maintaining Databases 4-11

Winform Title

The Winform title is optional. The title is centered in the Winform’s top border. When a
Winform has no border, it does not display a title.

��������Type Car Editing Form as the title of this Winform and tab to the Winform name
field.

Winform Name

Winform Name is the name used to identify the Winform to FOCUS. You refer to the
Winform by its name in the WINFORM command and in the Winform Painter.

The Winform name is required.

��������Type ShowCars as the Winform name.

Pop-up Check Box

A check box is a switch that lets you select or deselect an option. Square brackets or angle
brackets are used to indicate a check box (depending on your terminal emulation and on
how your Painter session is configured in the Terminal suboption in Preferences of the
File menu). You select a check box by typing an “X” or other character into it.

If a Winform is a pop-up, it disappears when it is closed (by a WINFORM CLOSE
command). By default, the Pop-up check box is selected.

��������Keep the default setting as the tutorial requires this Winform to be a pop-up.

Border Check Box

When you select this attribute, it displays a box around the perimeter of the Winform. It is
optional, but must be selected to display a Winform title or a Control menu.

��������Select the Border check box as this tutorial requires a border.

Stacks

A stack is a simple table. Every stack column corresponds to a data source or user-defined
variable. Every stack row corresponds to a data source record (a path instance). The stack
itself represents a data source path. You can populate a stack by retrieving data from a
data source, calculating values, or copying all or part of an existing stack.

The Current Area is Maintain’s unnamed default stack and has one row.

Winforms do not display data directly from a data source and do not directly update a
data source. They display data from, and write data to, stacks or the Current Area. These
are known as the source and destination stacks. For each Winform, you can use as many
source and destination stacks as you wish.

Tutorial: Painting a Procedure

4-12 Information Builders

You can select any of the stacks in the Stacks list box as a source or destination stack for
every field, browser, and grid that you create in all the Winforms in the Winform file.
You select the desired stack and then click the appropriate Add button to the right of the
list. Depending on the button you clicked, the stack name is copied into the Source Stacks
and/or Destination Stacks list boxes at the right of the dialog box.

The source and destination stacks always must be identical or none.

If you do not specify any source stacks, the source defaults to the Current Area. Similarly,
if you do not specify any destination stacks, the destination defaults to the Current Area.

Since this is a new Winform file, the Stacks list is empty. You can add stacks to this list
by typing the desired stack name in the entry field (above the line in the box), and then
clicking the appropriate Add button. The stack name is copied to Stacks list box, as well
as to the Source Stacks and/or Destination Stacks list boxes.

��������Type CarStack in the Stacks entry field and then press Enter (which clicks the default
Add to Both button). Next, backspace over your first entry, type BodyStack, and press
Enter.

CarStack and BodyStack appear in the Stacks, Source Stacks, and Destination Stacks list
boxes.

Source Stacks

For each stack in the Source Stacks list, you can check the Start at FocIndex check box.
This determines the current row (the current position within the stack) when the Winform
opens.

If you design the Winform with Start at FocIndex checked, when the Winform opens, the
stack starts out with the same position it had just prior to opening the Winform.

This ensures that the stack’s position is consistent inside and outside the Winform.
Maintain accomplishes this by using the system variable FocIndex to determine the
current row.

This enables you to retain the stack’s position when you open the Winform and makes it
possible for you to dynamically manipulate the current row by assigning a value to
FocIndex.

If you design the Winform without Start at FocIndex checked, when the Winform opens,
the stack’s current position is the first row, regardless of where it was prior to opening the
Winform.

Other aspects of FocIndex are described in Chapter 2, Maintain Concepts.

��������For all of this application’s stacks, check Start at FocIndex (the default).

 Step 1: Creating a New Winform

Maintaining Databases 4-13

Destination Stacks

For each stack in the Destination Stacks list box, you can check the Refresh to FocIndex
check box. This controls the Winform’s behavior when a user invokes a trigger that
interrupts—and later returns control to—the Winform. When control returns to the
Winform, the data that it displayed previously is refreshed (in case the stack had been
updated in the interim).

If you design the Winform with Refresh to FocIndex checked, when the Winform
refreshes its data from the stack, it also refreshes its position within the stack.

This ensures that the Winform reflects the most recent changes not only to the stack’s
data, but also to its position. It accomplishes this using the system variable, FocIndex, to
determine the current stack row.

When a trigger manipulates the stack and changes the current position, for example, if the
trigger calls a second Winform (that also displays that stack), and a user moves to another
row, Maintain retains that new stack position when the user returns to the original
Winform.

This also enables you to dynamically manipulate the current row by assigning a value to
FocIndex within the intervening trigger.

If you design the Winform without Refresh to FocIndex checked, the current row is
unchanged by anything that happened during the trigger.

Other aspects of FocIndex are described in Chapter 2, Maintain Concepts.

For all of this application’s stacks, check Refresh to FocIndex (the default).

Tutorial: Painting a Procedure

4-14 Information Builders

When you have finished completing the form, the screen should look similar to the
following:

��������When you are done, click the OK button.

You have completed the Painter’s preliminary dialog boxes. After you click the OK
button, the Painter displays the Design Screen where you can paint your Winform. The
following diagram identifies the different parts of the Winform Design Screen:

Menu bar
Winform name

Winform title

Procedure name

Border Ruler PF key help

 Step 1: Creating a New Winform

Maintaining Databases 4-15

Using the Painter’s Menus
To view the menus available to you in the Maintain Winform Painter, display the
pull-down menus. To select a menu from the menu bar you can press:

Function keys. Press PF10 or the Home key to position the cursor on the space
immediately to the left of the first menu. You can press Tab or PF11 to move forward
though the menu bar. Press Shift+Tab to move backward through the menu bar. When
you are on the desired menu, press Enter.

Arrow keys. Use the arrow keys to move the cursor to the desired menu and then press
Enter.

Once you have opened a menu, you can move through the menu options using Tab or the
arrow keys. To select the desired menu option, position the cursor on the option’s line and
press Enter.

��������Press PF10 and then Enter to display the File pull-down menu:

You press PF3 to close a pull-down menu. In most Painter contexts, PF3 cancels the
current activity.

Note: If you press PF3 while the cursor is on an empty part of the design screen (not on a
menu or the menu bar), pressing PF3 quits the Painter session after asking you to confirm
that you really want to quit.

If you press PF3 by mistake, press PF3 again to cancel the quit operation.

Tutorial: Painting a Procedure

4-16 Information Builders

As you cycle through the menus, notice that some of the pull-down menu items have a
function key displayed to the right of the item name. This identifies the key as the shortcut
key for the menu item. For example, in the Objects menu, F4 appears to the right of the
Field option. This indicates that you can press PF4 to select Objects and Field from the
menu bar. Using the shortcut keys saves menu navigation and therefore, saves time.

��������Display the Edit, Forms, and Objects menus to become familiar with the Painter’s
functions.

 Step 1: Creating a New Winform

Maintaining Databases 4-17

Saving Your Work and Exiting
It is a good idea to save your work from time to time. This way, if a system problem
interrupts your Painter session or you accidentally delete some work, you can restart your
Painter session from the point of your last save.

Saving the Procedure

��������Move the cursor to the File pull-down menu by pressing the Home key or PF10.
Select either Save or Save As from the menu by moving the cursor to the appropriate
item and pressing the Enter key.

• To save your FOCEXEC and WINFORMS files under their current name
(CARSPECS), move the cursor to Save and press Enter or alternatively, press PF22
(the Save shortcut key). The keyboard locks while the file is being saved. When it
unlocks, you can continue painting the screen if you wish.

• To save your FOCEXEC and WINFORMS files under a different name, select Save
As. When the Save As dialog box opens, the Filename field displays the current
FOCEXEC name. After you type the new name, press the Enter key to save the file.

Tutorial: Painting a Procedure

4-18 Information Builders

Exiting the Winform Painter
There are two ways to exit from the Winform Painter: select Exit from the File Menu or
press PF3.

Pressing PF3 exits whatever you are doing. For example, if a dialog box or a pull-down
menu is open, the dialog box or menu disappears.

If you are not selecting from a dialog box or menu, pressing PF3 exits the Painter.

If you made any changes since the last time you saved the file, you are asked if you want
to save the changes. Move the cursor to the appropriate button and press the Enter key.

��������If you wish to continue the tutorial at this point, begin Step 2 in the next section. If
you wish to exit now, press PF3. You can continue later where you left off as
explained when you begin Step 2.

Step 2: Adding Fields
If you exited from the Winform Painter, you can display it again by:

• Entering MPAINT at the FOCUS command prompt. When the FOCEXEC dialog
box appears, type or select CARSPECS and press Enter.

• Entering MPAINT CARSPECS at the FOCUS command prompt.

In either case, you return to the Painter exactly where you left off.

Adding the First Field
Perform one of the following to add a field to the form:

• Select Field from the Objects pull-down menu. At the bottom of the screen, the PF
key legend disappears. In its place, a message appears telling you to move the cursor
to where you want to position the field. The cursor is positioned where it was when
you last pressed Enter. You must move the cursor to the starting position for the field
and press Enter.

• Position the cursor at the screen position where you want the field to begin and press
PF4. (PF4 is the shortcut key for adding a field.)

 Step 2: Adding Fields

Maintaining Databases 4-19

If your terminal emulator indicates the cursor’s row and column position, position the
beginning of the field at row 6, column 27. This tutorial uses emulator coordinates for
positioning controls in the Winform. (The Winform Painter refers to controls as objects.)

To determine the same position using Winform row and column equivalents, subtract 3
from the emulator row position, and 1 from the emulator column position. For example, if
you are determining row position by manually counting from the first, that is, the top line
inside the Winform, this is row 3 and if you are determining column position by using the
rulers above and below the Winform, this is column 26.

The Painter displays the following dialog box, and the cursor flashes in the Field entry
field:

You can specify the following in this dialog box:

• The name of the field

• The source and destination of field’s data

• Whether the text the user enters should be converted to uppercase

• The length of the field

• Whether the field allows data entry or is protected

• Whether the field name should be used as a prompt

• The values the field should accept

• The name by which you can refer to the Winform field in your procedure logic

• The color of the field

• The triggers for the field

Tutorial: Painting a Procedure

4-20 Information Builders

Field

To specify the field to display, you type a name in the Field entry field and then press
Enter.

Or scroll through the list of field names in the Field list box, move the cursor to the
appropriate field name, and press Enter.

��������For the purposes of this tutorial, specify the Country field.

Object Name

All controls—except frames and browsers—have names. The Winform Painter refers to
controls as objects, and to their names as object names. These names enable you to refer
to controls within your procedure, so that you can dynamically manipulate them in
response to run-time events.

Object Name is located in the bottom middle of the dialog box.

��������Name this field CountryField, by overwriting the default name (Field1).

Source. The Source radio button group enables you to select a source for the field’s
initial value:

Default Value. Check this source to specify a constant that is always displayed for this
field when the form initially opens, for example, a year field with a default value of the
current year. You enter a default value if the default display for the user should come
from a constant. The Winform Painter does not support default values for fields in the
current release.

Current Area. Check this source if the data to be displayed is to come from the Current
Area variable with the same name as the field specified. The Current Area is essentially a
stack that has one row.

Stack

The Source Stack drop box lists every stack that was specified in the Winform Properties
dialog box.

If no stacks appear, exit this screen and return to the Form Properties dialog box to enter
stacks.

When you click the Stacks radio button and then click the down-arrow button, the Painter
displays a list of available stacks.

To click a radio button, position your cursor in the middle of the desired button and press
any character, for example, an “x”.

To select one of these stacks as the source of the field’s initial value, position the cursor
on the desired stack and press Enter.

��������Select CarStack as your source. In this tutorial, you obtain your input data from this
stack.

 Step 2: Adding Fields

Maintaining Databases 4-21

When you press Enter or a function key—such as PF4 to confirm your entries and close
the dialog box—the character you entered changes into an asterisk (*).

Destination

Note that the Source and Destination must be the same. Either both must display <None>
or the name of the stack.

The destination specifies where the field value supplied by the end-user is to go. The
Destination Stack drop box lists every stack that was specified in the Winform Properties
dialog box.

When you click the down-arrow button, the Painter displays a list of available stacks.

To select a stack as the destination, position the cursor on the desired stack and press
Enter.

If you want the field’s value to be written to the Current Area, do not specify anything.
Whether or not you select a destination stack, all values automatically are copied to the
Current Area.

��������For this tutorial, specify CarStack as the destination stack.

Length

The Painter automatically fills this field when you select a field from the Field list box or
when you enter a data source field name in the Field entry field. In this case, the Painter
fills in the length the next time that you press Enter.

The Length is obtained from the Master File.

You can override the default length by typing in a different length.

If the field length is longer than what is specified in the Master File, all of the characters
specified after the end of the Master length are not added to the data source.

��������For this tutorial you want the length specified in the Master File, so you need not
change the specification.

Uppercase

When the Uppercase check box is checked (the default), whatever the user types is
converted to uppercase before being placed in the destination.

��������Accept the default. For this tutorial, all data should be converted to uppercase,
because all data in the Car data source is stored in uppercase.

Protected

You select the Protected check box to protect the field from users changing its value. You
check this box if this field is to be display-only.

��������In general, you want to protect key fields, such as Country, so check this option.

Tutorial: Painting a Procedure

4-22 Information Builders

Prompt

The Prompt check box indicates whether or not you want the field name (or other text) to
appear to the left of the field.

You can change the value in the Prompt entry field. However, the prompt text may not
exceed 13 characters. If you want the prompt text to be longer than 13 characters, you
must uncheck Prompt and supply your own text using the method described in Step 4:
Adding Text.

��������For the Country field, you want the field name to appear, so accept the default
(checked). To enhance the prompt’s appearance, change all the letters following the
first to lowercase, so that it reads Country.

OK (PF4). You click the OK button (or PF4) after you finish making all changes to the
field dialog box. If you want to view the dialog boxes associated with clicking PF5 and
PF6, do not click PF4 yet.

Accepts (PF6)

The Accepts button opens the Accept List dialog box which enables you to specify a data
validation test for the field, as well as the conditions under which to display the list or
range of valid values. If valid values are already specified for this field in the Master File,
you use this dialog box to specify when to display them.

For this tutorial you do not use the Accepts data validation feature. Click PF3 to exit from
this dialog box.

Color (PF5)

You click the Color button when you want to change the colors for a field. When you
click this button, the following dialog box opens:

To select a color, an attribute, or an extended attribute, move the cursor to the appropriate
radio button and press any key.

 Step 2: Adding Fields

Maintaining Databases 4-23

For this tutorial, you do not show colors. Click PF3 to exit from this dialog box.

Cancel (PF3). When you click the Cancel button, any changes made to the Field dialog
box are ignored, and you return to the Winform Design Screen.

Triggers (PF12). When you click the Triggers button, the Triggers dialog box opens. It
lists all of the system shortcut keys and enables you to enter functions (which are referred
to as cases in the Winform Painter) against the corresponding keys.

When you finish entering options, the Field dialog box should look similar to the
following:

��������Press PF4 to indicate that you are done.

After you press PF4, the Country field appears, and the form looks similar to the
following:

Tutorial: Painting a Procedure

4-24 Information Builders

 Step 2: Adding Fields

Maintaining Databases 4-25

Adding Additional Fields
To add additional fields, move the cursor two lines below the Country field and press
PF4. The Field dialog box appears.

Note that the changes you specified in the Field dialog box for the Country field (for
example, the CarStack stack) are the new defaults.

��������Select the Car field.

The length is obtained from the Master File.

1. Ensure that the Prompt, Uppercase, and Protected check boxes are checked.

2. Change the case of the prompt so that it reads Car.

3. Before pressing PF4 to indicate that you are finished entering specifications, check
the dialog box for the Car field to confirm that it looks like the following:

4. Press PF4 when you are finished entering specifications for the Car field.

Tutorial: Painting a Procedure

4-26 Information Builders

Editing, Moving, and Resizing Controls
When you are adding fields (or other controls later in the tutorial), there are two ways to
make changes. (Winform Painter refers to controls as objects.)

One way is to remove the control and begin again. To remove a control:

• Select Delete from the Edit pull-down menu. Move the cursor to the control you want
to delete and press Enter.

• Alternatively, move the cursor to the control you want to delete and press PF6.

The control no longer appears on the screen. An easier way is to edit the control. To edit a
control:

• Select Edit Object from the Edit pull-down menu. Move the cursor to the control you
want to change and press Enter.

• Alternatively, move the cursor to the control you want to edit and press PF12.

The appropriate dialog box opens, and you can specify changes.

You may wish to move controls around on the screen to make the screen more appealing.
To move a control:

• Select Move from the Edit menu. Position the cursor on the control you want to move
and press Enter. Next, position the cursor to where you want the upper left corner of
the control to be and press Enter.

• Alternatively, position the cursor at the control you want to move and press PF5.
Next, position the cursor where you want the upper left corner of the control to be
and press Enter.

You may want to resize a control, such as the grid described in the next section, Step 3:
Adding a Grid. To change the size of a control:

• Select Resize from the Edit menu. Move the cursor to the control you want to resize
and press Enter. The border of the control is highlighted and the cursor is at the
bottom right of the control. Move your cursor to where you want the bottom right
corner to be and press Enter.

• Alternatively, move the cursor to the control you want to resize and press PF24. The
border changes as described in the previous paragraph. Move the cursor to indicate
the new size of the control and press Enter.

 Step 3: Adding a Grid

Maintaining Databases 4-27

Step 3: Adding a Grid
A grid is a stack editor that enables you to display and change the values in a stack. The
columns are listed across the grid, and one or more rows display at one time. In this
section, you add a grid that displays BodyStack. A sample grid appears that looks similar
to the following:

Grid

���� To create a grid, select Grid from the Objects menu. When the Painter asks you to
define the grid’s upper-left and lower-right corners, position the upper-left corner of
the grid in row 11, column 6 (using the terminal emulator’s coordinates) and place
the lower-right corner in row 16, column 76. These specifications allow sufficient
space for the column headings and data.

After specifying the coordinates, the following dialog box appears:

Tutorial: Painting a Procedure

4-28 Information Builders

Adding Columns
From the combo box, you can select the fields you want to include as columns in the grid.
The list box displays all fields from the Master Files that you specified in the Winform
Properties dialog box when you began the tutorial.

To select fields:

• Type the field name in the Field entry field. (The cursor flashes in the entry field
when the dialog box opens).

• Alternatively, move the cursor to the desired field and press Enter. If you do not see
the field in the Field list box, move the cursor into the box and press PF7 or PF8 to
scroll the box (or use the scroll bar).

In either case, after pressing Enter, the field you selected and the length from the Master
File appear in the Grid Field List.

��������For this tutorial, select the following fields:

• <Row Number>. This is a system-generated column that displays the sequence
number of each row. It enables the user to identify the current position in the stack.
When selected, it becomes the first grid column.

• Model.

• BodyType.

• Dealer_Cost.

• Retail_Cost.

As you select fields, the list of selected fields grows. You can edit this list in several
ways:

• You can change the default field length (that is, column width) by typing over the
length. The default is obtained from the Master File.

• You can delete columns by moving the cursor over a particular column name and
pressing PF9. Another way to do this is to move the cursor to the column name, press
Enter, and click the Delete button.

• You can move columns around by using a combination of Delete (PF9) and Paste
(PF2). To move a column, first delete it as described in the previous paragraph. Next,
move the cursor to the row preceding the desired position. Press PF2. The deleted
column is inserted where you indicated.

 Step 3: Adding a Grid

Maintaining Databases 4-29

Changing Stacks
Below the list of available fields are two boxes indicating the grid’s source and
destination stacks. You specify BodyStack as both the source and the destination..

��������In each box, click the down-arrow button. When the Painter displays a list of
available stacks, select BodyStack

After adding the five fields and changing the stacks, the dialog box looks similar to the
following :

Protecting and Unprotecting Columns
Because you previously protected the Country and Car fields from editing, the current
default is Protected. Leave the Model and BodyType columns protected, because they are
key fields in the Master File but unprotect the Dealer_Cost and Retail_Cost fields.

��������To protect or unprotect a column, move the cursor to the column (in this case,
Dealer_Cost) and press PF5 to edit.

Tutorial: Painting a Procedure

4-30 Information Builders

The Painter displays the following dialog box:

1. Uncheck the Protected check box and click OK to confirm.

2. Repeat the previous process to unprotect the Retail_Cost column. You may find the
column already unprotected if you created it after you changed the default for
Dealer_Cost.

3. Click OK to confirm the change to Retail_Cost.

In addition to protecting and unprotecting columns, you can edit other column
attributes in the Edit Column dialog box, including length, title, and case sensitivity.

Color and data validation (Accepts) are not supported for grids in the current release.

4. Click OK in the Grid dialog box to confirm the grid’s design.

After closing the dialog box, the screen looks similar to the following:

 Step 4: Adding Text

Maintaining Databases 4-31

Note: The word BodyStack is centered at the top of the box around the grid. This name
only appears during the painting process so that the developer can quickly identify which
stack is used in that grid. It does not appear when the application is executed.

Step 4: Adding Text
There are two ways of adding text to the screen:

Create a text control. The Winform facility enables you to treat text like other types of
controls, such as buttons, grids, and fields. You can define a message or other text as a
text control. Like other types of controls, you manipulate a text control using the Painter
menus and function keys (not the Delete and Insert keys).

• You can assign a color.

• You can move the text as a single unit.

• You can delete the text as a single unit.

To create a text control, you select Text from the Objects menu or press PF13. The cursor
flashes where it was the last time you pressed Enter. You are prompted to move the cursor
to where you want the text to begin.

After pressing Enter, the Create Text dialog box appears, and you can type the desired
text in the entry field. You can include any characters you wish, with the exception of
double quotation marks (“). When you are finished, you click PF4, and the text appears
on the screen. If the text is wider than the window, scroll left and right by pressing PF10
and PF11.

Copy a text control. You can copy text controls from within the Painter. This feature is
useful when you want several text controls to look similar to one another.

To copy a text control, you select Copy from the Edit menu. Next, you move your cursor
to the control you want to copy. Then, you move your cursor to where you want the
copied control to be located. You can edit the control by pressing PF12 to change its
attributes.

For this tutorial, you want to display a message telling application users how to use the
Winform.

��������Select Text from the Objects menu. Move the cursor to row 18, column 15 (using the
terminal emulator’s coordinates) and press Enter.

Tutorial: Painting a Procedure

4-32 Information Builders

A dialog box similar to the following opens.

��������In Enter text:, type the following: Select country and car, then update old cost data.

��������Press PF4 to indicate you are finished.

The screen should look similar to the following:

(Users will be able to select a country and car, once you have completed the application,
by using buttons that you will add in the next step.)

 Step 5: Adding Buttons and Triggers

Maintaining Databases 4-33

Step 5: Adding Buttons and Triggers
So far you have created a Winform that displays data, that is, the Car and Country fields
and the grid displaying BodyStack columns. However, you have not created a way to
traverse the data or to update the data source. You cannot process the data.

In this step you add triggers and command buttons to provide a way to process the data. A
trigger is a procedure that is invoked—”triggered”—by a specified event. The procedure
can be a function or a system action. (Triggers are also known as event handlers, and
functions are referred to as cases in the Winform Painter.) The event can be something the
user does in a Winform, such as clicking a button. For example, a user clicking a Cancel
button triggers a system action that closes the Winform.

In this section, you add buttons and triggers to the Winform and assign the triggers to the
buttons. When the application user clicks one of these buttons, he or she triggers a
function that pages through the data and updates the data source or invokes a system
action that closes the Winform or exits the application.

Adding the First Button and Trigger
The first step is to add a command button to the Winform. This button triggers a function
that moves backward through the data, displaying values for the previous car brands.

��������Select the Button option from the Objects menu. In response to the prompt at the
bottom of the screen to define the top left corner of the button, position the cursor at
row 20, column 5 (using the terminal emulator’s coordinates) and press Enter. In
response to the next prompt, to define the button’s bottom right corner, position the
cursor at row 20, column 20 and press Enter.

The Button dialog box opens.

Tutorial: Painting a Procedure

4-34 Information Builders

Text

You can type descriptive text to be displayed on the face of the button in the Text entry
field. This text usually describes what the button does and includes the name of the
button’s shortcut key.

��������Type the following text and include two spaces between the description and key
name for reading ease: Previous Car F1.

Justification

The Justification radio button group determines where the text is aligned on the button.

��������Accept the default justification so that the text will be centered.

Trigger, Functions

You specify a function to be performed or a built-in Winform system action to be called
when the application user clicks the button. (Functions are referred to as cases in the
Winform Painter.) To specify a system action, you press PF5 or click Cases to display a
list of system actions and existing functions. After you select the desired system action,
the Painter copies your choice to the Trigger field.

To specify an existing function, you press PF5 or click Cases to display a list of system
actions and existing functions. After you select the desired function, the Painter copies
your choice to the Triggers field and assigns that function to the button.

To specify a new function, you type the name of the function into the Triggers field.

��������For the tutorial, you must specify a new function, so type PrevCar in the Trigger
field.

Shortcut Key Field; PFKeys

The Shortcut entry field enables you to specify a function key that users can press to click
the button, thereby saving keystrokes. If you wish to assign a shortcut key, first determine
which keys are available by clicking PFKeys. This displays a list of the function keys
(within this Winform) already assigned to buttons and to form-level triggers.

 Step 5: Adding Buttons and Triggers

Maintaining Databases 4-35

��������Select PF1 in the PF Keys dialog box and then click OK to confirm your choice.

The Painter copies the selected key name to the Shortcut key field and later (upon closing
the Button dialog box) assigns PrevCar (your trigger).

You can change the values assigned to other function keys—for example, moving a
default system action to a different key—by using the Actions option of the Forms menu.

Default Button

In some Winforms, one command button is the default. You can click the default button
quickly by pressing Enter. On terminals that support color, the default button is the color
of the terminal’s unprotected high intensity field attribute. It is helpful to make the most
frequently used button—for example, the OK button—the default.

��������Leave the Default attribute unchecked as you do not want this button to be the
default.

Border

This attribute displays a border around the perimeter of the button. This is useful if your
terminal emulator does not support highlighting.

��������Accept the default value of no border, as you do not want these buttons to have
borders.

Object Name

��������Accept the default name.

Tutorial: Painting a Procedure

4-36 Information Builders

When you are finished specifying in the Button dialog box, it should look similar to the
following:

��������Click OK to confirm your work and close the dialog box.

The Painter displays a message that the PrevCar function (which you had specified as the
button’s trigger) does not exist and asks if you want the Painter to create the function.

��������Click the Create button.

The Painter automatically generates an empty PrevCar function in the FOCEXEC.

This generated function (consisting of CASE and ENDCASE commands) serves as a
temporary placeholder while you continue to develop the application. In a later step—
while still in the Painter—you will edit the function and add all of the necessary Maintain
commands.

The Painter generates code when you save your work. To demonstrate what the Painter
produces, save your work by selecting the Save option from the File menu.

��������Place the cursor on the button you just created and press PF12 to edit the button.
When the Button dialog box opens, press PF6 to display the PFKeys list.

Notice that PF1 now displays the button’s trigger. (Use PF11 and PF10 to scroll the
display to see the entire trigger).

��������Click Cancel twice to close the PFKeys and Button dialog boxes.

 Step 5: Adding Buttons and Triggers

Maintaining Databases 4-37

Adding Additional Buttons and Triggers
You now add three additional command buttons to the Winform, selecting the Button
option from the Objects menu for each one, and supplying the following values:

��������Start the second button in row 20, column 24 and end it in row 20, column 39.

1. Enter Next Car F2 as the button’s text.

2. Type NextCar in the Trigger field.

3. Select PF2 for the shortcut key.

4. Accept the defaults for Justification, Border, Default, and Object Name.

5. Click OK to close the dialog box.

6. When the Painter notifies you that the NextCar function does not exist, click Create
to generate an empty function.

��������Start the third button in row 20, column 43, and end it in row 20, column 58.

1. Enter Quit F3 as the button’s text.

2. Supply a value for the Trigger field by clicking the Cases button and selecting the
exit system action. Select PF3 for the shortcut key. Accept the defaults for
Justification, Border, Default, and Object Name. Click OK to close the dialog box.

3. You may see the following message: This key is already assigned to a system action.
Do you want to override it? You can select OK.

The same message may appear when you create the PF4 key in the step that follows.

��������Start the fourth button in row 20, column 62, and end it in row 20, column 77.

1. Enter Done F4 as the button’s text.

2. Supply a value for Trigger by clicking Cases and selecting the close system action.

3. Select PF4 for the shortcut key.

4. This will be the default button, so select the Default check box.

5. Accept the defaults for Justification, Border, and Object Name. Click OK to close the
dialog box.

Tutorial: Painting a Procedure

4-38 Information Builders

The Winform now displays four buttons:

Step 6: Coding Triggers and Other Functions
There are two ways you can supply the function logic needed for the Winform’s triggers:

• Use TED (or, under CMS, any editor of your choice) to edit the Maintain FOCEXEC
and add the appropriate logic.

• Use the Painter’s Cases menu to add new functions and edit existing ones. This
enables you to do all of your application development—form building and function
coding—within a single environment (that is, within the Painter).

When you are finished, Maintain must have the following functions:

• An expanded Top function that retrieves Car and Country data and places the output
into the CarStack stack. It also performs GetBody and updates the data source when
the Winform is exited.

• A new GetBody function that retrieves data from the CarRec and Body segments and
places it into the BodyStack stack.

• A PrevCar function that updates the Body segment using the data from the
BodyStack stack. It then retrieves data from the CarRec and Body segments for the
previous Car. This newly retrieved data is displayed.

• A NextCar function that updates the Body segment using the data from the
BodyStack stack. It then retrieves data from the CarRec and Body segments for the
next Car. This newly retrieved data is displayed.

 Step 6: Coding Triggers and Other Functions

Maintaining Databases 4-39

Painter-generated Code
Before adding any new functions, it is important to understand the code the Winform
Painter already has generated. As you are building your screen, the Winform Painter is
adding code in your FOCEXEC. If you were to save and exit the Painter now, the
following code would be generated for you in CARSPECS FOCEXEC.

Note: Do not change anything on or following, the -* >> Generated Code Section line.
This section contains code and comments generated by the Winform Painter.

MAINTAIN FILE CAR

case PrevCar
endcase

case NextCar
endcase

-* >> Generated Code Section ...

.

.

.

END

Tutorial: Painting a Procedure

4-40 Information Builders

Top Function
You now add code to the Top function.

��������Select Cases from the menu bar.

The Cases dialog box opens:

Under CMS, you can use TED (the default) or a different editor. You specify which
alternative editor is available via the Preferences option of the File menu. Under MVS,
only TED is available. In this tutorial, use TED.

��������To edit the Top function, select top in the combo box. After top appears in the entry
field, click the Open button. The Painter invokes TED and displays the following
editing screen:

 Step 6: Coding Triggers and Other Functions

Maintaining Databases 4-41

The file name in the upper left corner (TEMP00) is a default name for the temporary file
that TED uses to edit functions. It doesn’t affect your editing session.

You can use TED’s standard editing facilities.

Do not enter the numbers (annotations) at the beginning of each line.

��������Add the following code to the Top function :

1. FOR ALL NEXT Country Car INTO CarStack;
2. PERFORM GetBody;
3. WINFORM SHOW ShowCars;
4. FOR ALL UPDATE Dealer_Cost Retail_Cost FROM BodyStack;

1. Retrieves all the Country and Car combinations into CarStack. The NEXT command
specifies which segments to retrieve, and the INTO phrase specifies into which stack
to place the retrieved rows. The FOR ALL prefix specifies that all of the rows in the
data source must be retrieved.

2. Performs the GetBody function. GetBody retrieves these same keys, as well as
Model, BodyType, and all the non-key fields in the Body segment into BodyStack. It
retrieves only those records (also known as path instances or relational rows) whose
Car and Country fields match the values in the current row of CarStack. The grid that
you created displays selected columns from BodyStack.

3. Displays the ShowCars Winform. From this Winform, the application user can
browse and edit data using function key and button triggers.

4. Writes the application user’s last round of edits to the data source after the user
leaves the Winform.

For more information on any of the Maintain commands or system variables included
here, see Chapter 6, Language Rules Reference; Chapter 7, Command Reference; Chapter
8, Expressions Reference; and Chapter 9, Built-in Functions Reference.

��������To save your work and return to the Cases dialog box, enter FILE at the TED
command line.

Tutorial: Painting a Procedure

4-42 Information Builders

PrevCar Function
��������Select the PrevCar function from the dialog box and click Open.

Maintain displays the following TED editing screen:

��������Add the following function that enables users to scroll backward through the data and
write their last changes to the data source each time they scroll. (Changing the
generated CASE and ENDCASE keywords to uppercase is optional and is done for
consistency. It does not affect execution.)

CASE PrevCar
1. FOR ALL UPDATE Dealer_Cost Retail_Cost FROM BodyStack;
2. IF CarStack.FocIndex GT 1
2. THEN COMPUTE CarStack.FocIndex=CarStack.FocIndex-1;
2. ELSE COMPUTE CarStack.FocIndex = CarStack.FocCount;
3. PERFORM GetBody;

ENDCASE

 Step 6: Coding Triggers and Other Functions

Maintaining Databases 4-43

1. Writes the application user’s last Dealer_Cost and Retail_Cost changes from
BodyStack to the data source. BodyStack contains values for all the records defined
by the Country and Car values in the current CarStack row.

2. Displays the previous values of Car and Country by changing the current row of
CarStack to the previous row.

Winforms display data from stacks based on the value of the stack variable FocIndex.
The command reads: if the row the user is currently viewing (indicated by
CarStack.FocIndex) is greater than 1, then subtract one from FocIndex; otherwise set
FocIndex equal to the number of rows in the stack.

FocCount is another stack variable that automatically keeps track of the number of
rows in the stack. This means when the PrevCar function is executed, the prior row is
displayed unless the user is positioned on the first row in the stack. In that case, the
last row is displayed. In this way, the user can cycle through the data.

3. Performs the GetBody function. GetBody retrieves fields from the first four
segments of the Car data source into BodyStack, where they can be displayed in the
grid you created. Only records whose Car and Country fields match the key values in
the current row of CarStack are retrieved.

��������To save your work and return to the Cases dialog box, enter FILE at the TED
command line.

NextCar Function
��������Select the NextCar function from the Cases dialog box and click Open. Enter the

following function:

CASE NextCar
FOR ALL UPDATE Dealer_Cost Retail_Cost FROM BodyStack;
IF CarStack.FocIndex LT CarStack.FocCount

THEN COMPUTE CarStack.FocIndex = CarStack.FocIndex + 1;
ELSE COMPUTE CarStack.FocIndex = 1;

PERFORM GetBody;
ENDCASE

This function is almost identical to the PrevCar function. The only differences are in the
COMPUTE and IF commands. Rather than subtracting one from the value of
CarStack.FocIndex, it adds one. This is because you want to display the next Country Car
combination. The value of CarStack.FocIndex determines which row is displayed in the
Winform.

Refer to the comments for the PrevCar function for additional information.

��������To save your work and return to the Cases dialog box, enter FILE at the TED
command line.

Tutorial: Painting a Procedure

4-44 Information Builders

GetBody Function
You now enter a new function named GetBody. It is not invoked by any of the Winform’s
triggers, so the Painter has not generated any code for it. Instead, this function is called by
the other functions (Top, NextCar, and PrevCar) when they need to retrieve new values
into BodyStack that match the key values in the current row of CarStack.

��������Type GetBody in the Cases entry field and click Open. Enter the following code:

CASE GetBody
1. STACK CLEAR BodyStack;
2. REPOSITION Country;
3. FOR ALL NEXT Country Car Model BodyType INTO BodyStack
3. WHERE CarStack().Country EQ Car.Country
3. AND CarStack().Car EQ Car.Car;

ENDCASE

1. Clears the existing values from BodyStack.

2. Repositions the application to the beginning of the data source, ensuring that the next
set-based data source retrieval selects records from the entire data source.

3. Retrieves fields from the first four segments of the Car data source into BodyStack.
Only records whose Car and Country fields match the key values in the current row
of CarStack are retrieved.

The FOR ALL prefix means that all rows in the data source are examined to see if
they meet the selection criteria. The rows to be retrieved are specified in the WHERE
phrase.

The components of the WHERE phrase are:

CarStack().Country

Indicates the value of the Country column—from the CarStack stack—that is
currently displayed. This is a qualified field name (actually, in this case, a qualified
column name).

CarStack is the name of a stack that contains the Country column.

CarStack() indicates the row of CarStack that is currently displayed and is shorthand
for CarStack(CarStack.FocIndex). FocIndex is a system variable whose value is
always the current stack row.

CarStack().Car

Indicates the value of the Car column—from the CarStack stack—that is currently
displayed.

EQ

Only the data source rows matching the data in the stack are retrieved.

 Step 7: Running the Maintain Request

Maintaining Databases 4-45

Car.Car

Refers to the Car field in the Car data source. This is a qualified field name.

The first Car is the name of the data source, and the second is the name of the field.

Car.Country

Refers to the Country field in the Car data source.

For more information on any of the Maintain commands or system variables included
here, see Chapter 6, Language Rules Reference; Chapter 7, Command Reference; Chapter
8, Expressions Reference; and Chapter 9, Built-in Functions Reference.

��������To save your work and return to the Cases dialog box, enter FILE at the TED
command line. Then, click Done to exit Cases. Press PF3 to exit the Painter. When
prompted about saving your work, click Yes.

If you wish to view a complete FOCEXEC built by the Painter, including the functions
you entered, Painter-generated code, and Painter-generated comments, you can issue the
command

TED CARSPECS

at the FOCUS command line to see the entire FOCEXEC.

Step 7: Running the Maintain Request
��������At the FOCUS prompt, enter the following command:

EX CARSPECS

The CarSpecs application displays the following Winform:

Tutorial: Painting a Procedure

4-46 Information Builders

The application’s function keys perform the following actions:

PF7, PF8, PF10, and PF11 are default system actions preassigned to those keys.

PF Key Action

PF1 Data for the previous car displays. The display is cycled through the entire
stack. This means that if you are positioned at the first row, your position is
changed to the last row.

PF2 Data for the next car displays. As with PF1, the display is cycled so if you are
positioned at the last row, your position is changed to the first row.

PF3 Enables the user to exit the procedure. All changes since the last data source
update are lost. (The data source is updated when you press PF1, PF2, or
PF4.

PF4 Exits the procedure, and the data source is updated with any changes made.

PF7 When the cursor is on the grid, the rows in the grid are scrolled backward.

PF8 When the cursor is on the grid, the rows in the grid are scrolled forward.

PF10 When the cursor is on the grid, the columns in the grid are scrolled left.

PF11 When the cursor is on the grid, the columns in the grid are scrolled right.

Congratulations! You have painted an event-driven Maintain application.

Maintaining Databases 5-1

CHAPTER 5

Using the Winform Painter

Topics:

• Using the Painter

• Using the Design Screen

• File Menu

• Edit Menu

• Forms Menu

• Objects Menu

• Cases Menu

• Help Menu

The Winform Painter is an application development
environment that allows you to design and create event-driven
applications. While in the Painter you can design the visual
layout of Winforms and define and code triggers.

Using the Winform Painter

5-2 Information Builders

Using the Painter
This section provides an overview of how to communicate with the Winform Painter, how
to begin and end a Painter session, how to save your work, and which files are produced
by the Painter.

To select any item in the Winform Painter, or in a Winform at run time—for example, to
select a menu option, an item in a list box, a radio button, or to click a button—position
the cursor on that item and then press the Enter key. (Pressing a function key has the same
effect as pressing Enter, but will also perform whatever action is associated with that
function key.)

Because the Winform Painter runs in an S/390 environment, the host computer does not
become aware of what you (or an application end user) do on the screen until you press
the Enter key or a function key.

Using Dialog Boxes
A dialog box is used to request information about a task you are performing, or to supply
needed information.

For example, a dialog box is displayed if you choose Field from the Objects menu. In the
Create Field dialog box, you specify the field name, its input (or source), its output (or
destination), and other information about displaying the field.

Most dialog boxes contain options you can select. After you specify options, you can
choose a command button to carry out a command.

Often you need to move within a dialog box to select one or more options. When you
enter the dialog box, the cursor is on the first option. To move to another option, you can
press the Tab key to move forward through the options or you can press the Tab and the
Shift key to move backward through the options. Inside a dialog box, PF3 is always
Cancel or No and PF4 is always OK or Yes. When a dialog box offering several options
has a default option, Enter always selects the default.

 Using the Painter

Maintaining Databases 5-3

The kinds of controls that you may see in a dialog box are described in the following
sections.

Using Entry Fields
You type information into an entry field.

When you move into an empty entry field, the cursor appears on the left side of the box.
Whatever is typed into the entry field is started where the cursor is. You can enter more
text than will fit in the box by scrolling the text. This is done by positioning the cursor at
the end of the editable area and pressing PF11. PF10 scrolls left and PF11 scrolls right.

Using the Winform Painter

5-4 Information Builders

Using List Boxes
A list box displays a list of choices. If there are more choices than can fit in the box, scroll
bars are provided so you can move through the list. The selected item is displayed in a
different color than the rest of the list on terminals that support color. The following
shows a list box (with scroll bar annotations) displaying a list of all of the Master Files
available.

Scroll Box

Scroll Bar

Scroll Arrow

In list boxes and anywhere else scroll bars might appear on the screen, scroll bars can be
used as follows:

To scroll … Move the cursor to …

One line up or down. The up or down arrow on the vertical scroll bar and press
the Enter key.

One screen up or down. Just above or below the arrow on the vertical scroll bar
and press the Enter key.

One position left or right. The right or left arrow on the horizontal scroll bar and
press the Enter key.

One screen left or right. Just to the right or left of the arrow on the horizontal
scroll bar and press the Enter key.

When you scroll through a list, the scroll box moves up, down, left or right to indicate
where you are in the list.

To select an item from a list box, move through the list as specified above. When the item
you want is displayed, move the cursor to that entry and press the Enter key.

 Using the Painter

Maintaining Databases 5-5

Using Check Boxes
A check box indicates that you can select or clear (that is, deselect) the indicated option.
You can select an option by typing any character in the middle of the check box; after you
press the Enter key or a function key, the check box is shown with an X in the middle.
You can clear an option by removing the X from the check box.

Check boxes are displayed using square brackets or angle brackets, depending on your
hardware. If strange characters appear instead of brackets, select the Terminal option from
Preferences in the File menu to get something more appropriate to display. For more
details see Preferences on page 5-22.

Using the Control Box
The Control box is used to alter the size of, or move a Winform. The Control box is in the
upper left-hand part of the Winform. It is a dash framed by two parallel lines. If you
position the cursor between the two parallel lines and press the Enter key, the Control box
menu is displayed:

At run time the control box allows you to move or close the Winform but not size or
zoom it. For details about Move, Size and Zoom, see Size on page 5-49, Zoom on page
5-50 and Move on page 5-50.

Using the Winform Painter

5-6 Information Builders

Using Radio Buttons
Radio buttons represent mutually exclusive options. You can select only one radio button
at a time. A radio button is indicated by parentheses, and the selected button displays an
asterisk.

To select a radio button, move the cursor to the button—to the middle position between
the button’s parentheses—and type any character. When you then press the Enter key or a
function key, that button is selected, and it displays an asterisk.

If more than one option is selected, only the last option is considered selected and all
other options are left blank. If the keyboard locks after you type a key, it probably means
that the cursor was not in the middle of the radio button. If this happens, press the Reset
key and try again.

Using Command Buttons
You click a command button to initiate an immediate action, such as carrying out or
canceling a command. The OK and Cancel buttons are common command buttons. They
usually are located along the bottom or on the right side of the dialog box. To click a
command button, move the cursor to the button and then press the Enter key. Or, if the
button has a shortcut key, you can click the button even faster simply by pressing its key.
(A shortcut key is a function key assigned to a button. When a button has a shortcut key,
the key name is usually displayed next to the button name.) In the sample screen below,
the Cancel button’s shortcut key is F3: you can click the button either by pressing F3, or
by moving the cursor to the Cancel button and pressing Enter.

In some dialog boxes, one command button is the default. In addition to the standard
ways to click a button described previously, you can always click the default button by
pressing Enter. On terminals that support color, the default button is the color of the
terminal’s unprotected high intensity field attribute.

 Using the Painter

Maintaining Databases 5-7

The following shows the command buttons at the bottom of the Listbox dialog box:

Using Combo Boxes
When an entry field appears together with a list box, the combination is known as a
combo box. You can place a value into the entry field by selecting it from the list box or
by typing it directly into the entry field.

The following shows the combo box in the Create Field dialog box:

Note that combo boxes that you create in a Winform are similar to drop-down list boxes.

Using the Winform Painter

5-8 Information Builders

Using Drop Boxes
A drop box is an entry field with a down-arrow (v) button. When you click the button, the
Painter displays a list box directly adjacent to the display field (as if the list had dropped
down from the field). When you select a value from the list box, the Painter copies it to
the display field and removes the list box.

The following shows the initial display field in the Create Field dialog box:

After clicking the button, the drop box is displayed:

Supporting Colors
The ability to display colors depends upon your terminal, or if you are using a PC, your
terminal emulation software, and on describing it correctly to Maintain. This is discussed
in Preferences on page 5-22.

Supporting Borders
Winforms can have borders around them. The physical look of these borders is
determined by your terminal or your terminal emulation software. If your terminal is not
capable of generating solid lines, your work may not match some of the examples in this
document. The only difference is in appearance, not functionality. You can adjust the
settings for borders. This is discussed in Preferences on page 5-22.

 Using the Painter

Maintaining Databases 5-9

Files Used by the Winform Painter
The Winform Painter uses the following files:

• A Master File for each data source accessed by the Maintain procedure. The Master
Files required by a Maintain procedure must exist before you begin painting. See the
Describing Data manual for more information about creating and using Master Files.

• A WINFORMS file that contains all of the Maintain procedure’s Winforms.
(Winforms are also known as forms.) The Painter creates this file the first time that
you begin painting the procedure.

• A FOCEXEC file that contains the procedure’s Maintain request. If the FOCEXEC
does not exist when the developer begins painting the procedure, the Painter creates
it. See the Developing Applications manual for more information about FOCEXECs.

Each procedure’s FOCEXEC and WINFORMS files have the same file name (under
CMS) or member name (under MVS). This is the name of the procedure. For example,
the Billing procedure comprises the files BILLING FOCEXEC and BILLING
WINFORMS.

How to Access the Painter
To access the Winform Painter, enter MPAINT at the FOCUS prompt. If you wish you
can specify a particular Maintain procedure to paint:

MPAINT [procedure_name]

If:

• You do not specify a name, the Painter displays the Open Maintain dialog box that
enables you to choose an existing procedure or create a new one. For information
about using this dialog box, see Open on page 5-17.

• The named procedure exists (that is, both its FOCEXEC and WINFORMS files
exist), the Painter displays the procedure’s first Winform in the design screen. You
can edit it or create additional Winforms for the procedure.

• The named procedure does not exist, or only one of its two files exists, the Painter
creates the procedure. If one file exists, the Painter gives you a choice of retaining it
(if it’s a FOCEXEC), replacing it, or canceling the operation. The Painter then
displays the following dialog boxes:

Select Master Files, which enables you to select the Master Files to be associated
with the procedure. For information about using this dialog box, see Select Master on
page 5-21. (This is not displayed if you choose to retain an existing FOCEXEC file.)

Winform Properties, which enables you to specify the properties of the first
Winform. For information about using this dialog box, see Properties on page 5-39.

Using the Winform Painter

5-10 Information Builders

Any information that you enter into the initial dialog boxes you can revise later, if you
wish, using the design screen’s pull-down menus.

Saving and Exiting Your Work
It is a good idea to save your work from time to time. This way, if the machine you are
working on is no longer available, you can pick up later on from your last save point.

To Save the Winform
Move the cursor to the menu bar by pressing the Home key or PF10. Press the Enter key
so you can see the pull-down menu. Select either Save or Save As from the menu by
moving the cursor to the appropriate item and pressing the Enter key. If you select Save,
your keyboard will lock while the file is being saved. When it is unlocked, you can
continue painting the screen if you want. There is also a shortcut key (PF22) for the Save
option. This means that pressing PF22 saves your application. If you select Save As, the
Save As dialog box is displayed.

The Enter new filename entry field will be filled in with the current FOCEXEC name but
you can change it to any name you want. When you have filled in the name you need to
press the Enter key and the file will be saved.

 Using the Design Screen

Maintaining Databases 5-11

Exiting the Winform Painter
There are two ways you can exit from the Winform Painter:

1. Press the Home key or PF10 to move the cursor to the menu bar, press the Enter key
to see the pull-down menu, and then move the cursor to the Exit item.

2. Pressing PF3 exits you from whatever you are doing. This means that if a dialog box
or a pull-down menu is being displayed, the dialog box disappears. If on the other
hand, you are not in the middle of doing something, pressing PF3 exits you from the
Painter. If you have made any changes since the last time you saved the file, you are
prompted to see if you want to save the changes. Move the cursor to the appropriate
button and press the Enter key.

Using the Design Screen
To edit a control on the design screen using a menu option:

1. Select the desired menu option.

2. Position the cursor on the desired control. (Controls, such as buttons and list boxes,
are referred to in the Winform Painter as objects.)

3. Press the Enter key.

To edit a control on the design screen using a function key:

1. Position the cursor on the desired control.

2. Press the desired function key.

The following sections contain more detailed information about the design screen.

Using the Winform Painter

5-12 Information Builders

Parts of the Design Screen
The following is a description of different elements that may be displayed on the screen
when you are painting a Winform.

Menu bar
Winform name

Winform title

Procedure name

Ruler

Ruler

PF key help

Canvas

Pull-down
menu

Menu Bar
Most of the Winform Painter’s features are available from its menu bar. To select a menu
option:

1. Move to the menu bar. Press the Home key or PF10 to position the cursor
immediately before the first menu item.

Alternatively, you can use the arrow keys to move the cursor to the menu bar.

2. Select a menu. You can navigate through the menu bar using the:

• Tab key to cycle through the menus and, if one of the menus is open, through
that menu’s options. Press Tab + Shift to move in the reverse direction.

• PF10 and PF11 keys to move backward and forward, respectively, through the
menus. If the cursor is on the menu bar, it moves to the previous or next menu; if
the cursor is on an open menu, it moves to the previous or next menu and opens
that menu.

• Arrow keys.

Once the cursor is on the desired menu, press the Enter key. Most menus open into a
pull-down menu from which you can select an option. (The Cases and Help menus
each display a dialog box; they do not open into a menu of options.)

 Using the Design Screen

Maintaining Databases 5-13

3. Select a menu option. Position the cursor on the desired option in the pull-down
menu and press the Enter key.

If you wish to close a menu without selecting an option, press PF3 while the cursor is
positioned anywhere in the menu system. (Note that if the cursor is on the Winform
Painter canvas, PF3 closes the Painter.)

Some menu options are shown with a function key (for example, F3) to the right of the
option. This indicates that the function key is a shortcut key that you can press to select
the menu option; when you press the function key, the cursor can be anywhere on the
Winform Painter canvas. Pressing a shortcut key is a quick alternative to navigating
through the menu bar and menu options.

FOCEXEC Name
This is the name of the FOCEXEC from which the Winform is displayed. The name is
supplied by the developer from either the:

• New Maintain dialog box, or the

• Open Maintain dialog box.

Winform Name
Each Maintain procedure can display many different Winforms. All of the Winforms are
stored in one file. This means that there needs to be a way to identify which Winform
should be displayed, modified or created. The name displayed here is the one supplied in
the Winform Name entry field of the Winform Properties dialog box.

Winform Title
The Winform title is for the benefit of the application user, and is optional. The title is
centered in the Winform’s top border; if a Winform has no border, it does not display the
title.

Ruler
Maintain’s Winform Painter provides a ruler both at the top and the bottom of the screen
in order to help the developer line up fields more easily.

Canvas
This is the area on which the developer paints the Winform.

Using the Winform Painter

5-14 Information Builders

PF Key Help
The line below the bottom ruler is reserved for a list of common function keys. If the
Painter needs to instruct the developer to do something, the list is not displayed, and a
message is displayed.

Function Key Reference
The function keys are very useful in helping you to design and edit Winforms inside the
Painter. When you are inside the Painter, the settings for some of the function keys appear
at the bottom of your screen, as shown below:

F1=Help 2=AddLn 3=Exit 4=NewFld 5=Move 6=DelObj 7=Up 8=Down 9=DelLn
12=EdtObj

The following is a brief description of the function keys in the Painter. These function
keys may operate differently in an individual pull-down menu.

Function Key Usage

F1=Help Offers help while inside the Painter.

F2=AddLn Adds a line to a Winform.

F3=Exit Exits the current operation.

F4=NewFld Adds a new field to a Winform.

F5=Move Moves a control within a Winform. (The Winform
Painter refers to controls as objects.)

F6=DelObj Deletes a control from a Winform.

F7=Up Pages up in a Winform.

F8=Down Pages down in a Winform.

F9=DelLn Deletes a line from a Winform.

F10=Go To Main Menu Goes to menu bar.

F11=Switch To Form Allows you to switch into another Winform.

F12=EditObj Edits a control within the Winform.

F13=Text Adds a text control to the Winform.

F14=Grid Adds a grid to the Winform.

F15=Browser Adds a browser to the Winform.

F16=Frame Adds a frame to the Winform.

 File Menu

Maintaining Databases 5-15

F17=Button Adds a button to the Winform.

F18=Check box Adds a check box to the Winform.

F21=Triggers Adds a trigger to the Winform.

F22=Save Saves current work to the WINFORMS file.

F24=Resize Allows you to change the size of a control.

Home=Go To Main Menu Goes to menu bar.

Tab=Move Cursor Moves cursor across the screen, to the next control,
left to right, and then down one line.

Shift + Tab=Move Cursor
Backwards

Moves cursor across the screen, to the next control,
right to left, and then up one line.

File Menu
The File menu enables you to create a new Winform file or to open a different Winform
file. It also enables you to perform other actions within the Winform files. Selecting the
File menu yields:

The File menu offers the following options:

• New enables you to create a new Winform file from an existing Winform.

• Open enables you to open an existing Winform file.

• Save enables you to save the work you have done in your current Winform file.

• Save As enables you to save the work you have done in your current Winform file
under a different name.

Using the Winform Painter

5-16 Information Builders

• Import enables you to import another Winform into your Winform file. Import is
very useful when you need a Winform in your Winform file that is similar to an
already existing Winform.

• Regen enables you to make your Winform file compatible with a FOCUS upgrade.

• Select Master enables you to select all of the data sources you need in a Winform
file.

• Preferences enables you to customize your Painter environment.

• Exit enables you to exit the Painter and return to the FOCUS prompt.

New
To close the Maintain procedure on which you are currently working, and create a new
Maintain procedure, select New:

1. If you have not saved your work on the current procedure, the Painter asks if you
wish to do so before closing it.

2. You are prompted for a file name for the new procedure’s FOCEXEC and
WINFORMS files. Enter the name and click OK.

If the FOCEXEC file or WINFORMS file already exists, you have a choice of
retaining it (if it’s a FOCEXEC), replacing it, or canceling the operation. If you
choose to retain a FOCEXEC file, skip step 3.

3. The Painter displays the Select Master Files dialog box, as described in Select Master
on page 5-21. Select the Master Files associated with this Maintain procedure.

4. The Painter displays the Winform Properties dialog box, as described in Properties
on page 5-39. Specify the properties of the first Winform.

5. The Painter displays the Winform design screen: you can begin working on the new
Maintain procedure.

 File Menu

Maintaining Databases 5-17

Open
To close the Maintain procedure on which you are currently working, and open another
one, select Open. The Painter displays the following dialog box:

This is the same dialog box used by the Painter when you begin a session, as described in
How to Access the Painter on page 5-9. You can do one of the following:

• Enter a procedure name. Type in the name of the Maintain procedure (adding the
word FOCEXEC is optional) in the FOCEXEC Name entry field and click OK.

If you enter the name of a procedure that does not exist (that is, if the procedure’s
FOCEXEC file and/or WINFORMS file does not exist), the Painter creates a new
procedure. If only one file of the pair does not exist, the Painter gives you the option
of retaining the existing file (if it’s a FOCEXEC), replacing the existing file when the
Painter creates the new procedure, or canceling the operation. The Painter then
displays the Select Master Files dialog box (unless you chose to retain an existing
FOCEXEC file), which is described in Select Master on page 5-21; and displays the
Winform Properties dialog box, which is described in Properties on page 5-39.

You can also create a new procedure by clicking New. This is identical to selecting
the File menu’s New option.

Using the Winform Painter

5-18 Information Builders

• Select a procedure name. Select a procedure from the list of FOCEXEC files. If you
wish to reduce the length of the list, you can use search criteria. For example, if you
want to see all FOCEXEC files that start with the letter M, you could enter M*.
When you click OK, the list changes.

• Exit. If you click Cancel you cancel the action and close the dialog box.

Save
To save the work you have done in your current Winform file, select Save or press PF22.

Save As
To save the Winform file you are working with under a different name, select Save As.
The Save As dialog box is displayed:

Enter the new name for the Winform file and press PF4 to save it. You may press PF3 to
cancel the action.

 File Menu

Maintaining Databases 5-19

Import
To bring an existing Winform into your Winform file, select Import. The Import dialog
box is displayed:

Type or specify a FOCEXEC name or move the cursor to the FOCEXEC you wish to
import, then press PF4.

If the FOCEXEC name you specify has a different corresponding Master File, a dialog
box similar to the following is displayed:

You may ignore the warning and proceed, or cancel the request.

Using the Winform Painter

5-20 Information Builders

The Painter now displays a list of the Winforms that you can import:

Select a Winform from the combo box and then click OK.

If the Winform you attempt to import references Maintain functions that do not currently
exist in your procedure, a dialog box similar to the following is displayed. (Maintain
functions—often simply called functions—are referred to in the Winform Painter as
cases.)

In response to the warning you may either choose:

• Create Cases to generate the CASE and ENDCASE commands in your FOCEXEC,
and to bring the triggers into your Winform. After selecting Create Cases you are
returned to the Winform.

• Delete Triggers to delete the triggers that are not system actions. After selecting
Delete Triggers you are returned to the Winform.

• Cancel to cancel the action. After selecting Cancel you are returned to the Winform.

 File Menu

Maintaining Databases 5-21

Regen
Select Regen whenever a new error occurs after a new release of FOCUS is installed at
your site. You should also select Regen whenever changes are made to your data source.
The error may be occurring because of the new install of FOCUS. If the error still occurs
after selecting Regen, consult your local Information Builders representative.

Select Master
Selecting Select Master displays the Select Master Files dialog box, enabling you to
select all of the data sources you wish to access in a Winform file. This is the same dialog
box used by the Painter when you begin a session, as described in How to Access the
Painter on page 5-9.

When the dialog box is first displayed, your cursor is positioned so you can type in the
name of the file. You can either type in the name (and in this case the word MASTER is
optional) or you can select from the list box which is just below the cursor. Once you
have selected or entered a data source, you must press the Enter key to add the data
source to the list. When you do this, the data source name is added to the box to the right
of the list of available Master Files. You may select up to 16 data sources.

Your selections determine which fields are displayed in the Field and Grid dialog boxes.

If you accidentally add a data source you did not want to add, you can remove it from the
list by moving the cursor to the data source name you want removed from the list of the
selected data sources and pressing PF9. If you made a lot of mistakes, you might want to
press PF12 (or select the Reset button) which clears all changes made to this dialog box
since the dialog box was displayed.

Using the Winform Painter

5-22 Information Builders

If this dialog box was displayed while beginning a Painter session for a new procedure,
and the procedure will not access a data source, you do not need to select one. When this
dialog box is displayed, press PF4 or the OK button.

When you have finished adding all of the data sources you want to access, click OK.

Preferences
Selecting Preferences enables you to customize your Painter environment. For all
Preference options, the options selected stay in effect from session to session until you
change them. The following menu is displayed when Preferences is chosen:

Preferences offers the following options:

• Terminal configures the Winform facility for the terminal or terminal emulator that
you are using. If you are having problems displaying Winform elements such as
check boxes, scroll bars, borders, or colors, you can set the Winform facility to a
different terminal or emulator. (Selecting this option is equivalent to issuing the EX
MSETUP command at the FOCUS command prompt.)

• Editor specifies the editor that the Painter invokes when you create or edit Maintain
functions. You can use this option to select an editor other than TED, such as XEDIT
for CMS users.

• Pictorial View enables you to generate comments at the end of each FOCEXEC.

 File Menu

Maintaining Databases 5-23

Terminal
If you select the Terminal option (or if you issue the EX MSETUP command at the
FOCUS command prompt) the following dialog box is displayed:

If Winform elements such as check boxes, scroll bars, borders, and colors are not
displaying correctly on your terminal, you can use the System Setup dialog box to
configure the Winform facility for a different terminal or terminal emulator. You can see
the effect of your selection by looking at the Example Window in the upper right corner
of the screen, which shows what a check box and scroll bar look like using the terminal or
emulator you have selected.

To select your terminal or emulator, place a check mark in the appropriate box and press
the Enter key. When you are finished press PF4. If you wish to cancel what you have
entered, press PF3.

The example window in the upper-right corner of the screen shows how the Painter will
display special characters.

Using the Winform Painter

5-24 Information Builders

In addition, you may choose Custom. If you choose Custom, the Custom character set
dialog box is displayed:

Initially your cursor is on the input area for the left square bracket. Position the cursor on
the row of the character you wish to change. You can type a new value in the character
column, or press PF1 to select from a list of characters. When you change a character, its
decimal and hexadecimal values change automatically.

If you press PF1 the following dialog box is displayed:

To select a value from this form, move your cursor to the appropriate character and press
the Enter key.

If you wish to reset the characters to their original values, click Reset in the Custom
Character Set dialog box. When you are finished customizing the characters, click OK.

 File Menu

Maintaining Databases 5-25

Editor
If you select the Editor option, the Editor Setup dialog box is displayed. From here you
can select TED or—under CMS—specify another editor. (The external editor feature is
not supported under MVS.) The editor you specify will be used when you edit the
Maintain procedure. The dialog box looks like the following:

Press PF4 when you are finished selecting an editor. Press PF3 to cancel whatever you
have entered.

Pictorial View
If you select the Pictorial View option the following dialog box is displayed:

By default the Painter generates four different types of comments at the end of each
FOCEXEC:

Winform Properties Includes information such as Winform name, title, and
position.

Winform Layout Displays how the Winform will look when it is executed.

Trigger Table Displays PF key settings and their actions.

Field/Variable Bindings Displays which stacks are being used in fields and grids.

If you do not want the Painter to generate comments, you can turn the feature off by
clearing the appropriate check box.

Using the Winform Painter

5-26 Information Builders

Exit
Selecting Exit closes the Winform Painter and returns you to the FOCUS prompt. If you
have made changes to the Winform file and have not saved them, you are prompted to
save the changes.

Edit Menu
The Edit menu is used for customizing controls in the Winform. (Controls are called
objects by the Winform Painter.) You may edit, move, copy, resize or delete a control.
Selecting Edit yields:

The Edit menu offers the following options:

• Edit Object enables you to edit a control in the Winform.

• Move enables you to move a control to another position in the Winform.

• Copy enables you to copy a control to another position in the Winform.

• Resize enables you to change the dimensions of a control in the Winform.

• Delete enables you to delete a control in the Winform.

 Edit Menu

Maintaining Databases 5-27

Edit Object
The following controls may be edited. (Controls are called objects by the Winform
Painter.)

• Fields

• Text

• Grids

• Browsers

• Buttons

• Check boxes

• List boxes

• Combo boxes

• Radio button groups

To edit a control in the Winform, either:

• Place the cursor on the control and press PF12.

• Select Edit Object from the Edit menu. The Painter prompts you to point to the
control you wish to edit: do so and press the Enter key. If you do not wish to edit a
control at this point, you may press PF3 to cancel the action.

Using the Winform Painter

5-28 Information Builders

Editing a Field
Once you have indicated which field you wish to edit—for example, CUSTID—the
Painter displays the Change Field dialog box.

The Change Field dialog box displays a description of the field. You may edit any of the
field’s attributes. For detailed information about the Change Field dialog box, see Field
on page 5-52.

Note that on page 5-52 the dialog box is titled Create Field because it is being accessed in
create mode. The functionality of the dialog box is otherwise identical.

Editing Text
Once you have indicated a text control that you wish to edit, for example the field label
“Customer ID”, the Painter displays the Text dialog box:

In the Text dialog box you can edit the control’s text and change its name. For further
details about the Text dialog box see Text on page 5-62.

 Edit Menu

Maintaining Databases 5-29

Editing a Grid
Once you have indicated a grid that you wish to edit, the Painter displays the Grid dialog
box:

You can change anything in the grid including the source and destination stacks, columns,
and column attributes.

When you are finished working on the Grid dialog box, press PF4 to save the information
or PF3 to cancel the action. For detailed information about grids see Grid on page 5-63.

Editing a Browser
A browser is a composite of text, fields, and buttons: you can edit each of these controls
individually. For more information about the controls that comprise the browser, see
Browser on page 5-66.

Using the Winform Painter

5-30 Information Builders

Editing a Button
To edit a button, position the cursor on the button and press PF12. The Painter displays
the following dialog box:

The Button dialog box is discussed in detail in Button on page 5-69.

Editing a Check Box
If the control you wish to edit is a check box:

1. Select Edit Object.

2. Place the cursor on the check box you wish to edit and press the Enter key.

3. The Check Box dialog box is displayed:

You may make whatever changes are needed. For more information on check boxes,
see Checkbox on page 5-71.

 Edit Menu

Maintaining Databases 5-31

Editing a List Box
If the control you wish to edit is a list box:

1. Select Edit Object.

2. Place the cursor on the list box you wish to edit and press the Enter key.

3. The Listbox dialog box is displayed:

You may make whatever changes are needed. For more information on list boxes, see
Listbox on page 5-73.

Using the Winform Painter

5-32 Information Builders

Editing a Combo Box
If the control you wish to edit is a combo box:

1. Select Edit Object.

2. Place the cursor on the combo box you wish to edit and press the Enter key.

3. The Combobox dialog box is displayed:

You may make whatever changes are needed. For more information on combo boxes, see
Combobox on page 5-76.

 Edit Menu

Maintaining Databases 5-33

Editing a Radio Button Group
If the control you wish to edit is a radio button group:

1. Select Edit Object.

2. Place the cursor on the radio button group you wish to edit and press the Enter key.

3. The Radio Group dialog box is displayed.

You may make whatever changes are needed. For more information on radio button
groups, see Radio Group on page 5-79.

Move
To reposition a control in the Winform:

1. Select Move or press PF5.

2. You are prompted to identify the control you wish to move.

Position the cursor at the control you wish to move and press the Enter key.

3. You are prompted to point where you want to move the control.

Position the cursor where you want to move the control and press the Enter key.

The control and its contents move to the new area.

Using the Winform Painter

5-34 Information Builders

Copy
To copy a control to another area in the Winform:

1. Select Copy.

2. You are prompted to point to the control you wish to copy.

Position the cursor at the control you wish to copy and press the Enter key.

3. You are prompted to point where you want to copy the control.

Position the cursor where you want to copy the control and press the Enter key.

The control is copied to the new area selected in the Winform.

Resize
To resize a grid, frame, or button:

1. Select Resize or press PF24.

2. You are prompted to point to the control you wish to resize. Position the cursor on
the desired control and press the Enter key.

3. The control can be enlarged by moving a corner outward; it can be made smaller by
moving a corner inward. You can move only the active corner, which by default is
the lower right.

If the control has a border, you can make a different corner active by pressing PF10
or PF11. The Painter always highlights the border and identifies the active corner
with an asterisk.

Resize the control by selecting a new location for the active corner: move the cursor
to the desired position and press the Enter key. If the new position is not valid—for
example, if it will overlap with another control—the Painter ignores your choice,
giving you the opportunity to select a new position. Otherwise it resizes the control as
you have specified.

Delete
To delete a control in the Winform, either:

• Position the cursor on the control to be deleted and press PF6.

• Select Delete from the Edit menu. You are prompted to point to the control you wish
to delete: position the cursor on the desired control and press the Enter key.

The control is deleted from the Winform.

 Forms Menu

Maintaining Databases 5-35

Forms Menu
The Forms menu enables you to create and edit Winforms. You can edit the Winform you
are currently working on, or you can create new Winforms in that same file. Selecting the
Forms menu yields:

The Forms menu offers the following options:

• New enables you to create a new Winform while in an existing Winform.

• Switch To enables you to switch from one Winform to another.

• Copy To enables you to copy the current Winform to another Winform.

• Rename enables you to rename the current Winform.

• Delete enables you to delete the current Winform.

• Properties enables you to enter information about the Winform.

• Triggers enables you to update, add, or delete the Winform’s form-level triggers.

• Actions enables you to update, add, or delete the Winform’s system actions.

• Size enables you to resize the current Winform.

• Zoom enables you to return a Winform to full size.

• Move enables you to move the Winform to a different position on your screen.

Using the Winform Painter

5-36 Information Builders

New
Select New to create a new Winform while in an existing Winform.

Selecting New displays the Winform Properties dialog box shown in Properties on page
5-39.

When you have finished entering the properties information, to:

• Confirm what you have entered, press PF4.

• Customize the colors of your Winform, press PF5. The Painter displays the Set
Colors dialog box, which is described in Field on page 5-52.

• Cancel the transaction, press PF3.

Switch To
Select Switch To in order to change from one Winform to another within a Winform file.
You may also switch from one Winform to another by pressing PF11 while in a Winform.

Selecting Switch To yields the Switch To dialog box which contains a list of all the
Winforms in your current Winform file:

Enter the name of the Winform you would like to switch to and press PF4, or place the
cursor under your selected Winform, and press the Enter key. This displays your selected
Winform. If you place the cursor in the upper section of the box in the previous screen,
and press PF4 or Enter, you can create a new Winform. Press PF3 to exit the Switch To
screen.

 Forms Menu

Maintaining Databases 5-37

Copy To
Select Copy To to copy one Winform into another Winform within the same Winform
file. Selecting Copy To generates the Copy dialog box:

The name of the current Winform is automatically supplied. Enter the name of the
Winform you wish to copy an existing Winform to. Press the Enter key or PF4 to copy the
Winform. Press PF3 if you wish to cancel the action.

If you press PF4 or Enter, and the Winform already exists, the following dialog box is
displayed:

If you wish to delete the Winform you are trying to copy to and replace it with the
Winform you entered in the Copy dialog box, place the cursor under Delete and press the
Enter key. If you wish to cancel the action, place the cursor under Cancel and press the
Enter key.

Using the Winform Painter

5-38 Information Builders

Rename
Select Rename to change the name of a Winform. Selecting Rename displays the
Rename dialog box:

The name of the current Winform is automatically supplied. Enter the new name for the
Winform and press the Enter key. Pressing PF3 cancels the action. If the name already
exists, a dialog box similar to the warning dialog box in Copy To on page 5-37 is
displayed.

Delete
Select Delete to erase a Winform. Selecting Delete displays the Delete dialog box:

Place the cursor under OK and press the Enter key if you wish to delete the Winform. If
you select OK to delete the Winform, the Switch To menu appears minus the name of the
current Winform. If you do not wish to delete the Winform, place the cursor under Cancel
and press the Enter key.

 Forms Menu

Maintaining Databases 5-39

Properties
Select Properties to enter information about the Winform. The following is the Winform
Properties dialog box before information is entered into it:

The following shows the Winform Properties dialog box after the stkcust and stkrent
stacks have been specified as source and destination stacks:

Using the Winform Painter

5-40 Information Builders

Winform Title
The Winform title is text that will be displayed on the screen in the Winform’s title area,
centered at the top of the Winform, if a Winform has a border. If a Winform does not
have a border the title will not be displayed. Supplying a title is optional.

Winform Name
Each FOCEXEC can display many different forms, but all of the forms are stored in one
file. Therefore, in order to be able to paint or display a specific Winform, all of the forms
must be named within the file. In order to coordinate the FOCEXEC and the Winforms,
both the FOCEXEC logic and the Winform information must have the same file name,
but the file type (or ddname) must be either FOCEXEC for the processing logic or
Winforms for the screen information. The Winform name is required.

In this dialog box, the Winform name is the name that you will use in the FOCEXEC to
reference the Winform you are building now. For instance, if you supply a name of
ShowCust for the Winform, in your FOCEXEC you could display the Winform by
supplying the following line:

WINFORM SHOW ShowCust

Pop-up
By default, Pop-up is checked which means that after the user exits the form, the form
will no longer be displayed on the screen. If Pop-up is not checked, when the user exits
the form, it is still displayed to the user, but it is not active. This is true as long as the user
is still viewing a Winform. If you invoke a function in Winform1 that displays Winform2,
and you exit Winform2, one of the following happens:

• If Pop-up is checked Winform2 is no longer displayed on the screen.

• If Pop-up is not checked, Winform2 is still displayed on the screen but it is not
active. This means that you cannot perform any action on that Winform.

Border
Border is used to put a border around a Winform. It is optional, but must be selected if
you want to display a Winform title or Control box menu. The default is set to on.

Stacks
A stack is a simple table: every stack column corresponds to a data source or calculated
field, and every stack row corresponds to a data source record (a path instance). The stack
itself represents a data source path. You can populate a stack by retrieving data from a
data source, calculating values, or copying all or part of an existing stack.

The Current Area is Maintain’s unnamed default stack, and has one row.

 Forms Menu

Maintaining Databases 5-41

Winforms do not display data directly from a data source or directly update a data source:
they display data from, and write data to, stacks or the Current Area. These are known as
the source and destination stacks. For each Winform, you can use as many source and
destination stacks as you wish.

You can select any of the stacks in the Stacks combo box as a source or destination stack
for every field, browser, and grid that you create in all the Winforms in the Winform file.
Simply select the desired stack, and then click the appropriate Add button to the right of
the list. Depending upon the button you clicked, the stack name is copied into the Source
Stacks and/or Destination Stacks drop boxes at the right of the dialog box.

You must select the same stacks for both source and destination.

Source Stacks
For each stack in the Source Stacks list, you can check the Start at FocIndex check box,
which determines the current row—that is, the current position within the stack—when
the Winform is opened. If you design the Winform:

• With the Start at FocIndex attribute, when the Winform is opened the stack starts out
with the same position it had just prior to the Winform being opened. This ensures
that the stack’s position is consistent inside and outside the Winform.

Maintain accomplishes this by using the system variable FocIndex to determine the
current row. This enables you to retain the stack’s position when you open the
Winform, and makes it possible for you to dynamically manipulate the current row by
assigning a value to FocIndex.

• Without the Start at FocIndex attribute, when the Winform is opened the stack’s
current position is the first row, regardless of where it was prior to the Winform.

If you do not specify any source stacks, the source defaults to the Current Area.

Using the Winform Painter

5-42 Information Builders

Destination Stacks
For each stack in the Destination Stacks drop box, you can also check the Refresh to
FocIndex check box, which controls the Winform’s behavior when someone invokes a
trigger that interrupts—and later returns control to—the Winform. When control returns
to the Winform, it refreshes the data that it was displaying in case the stack had been
updated in the interim. If you design the Winform:

• With the Refresh to FocIndex attribute, when the Winform refreshes its data from the
stack it will also refresh its position within the stack. This ensures that the Winform
reflects the most recent changes not only to the stack’s data, but also to its position. It
accomplishes this using the system variable FocIndex to determine the current stack
row.

For example, if a trigger manipulates the stack and changes the current position—say,
if the trigger calls a second Winform that also displays that stack, and a user moves to
another row—Maintain retains that new stack position when you return to the
original Winform. This also makes it possible for you to dynamically manipulate the
current row by assigning a value to FocIndex within the intervening trigger.

• Without the Refresh to FocIndex attribute, the current row is unchanged by anything
that happened during the trigger.

If you do not specify any destination stacks, the destination defaults to the Current Area.

Stack Buttons
There are four buttons in the Winform Properties dialog box that allow you to perform
actions on the stacks in the Winform.

• Add to Both adds the selected stack to both the Source Stacks and Destination
Stacks lists. This is the default button.

• Add to Source adds the selected stack to the Source Stacks list.

• Add to Dest adds the selected stack to the Destination Stacks list.

• Delete removes the selected stack from the current list box, that is, from the list box
in which the cursor is located.

 Forms Menu

Maintaining Databases 5-43

Colors
You can choose a background color for a Winform by selecting Colors. This displays the
Background Color dialog box:

Check the desired background color and click OK, or click Cancel to exit the Background
Color dialog box without saving any changes.

You can also change the background color dynamically at run time by issuing the
WINFORM SET command in the Maintain procedure, as described in Chapter 7,
Command Reference.

Using the Winform Painter

5-44 Information Builders

Using Triggers, Button Short Cuts, and System Actions
Maintain’s event-driven processing is based on triggers. Triggers are links between events
and actions. An event is something that an application end user does, such as pressing a
function key; an action is something that the application executes, such as a function.
(Functions are called cases by the Winform Painter.)

For example, you might define a trigger that links the PF7 key to the UpdateSalary
function. At run time, each time an application end user presses PF7, Maintain invokes
UpdateSalary. In this case, you have defined pressing the PF7 key as the trigger event,
and you have defined the UpdateSalary function as the trigger action. (Trigger actions are
also known as event handlers.)

There are several kinds of triggers:

• Form-level triggers, which are triggered when an end user presses the specified
function key when the cursor is anywhere on the form (on any spot not occupied by a
control). You can assign 25 form-level triggers to each form (one trigger each for
function keys PF1 through PF24, and one trigger for the Enter key).

• Control-level triggers, which are triggered when an end user presses the specified
function key when the cursor is on the specified control, such as a particular list box.
You can assign 25 control-level triggers to each control (one trigger each for function
keys PF1 through PF24, and one trigger for the Enter key). The only exceptions are
frames (which do not take any kind of trigger), and buttons (which take button
shortcuts).

• Button shortcuts. Buttons do not have control-level triggers; instead, you can assign
each button one shortcut key. You can assign any function key as a button’s shortcut
key. Like a control-level trigger, it is assigned to a single control (that is, to the
button). Like a form-level trigger, it is active everywhere on the form (on any spot
not occupied by a control, other than the button itself).

• System actions, which are similar to form-level triggers, but instead of invoking
functions, they invoke special system-defined actions that do things like close the
current form or exit the current procedure. You can assign 25 system actions to each
form (one system action each for function keys PF1 through PF24, and one system
action for the Enter key).

 Forms Menu

Maintaining Databases 5-45

It is possible to assign the same key to several triggers and a system action. What would
happen if an application end user pressed that key? What action(s) would the key
execute? That would be determined by the general order of precedence for resolving a
key’s assignments: control-level trigger, then form-level trigger or button shortcut, then
system action. When an application end user presses a function key, if:

1. The cursor is on a control, and one of the control’s triggers has been assigned to that
key, that trigger’s Maintain function is performed. (Maintain functions—usually
simply called functions—are referred to in the Winform Painter as cases.)

If a system action has also been assigned to that key, the system action is performed
immediately following the trigger’s function. (If the trigger function closes the
Winform, the system action is not performed.)

2. The cursor is not on a control—or it is on a control for which no trigger has been
assigned to that key—but a form-level trigger or a button shortcut has been assigned
to that key, the form-level trigger or button trigger’s function is performed.

If a system action has also been assigned to that key, the system action is performed
immediately following the trigger’s function. (If the trigger function closes the
Winform, the system action is not performed.)

3. No form-level triggers have been assigned to that key, and no control-level triggers
for that key are in effect, but a system action has been assigned to that key, the
system action is performed.

Example Trigger and System Action Precedence
Imagine that, in a new application, you assign the UpdateEmployee function to the
form-level PF5 trigger. At run time, if the application end user presses PF5 while the
cursor is on the Winform background, Maintain will invoke UpdateEmployee.

Imagine that you also assign the ValidateCheckBox function to a check box’s PF5 trigger.
Furthermore, you assign the Close action to the PF5 system action. At run time, if the
application end user presses PF5 while the cursor is on the:

• Check box, Maintain will invoke the ValidateCheckBox function. After control
returns from ValidateCheckBox, Maintain will execute the Close system action,
which closes the Winform.

• Winform background, Maintain will invoke the UpdateEmployee function. After
control returns from UpdateEmployee, Maintain will execute the Close system
action, which closes the Winform.

Using the Winform Painter

5-46 Information Builders

Triggers
Select Triggers to assign or change form-level triggers. (For general information about
triggers, and about the order of precedence between form-level triggers, control-level
triggers, button shortcut keys, and system actions, see Using Triggers, Button Short Cuts,
and System Actions on page 5-44.) Selecting Triggers displays the Triggers dialog box:

All of the function keys are displayed with their corresponding Maintain functions.
(Maintain functions—often simply called functions—are referred to in the Winform
Painter as cases.) You may change, add, or delete functions. When you are done, press
PF4. Press PF3 to cancel the transaction.

To view the available functions, place the cursor in the shaded Trigger column, on the
row of the desired PF key, and press PF5. This displays the Available Cases dialog box:

Select a function from the list and press PF4. This assigns the function to the PF key you
specified in the Triggers dialog box. Use PF8 to scroll forwards and PF7 to scroll
backwards in the Available Cases dialog box. Press PF3 to cancel the action and return to
the Triggers dialog box.

 Forms Menu

Maintaining Databases 5-47

Actions
Select Actions to assign or change system actions. (For general information about system
actions, and about the order of precedence between form-level triggers, control-level
triggers, button shortcut keys, and system actions, see Using Triggers, Button Short Cuts,
and System Actions on page 5-44.) Selecting Actions displays the System Actions dialog
box:

All of the function keys are displayed with their corresponding system actions. Some
system actions are assigned by default. You may change, add, or delete system actions.
When you are done, press PF4. Press PF3 to cancel the transaction.

To view the available system actions, place the cursor in the shaded Action column, on
the row of the desired PF key, and press PF5. This displays the Available Cases dialog
box, which lists all system actions:

Select a system action from the list and press PF4. This assigns the system action to the
PF key you specified in the Systems Actions dialog box. Use PF8 to scroll forwards and
PF7 to scroll backwards in the Available Cases dialog box. Press PF3 if you want to close
it and return to the Systems Actions dialog box without assigning a system action.

Using the Winform Painter

5-48 Information Builders

Reference Available System Actions
You can assign the following system actions to system action keys:

• Close, which closes the currently active Winform and returns control to the function
that had opened it.

• Accept, which when the cursor is on a field for which Accept data validation
information is available, displays a list of values from which the end user can select.
For more information about making Accept data validation information available for
a field, see Accepts on page 5-56.

• Exit, which terminates the current Maintain procedure; if this procedure had been
called by another procedure, it returns control to the calling procedure.

• Return, which is a synonym for the Close system action.

• FieldLeft, which when the cursor is on a field or grid cell in which the data is longer
than the width of the field or cell, scrolls the data to the left.

• FieldRight, which when the cursor is on a field or grid cell in which the data is
longer than the width of the field or cell, scrolls the data to the right.

• Left, which when the cursor is on a grid, scrolls the grid one column to the left.

• Right, which when the cursor is on a grid, scrolls the grid one column to the right.

• Forward, which when the cursor is on a grid, scrolls down the grid’s columns the
full height of the grid.

• Backward, which when the cursor is on a grid, scrolls up the grid’s columns the full
height of the grid.

• OnTop, which if other Winforms are displayed on top of the current Winform,
moves the current Winform to the top of the pile of Winforms.

• Close_Winform, which is a synonym for the Close system action.

 Forms Menu

Maintaining Databases 5-49

Size
Select Size to reduce or enlarge the size of the Winform. Selecting Size generates a
screen similar to the following:

A solid border is generated around the Winform. The cursor is positioned at the bottom
right-hand corner of the Winform. To reduce or enlarge the Winform move the cursor to
where you would like the new bottom right-hand corner to be and press the Enter key. If,
while changing the size of the Winform, you eliminate a control, the following dialog box
is displayed:

If you do not wish to remove the control from the Winform, place the cursor under
Cancel and press the Enter key. The Winform is returned to its original size. If you want
to accept the new size of the Winform, place the cursor under OK and press the Enter key.
The Winform is saved as it appears and the controls are deleted.

Using the Winform Painter

5-50 Information Builders

Zoom
Select Zoom to restore a Winform to full-size. Use this option if the Winform has been
previously reduced with the Size option.

Move
Select Move to move the Winform to a different position on your screen. This can be
useful if you wish to clear part of the screen for additional controls such as a button.
Selecting Move generates a screen similar to the following:

A solid border is generated around the Winform, and the cursor is positioned at the upper
left-hand corner of the Winform. Move the cursor to where you would like the new upper
left-hand corner to be and press the Enter key. The Winform is shifted to its new position.

 Objects Menu

Maintaining Databases 5-51

Objects Menu
The Objects menu enables you to create controls for your Winform. (Controls are called
objects by the Winform Painter.) Selecting the Objects menu yields:

The Objects menu offers the following options:

• Field enables you to display a field in the Winform.

• Text enables you to add text to a Winform.

• Grid enables you to place a grid in the Winform.

• Browser enables you to place a browser in the Winform.

• Frame enables you to place a frame around controls in the Winform.

• Button enables you to place a button in the Winform.

• Checkbox enables you to place a check box in the Winform.

• Listbox enables you to place a list box in the Winform.

• Combobox enables you to place a combo box in the Winform.

• Radio Group enables you to place a radio button group in the Winform.

• Gen Segment enables you to place all of a segment’s fields into the Winform at one
time.

• Gen Master enables you to place all of a data source’s fields into the Winform at
one time.

Using the Winform Painter

5-52 Information Builders

Field
An entry field enables a user to enter and edit a simple variable. When a Winform is
displayed, the entry field’s initial value comes from the current row (indicated by
FocIndex) of the specified stack column, from a default value, or from the Current Area.
When the Winform is closed the field’s value is written to the current row of the specified
stack.

For general information about how an application end user would manipulate an entry
field, see Using Entry Fields on page 5-3.

To place a field in a Winform:

1. Select Field from the Objects menu, or press PF4.

You are prompted to point to where you would like to place the field in the Winform.

2. Move the cursor to the position where you wish to display the field and press the
Enter key, or press PF3 to cancel the action.

The Create Field dialog box is displayed:

When you are done making your selections in the Create Field dialog box you may either:

• Press PF4 to create the field and return to the Winform Painter.

• Press PF3 to cancel field creation and return to the Winform Painter.

 Objects Menu

Maintaining Databases 5-53

Field
The Field combo box lists all the fields in the Master Files that are used by the current
procedure. Select a field to associate with this entry field in the Winform, or type the
name of a user-defined variable (that is, a variable created with the COMPUTE or
DECLARE commands) to associate with this entry field.

If you specify a user-defined variable, the procedure must declare it before displaying the
Winform.

Source
For the source of the field’s data when the Winform is first displayed, you may select:

• Default. If you check Default you must enter a value in the Default value box.
Default is not supported in the current release.

• Current Area.

• Stack. You may use any stack contained in the Source Stack drop box. To view the
available stacks, position the cursor in the Source Stack entry field and press the
Enter key. The Source Stack drop box is displayed:

Position the cursor on the stack you wish to use and press the Enter key. You are
returned to the Create Field dialog box with your selection displayed in the Source
Stack dialog box.

Using the Winform Painter

5-54 Information Builders

Destination
You may use any stacks contained in the Destination Stack drop box. To view the stacks
that are available to you, place the cursor in the Destination Stack entry field and press
the Enter key. A drop box similar to the Source Stack list box is displayed, containing the
stacks available to you. Position the cursor over the stack you wish to use and press the
Enter key. You are returned to the Create Field dialog box with your selection displayed
in the Destination Stack drop box.

You must specify the same stack for both source and destination.

Object Name
Provide a name for the field, or accept the default name. Names enable you to refer to
controls within your procedure, so that you can dynamically manipulate them in response
to run-time events.

Default Value
Enter a default value if you wish to use the same value in many instances. For example, if
your data source contains a field named City, and City’s most frequent value will be
“New York City”, you may wish to specify this as the default value. If you specify a
default value you must check Default as your source.

The Winform Painter does not support default values for fields in the current release.

 Objects Menu

Maintaining Databases 5-55

Length
Length specifies the display length of the field in the Winform. It defaults to the length
needed to display the field’s data and display options as defined in the Master File or in
the COMPUTE or DECLARE command.

• Numeric and date fields. When an application user enters data into a field, he or she
can use any display options (such as separators and translation in date fields, or
commas in double precision floating point fields) that are valid for that field’s data
type. Once the user presses Enter or a function key, the Winform displays that data
using only the display options that are actually defined for the field in the Master File
or in the COMPUTE or DECLARE command. If you specify a length that is shorter
than the default, the Winform does not show any display options.

The display length must accommodate the largest value to be displayed or entered.
To ensure this, we recommend that you specify a length at least as great as the length
of the data as defined in the Master File or in the COMPUTE or DECLARE
command. You can specify a greater length if you wish to accommodate display
options.

• Alphanumeric fields. If you specify a display length that is less than the default, and
a value exceeds the display length, the application user can enter or display the entire
value by scrolling the field using the LEFT and RIGHT system actions (which are the
default settings of the PF10 and PF11 keys respectively). This can be helpful if you
need to keep Winform fields short in order to conserve screen space.

As elsewhere in FOCUS, display options are significant only when displaying or printing
a value. When Maintain writes a field from a Winform to a stack or the Current Area, it
writes the data only, not the display options.

Prompt
Prompt enables you to display a field with more descriptive text if it is deemed necessary.
For example, if you wish to display a field called Partno in a more meaningful way you
might use Part Number. Prompt is checked by default.

Uppercase
Check Uppercase if you wish to display a field in uppercase. If Uppercase is not
checked, the field displays as it was originally entered, whether uppercase, lowercase or
mixed case. Uppercase is checked as the default.

Protected
Check Protected if you want to deny the application user the ability to change the value of
a field. This is useful for protecting key fields. Protected defaults to not checked.

Using the Winform Painter

5-56 Information Builders

Accepts
The Accepts button allows you to specify data validation values for the current field. At
run time, if an application end user attempts to enter invalid data into the field on a
Winform, the invalid data is not accepted, and the field’s valid values are displayed. You
can specify the valid values in:

• The field’s ACCEPTS attribute in the Master File. At run time, values specified here
take precedence over values specified in the Winform Painter.

The existence of an ACCEPTS attribute automatically enables data validation for that
field in a Winform; you do not need to set anything in the Accept List dialog box.

• The Winform Painter’s Accept List dialog box. At run time, values specified here are
ignored if values exist for the field in an ACCEPT attribute in the Master File.

To activate data validation for the field using values specified in the Winform
Painter, ensure that the field has no ACCEPTS attribute in the Master File, select the
Stack List radio button in the Accept List dialog, and select one or both of the On
Error and On PFKey check boxes in the Accept List dialog.

Because data validation values in the Master File take precedence over data validation
values specified in the Winform Painter, if values for a field already exist in the Master
File, the Winform Painter prevents you from specifying values for that field in the Painter.

 Objects Menu

Maintaining Databases 5-57

To edit data validation information in the Winform Painter for the current field, press
PF6. The Accept List dialog box is displayed:

You can edit the following data validation properties:

• On Error. By checking On Error when Stack List is selected, if an application end
user enters invalid data, Maintain displays a list of valid values from which the end
user can select.

• On PFKey. By checking On PFKey when Stack List is selected, if an application end
user presses a predefined function key while the cursor is on this field, Maintain
displays a list of valid values from which the end user can select. PF1 is the default
key for the Accepts system action; you can switch to a different function key using
the Actions option of the Forms menu.

• Validation status. The following radio buttons control the field’s data validation
status:

• Off. Off should be checked if you do not wish to assign data validation tests in
the Winform for this field. You may still use Accepts in the Master File.

• Stack list. If you check Stack List, and On Error, On PFKey, or both are
checked, and the application user enters an invalid value, a list of valid entries is
displayed. When you check Stack List, you must also enter a stack name and
display column that contains the acceptable values.

• Range. Range is used to define an acceptable range of values. To the right of
Lower, type the lowest value of the range. To the right of Upper, type the highest
value of the range. You may use numbers or letters. Range is not supported in
the current release.

Using the Winform Painter

5-58 Information Builders

• Stack name. If you are using a list to define the valid values, type the name of the
stack that contains these values.

If the valid values are meaningful to the application user, you can identify a single
stack column to contain the list of values and to display that same list on the screen.
However, if the values need to be explained, you can use one column to contain the
list of valid values and another column to contain a description of each value:
Maintain displays only the description column on the screen, and when the
application user picks an item in the description column, Maintain writes the
corresponding item from the valid data column to the field.

For example, in an invoice application you might use the ValidData stack to contain a
list of valid product codes. You can keep the product codes themselves in the
ValidData.Code column, and the product name corresponding to each code in the
ValidData.Name column. When a user presses PF1 to see a list of valid values, and
then chooses “Hammer” from the ValidData.Name column, Maintain copies the
Hammer product code—11375—from the ValidData.Code column to the field.

• Value column. If you specify a stack to contain a list of valid values, you must
supply the name of the column that you want the application user to see displayed on
the screen.

• Display column. If you specify a stack to contain a list of valid values, and you are
using two columns—one to provide the actual values, and the other to display the
descriptions—then supply the name of the display column here. Otherwise, if you
wish to use one column to both contain the values and display them, leave this field
blank and it defaults to the column name you supply for Value column.

 Objects Menu

Maintaining Databases 5-59

Triggers
You may assign up to twenty-five control-level triggers to each control. (For general
information about triggers, and about the order of precedence between form-level
triggers, control-level triggers, button shortcut keys, and system actions, see Using
Triggers, Button Short Cuts, and System Actions on page 5-44.)

To assign a control-level trigger when creating or editing a control, press PF12. The
Triggers dialog box is displayed:

All of the function keys are displayed with their corresponding Maintain functions.
(Maintain functions—often simply called functions—are referred to in the Winform
Painter as cases.) You may change, add, or delete functions. When you are done, press
PF4. Press PF3 to cancel the transaction.

Using the Winform Painter

5-60 Information Builders

To view the available functions, place the cursor in the shaded Trigger column, on the
row of the desired PF key, and press PF5. This displays the Available Cases dialog box:

Select a function from the list and press PF4. This assigns the function to the PF key you
specified in the Triggers dialog box. Use PF8 to scroll forwards and PF7 to scroll
backwards in the Available Cases dialog box. Press PF3 to cancel the action and return to
the Triggers dialog box.

 Objects Menu

Maintaining Databases 5-61

Color
Color displays the Set Colors dialog box, which allows you to change the color of the
field:

In the Set Colors dialog box, you may change the color, attributes, and extended attributes
of the field. The current settings are indicated with asterisks. Note that you can also
change the color of a Winform control dynamically at run time by issuing the WINFORM
SET command from the Maintain procedure, as described in Chapter 7, Command
Reference.

In the Color radio button group, you may change the color of the fields in your Winform,
by marking the appropriate color. It is initially set to the default color. The color is
dependent on your hardware and terminal emulation. Your terminal must be capable of
displaying color to use this feature.

In the Attr radio button group, you may:

• Bold a field or its text by marking Highlight.

• Select Nondisplay to hide the information you are entering. This feature can be used
as a security measure.

In the Ext Attr radio button group, you may:

• Select Blink to have either the selected field or its text blink.

• Select Reverse to reverse the color background of the selected field or its text.

• Select Underline to underline the selected field or its text.

In order to use color, attributes or extended attributes your terminal or terminal emulator
software must support it. When you are finished, press PF4. Press PF3 if you wish to
cancel what you have entered.

Using the Winform Painter

5-62 Information Builders

Text
To place text in a Winform:

1. Select Text.

You are prompted to point to where you would like to place the text in the Winform.

2. Move the cursor to the position where you wish to display the field and press the
Enter key or PF4, or press PF3 to cancel the action.

If you choose to display the field, the Text dialog box is displayed:

Enter the text as you would like it to be displayed.

Object Name
Provide a name for the text, or accept the default name, so that you can refer to the text
within your procedure. Text1 is the initial default.

Triggers
Press PF12 if you wish to assign control-level triggers to the text. For detailed
information about the Triggers dialog box, see Triggers on page 5-59.

Color
Press PF5 if you wish to edit the color of the text. Pressing PF5 yields the Set Colors
dialog box. For detailed information about the Set Colors dialog box see Color on page
5-61.

 Objects Menu

Maintaining Databases 5-63

Grid
A grid is a stack editor that enables you to display and edit selected stack columns. To
place a grid in a Winform:

1. Select Grid.

You are prompted to point to the top left corner of the grid and press the Enter key,
or press PF3 to cancel.

Move the cursor to the position where you wish the upper left-hand corner of the grid
to be displayed, and press the Enter key.

2. You are prompted to point to the bottom right corner of the grid.

Move the cursor to the position where you wish the lower right-hand corner of the
grid to be displayed, and press the Enter key. The Grid dialog box is displayed:

If the grid you are trying to put in the Winform covers some of the same space as
another control, the following is displayed:

You must change the position of your grid so that it does not overlap with other
Winform controls. Press Enter and you are returned to the prompt for the lower
right-hand corner of the grid. When a proper place to put the grid is chosen, the Grid
dialog box is displayed.

When you are finished working on the Grid dialog box, press PF4 to save the
information or PF3 to cancel the action.

Using the Winform Painter

5-64 Information Builders

Grid Columns
The combo box in the left part of the Grid dialog box displays the fields in the Master
File. As you add fields to the grid, another list box is created below Field in the Grid
dialog box. The length of the field comes from the Master File and may be changed. Row
Number allows you to see the row in the stack that is visible to the user. It is a good idea
to always include it. You may not change the value of Row Number.

Add
Select Add to add columns from the source stack to a grid.

In order to add a field to the grid, you can place the cursor under the name of a field in the
left combo box and press the Enter key. You may change the length of the field in the grid
by changing it in the length column.

Edit
Select Edit to edit the column name and to specify other column attributes of a field that is
currently displayed in the grid. To edit a column name, press PF5. The Edit Column
dialog box is displayed:

The Edit Column dialog box shows the column name last selected or edited in the grid, in
this case MovieCode. You may edit the following column properties:

• Title. You can edit the column’s title to another title of your choosing.

• Length. You can edit the field’s length (that is, the column’s width) by placing the
cursor at the number following Length and entering the new length. For further
details concerning column width, see Field on page 5-52.

• Uppercase. You can make the column’s contents uppercase by checking Uppercase.
The default is mixed case.

 Objects Menu

Maintaining Databases 5-65

• Protected. You can protect the column from being edited by checking Protected.
The default is unprotected. This feature should be used with key fields to prevent a
key field from being updated.

• Accepts. You can specify a data validation test by pressing PF5. A dialog box is
displayed that allows you to add Accept data validation tests. You may only add
Accepts to fields that do not have Accepts defined in the Master File. The Accepts
dialog box is described in Field on page 5-52. Accepts is not supported for grid
columns in the current release.

• Color. You can choose colors for the column by pressing PF6. The Set Colors dialog
box is displayed. The Set Colors dialog box is described in Field on page 5-52. Color
is not supported for grid columns in the current release.

You can also select another field to edit. To do so, place the cursor under the selected
field and press the Enter key. Scroll through the combo box to see which other fields you
can edit. Press PF8 to scroll forwards or PF7 to scroll backwards.

You can exit the Edit Column dialog box, saving what you have entered, by pressing PF4.
This returns you to the Grid dialog box. Otherwise you can cancel the action and return to
the Grid dialog box by pressing PF3.

Delete
Select Delete to move a column to another part of the grid or erase a column from the
grid. Position the cursor in the right list box at the column you wish to delete, and press
PF9. The column name is removed from the list of displayed column names, and the
column is removed from the grid.

Paste
Select Paste to reposition a column in the grid that has previously been deleted. Press
PF2 to paste a column. This brings the column name back to the active column list box in
the Grid dialog box, and returns it to the grid

Triggers
Press PF12 if you wish to assign control-level triggers to the grid. For detailed
information about the Triggers dialog box see Triggers on page 5-59.

Border
Select Border to put a border around a control. The default is set to on.

Header
Select Header to include column titles in the grid. The default is set to on.

Using the Winform Painter

5-66 Information Builders

Source
Source displays all source stacks and lets you select one as the source of your grid’s data.

Destination
Destination displays all destination stacks and lets you select one as the destination of
your grid’s data.

You must specify the same stack for both source and destination.

Object Name
Provide a name for the grid, or accept the default name, so that you can refer to the grid
within your procedure.

Browser
The browser generates the necessary logic and Winform controls to enable you to display
one stack row, and to scroll forward and backward through the stack one row at a time.
The browser adds two buttons for moving forward and backward through the stack and
changing the value of FocIndex accordingly. The browser also adds text and two fields—
the first FocIndex, the second FocCount—in the upper-left corner of the Winform to
identify the current row to the user.

To place a browser in the Winform select Browser. The Browser dialog box is displayed:

When you are finished entering information in the Browser dialog box press PF4 to save
the information, or PF3 to cancel the transaction.

Stack
Select the stack that you would like to scroll through. All stacks defined to the Winform
are displayed.

 Objects Menu

Maintaining Databases 5-67

Number Field Length
The Number Field Length field is used to specify a length for the field that is displayed to
indicate how many rows were retrieved, and which row you are currently positioned on.

Frame
Select Frame to put a border around an area in the Winform. A useful feature of the frame
is the ability to move all the controls in the frame at one time, simply by moving the frame
itself. To place a frame in a Winform:

1. Select Frame.

You are prompted to place the cursor at the upper left-hand corner of the frame you
wish to create.

Place the cursor at the desired upper left-hand corner of the frame, and press the
Enter key.

2. You are prompted to place the cursor at the lower right-hand corner of the frame you
wish to create.

Place the cursor at the desired lower right-hand corner of the frame, and press the
Enter key.

A screen similar to the following appears after you have finished positioning the
frame, in this case around Customer ID, Name, Address and Phone:

Using the Winform Painter

5-68 Information Builders

Button
When a user clicks a button to which you have assigned a trigger, it immediately executes
the associated Maintain function or system action. (Maintain functions—often simply
called functions—are referred to in the Winform Painter as cases.) For example, clicking
a button might trigger a function that updates a data source. The user selects a button by
moving the cursor to the desired button and pressing Enter.

For general information about how an application end user would manipulate a button,
see Using Command Buttons on page 5-6.

To place a button in a Winform:

1. Select Button.

You are prompted to place the cursor at the upper left-hand corner of the button you
wish to create.

Place the cursor at the desired upper left-hand corner of the button, and press the
Enter key.

2. You are prompted to place the cursor at the lower right-hand corner of the button you
wish to create.

Place the cursor at the desired lower right-hand corner of the button, and press the
Enter key.

The Button dialog box is displayed after you have finished positioning the button:

When you have finished entering information about a button, press the OK button.
The button is then displayed in the Winform. Press PF3 if you wish to cancel the
action.

 Objects Menu

Maintaining Databases 5-69

Text
Enter into the Text entry field what you wish to appear in the button. The size of the entry
field is dependent on the dimensions you have chosen for the button. This means that you
can only enter text that fits on the button.

Justification
Justification allows you to choose whether to center, left-justify or right-justify the text in
the button. Place an X next to your choice of justification.

Trigger
Triggers allow you to use event-driven processing. In the Trigger entry field, enter the
name of a function or of the Exit or Close system actions. To select from a list of
functions, press PF5, or move your cursor to the Cases button and press the Enter key.

Shortcut key
Enter a PF key number if you want to be able to press a PF key as a shortcut, rather than
having to move the cursor to the button and press the Enter key. To see a list of PF keys
and the triggers currently assigned to them, press PF6 or move the cursor to the PFKeys
button and press the Enter key. When running the application, pressing the PF key or
moving the cursor to the button and pressing Enter produces the same results.

Tip:

You may want to avoid assigning the Enter key as a button’s shortcut key. Because
application end users need to press the Enter key to click a button, it is recommended
that you do not assign the Enter key as a trigger unless you intend end users to trigger
the specified function or system action each time they click the button.

Default Button
If Default Button is checked, and the user runs the application, pressing Enter clicks the
button. In other words, Enter serves as a shortcut key for the button.

Border
Check Border to put a box around the button.

Object Name
Provide a name for the button, or accept the default name, so that you can refer to the
button within your procedure.

Using the Winform Painter

5-70 Information Builders

Cases
Select Cases to see the functions and system actions available for use as a trigger action.
The Available Cases dialog box is displayed. For more information about the Available
Cases dialog box, see Triggers on page 5-46.

PFKeys
Select PFKeys to see which PF keys currently have form-level triggers assigned to them.
You can use this dialog box to select an available key (that is, one to which no form-level
triggers or button shortcuts are assigned) for use as the current button’s shortcut key. To
select an available key, place the cursor under the PF key you wish to use and press PF4.

To exit the PFKeys dialog box without assigning a shortcut key, press PF3 or move the
cursor to the Cancel F3 button and press the Enter key.

Note that you cannot use this dialog box to change existing key assignments; it is
designed for displaying key assignments only.

 Objects Menu

Maintaining Databases 5-71

Checkbox
A check box enables the application end user to select or clear (that is, deselect) an
option. When you design the check box, you associate a variable with it; at run time, if the
application end user checks the box, the variable is assigned a value of 1; if the end user
clears the check box, the variable is assigned a value of 0.

You can test the value of the variable in your application after the form is displayed to
determine whether or not the box is checked. If you wish a check box to be checked by
default, you can assign a value of 1 to the check box variable at run time before
displaying the Winform.

For general information about how an application end user would manipulate a check
box, see Using Check Boxes on page 5-5.

To place a check box in a Winform:

1. Select Checkbox.

You are prompted to point to a location and press the Enter key or PF3 to cancel.

2. Place the cursor at the desired location and press the Enter key or press PF3 to
cancel.

If you press the Enter key, the Check Box dialog box is generated:

Using the Winform Painter

5-72 Information Builders

Text
Enter what you wish to appear next to the check box.

Variable
This is the name of the variable that will be associated with the check box. At run time, if
the application end user checks the box, the variable is assigned a value of 1; if the end
user clears the check box, the variable is assigned a value of 0. You can test the value of
the variable in your application after the form is displayed to determine whether or not the
box is checked, and you can assign a value to the variable before the form is displayed to
provide a default setting for the check box.

The application must declare the field before it is referred to in a Winform. Enter the
name of the variable as it will appear in your source code. For further information about
naming conventions see Chapter 6, Language Rules Reference.

Object Name
Provide a name for the check box, or accept the default name, so that you can refer to the
check box within your procedure.

Define variable as format I1
Check this box if you want Maintain to automatically declare the variable. Maintain
declares the variable in your WINFORMS file as a one-digit integer (a format of I1),
therefore you should not define this variable yourself in your application.

Triggers
Press PF12 if you wish to assign control-level triggers to the check box. For detailed
information about the Triggers dialog box see Triggers on page 5-59.

 Objects Menu

Maintaining Databases 5-73

Listbox
List boxes display a list of items from which the application end user can select one item.
The list is taken from a stack column at run time when the Winform is displayed; you
identify which stack column to use when you design the Winform.

If there are more list items than can fit in the list box, automatic scroll bars enable the
application user to scroll through the list.

When the application end user selects an item from the list, FocIndex points to the stack
row that the user selected. For example, the following code displays a Winform that has a
list box populated by the CustID column in the CustStack stack, and then assigns to the
SelectedCustomer variable the value that the application end user had selected from the
list box:

FOR ALL NEXT CustID INTO CustStack;
WINFORM SHOW CustForm;
SelectedCustomer = CustStack().CustID;

FocIndex determines which list item is the default choice when the Winform is first
displayed at run time. You can control which item is the default by setting the value of
FocIndex. In the example below, the list box is populated by CustStack.CustID, and the
default value will be taken from the second row of CustStack.CustID:

FOR ALL NEXT CustID INTO CustStack;
CustStack.FocIndex = 2;
WINFORM SHOW CustForm;
SelectedCustomer = CustStack().CustID;

For general information about how an application end user would manipulate a list box,
see Using List Boxes on page 5-4.

Using the Winform Painter

5-74 Information Builders

To place a list box in a Winform:

1. Select Listbox.

You are prompted to point to a location and press the Enter key or PF3 to cancel.

2. Place the cursor at the desired location and press the Enter key or press PF3 to
cancel.

If you press the Enter key, the Listbox dialog box is generated:

Field
The Field combo box lists all the fields in the Master Files that are used by the current
procedure. Select the field whose column in the selected stack you want to populate the
list box, or type the name of a user-defined column in the selected stack (that is, a column
created with the COMPUTE command) that you want to populate the list box.

If you specify a user-defined column, the procedure must declare it before displaying the
Winform.

Stack
Select the stack whose column will populate the list box when the Winform is displayed.
You can choose from all the stacks that are defined to the Winform.

Size to Fit
Select Size to Fit to size your control to fit the data inside the control.

 Objects Menu

Maintaining Databases 5-75

Title
You can edit the list box’s title to another title of your choosing.

Object Name
You may provide a name for the list box, or accept the default name, so that you can refer
to the list box within your procedure.

Triggers
Press PF12 if you wish to assign control-level triggers to the list box. For detailed
information about the Triggers dialog box see Triggers on page 5-59.

Tip:

You may want to avoid assigning a trigger to the Enter key. Because application end
users need to press the Enter key to select an item from a list box, it is recommended that
you do not assign a trigger to the Enter key unless you intend end users to trigger the
specified function each time they select an item from the list.

Using the Winform Painter

5-76 Information Builders

Combobox
A combo box is a kind of drop-down list box: it enables the application end user to select
an item from a list that drops down. A combo box differs from a list box in that a list box
is always displayed dropped (that is, fully extended), while in a combo box only the box
showing the selected item is displayed until the application end user selects the box’s v
button to drop its list. When the combo box’s list is dropped, the application end user can
select an item from it; the selected item is then displayed in the box at the top of the list,
and the list closes.

You can choose to populate the list from:

• A stack column.

• The list of values from a field’s ACCEPT attribute in a Master File.

The combo box is populated from the specified source at run time when the Winform is
displayed. You identify the source of the combo box’s values when you design the
Winform.

How you determine which value the application end user selected depends on how you
populated the combo box. If you populated it using:

• A stack, FocIndex points to the stack row that the user selected. For example, the
following code displays a Winform that has a combo box populated by the CustID
column in the CustStack stack, and then assigns to the SelectedCustomer variable the
value that the application user had selected from the combo box:

FOR ALL NEXT CustID INTO CustStack;
WINFORM SHOW CustForm;
SelectedCustomer = CustStack().CustID;

• An ACCEPT attribute, you can use the following syntax to refer to the value that the
user selected:

formname_comboboxname_ACCEPTS().REC

For example, the following code displays a Winform named CustForm that has a
combo box named CustListBox, and then assigns to the SelectedCustomer variable
the value that the application user had selected from the combo box:

WINFORM SHOW CustForm;
SelectedCustomer = CustForm_CustListBox_ACCEPTS().REC;

 Objects Menu

Maintaining Databases 5-77

If you populate a combo box from a stack, FocIndex determines the default value—that
is, the value that will appear in the box when the Winform is first displayed at run time.
You can control which value is the default by setting FocIndex. In the example below, the
combo box is populated by CustStack.CustID, and the default value will be taken from
the seventh row of CustStack.CustID:

FOR ALL NEXT CustID INTO CustStack;
CustStack.FocIndex = 7;
WINFORM SHOW CustForm;
SelectedCustomer = CustStack().CustID;

For general information about how an application end user would manipulate a combo
box, see Using Drop Boxes on page 5-8.

To place a combo box in a Winform:

1. Select Combobox.

You are prompted to point to a location and press the Enter key or PF3 to cancel.

2. Place the cursor at the desired location and press the Enter key or press PF3 to
cancel.

If you press the Enter key, the Combobox dialog box is generated:

Using the Winform Painter

5-78 Information Builders

Field
Field displays all the fields in the Master Files that this procedure uses. Fields that have an
ACCEPT attribute in the Master File are displayed with an asterisk (*).

If you are designing this combo box to be populated from:

• An ACCEPT attribute, select the field whose ACCEPT attribute in the Master File
you want to populate the combo box.

• A stack, select the field whose column in the selected stack you want to populate the
combo box, or type the name of a user-defined column in the selected stack (that is, a
column created with the COMPUTE command) that you want to populate the combo
box.

If you specify a user-defined column, the procedure must declare it before displaying
the Winform.

Stack
Select the stack whose column will populate the combo box. You can choose from all the
stacks that are defined to the Winform.

Length
You can edit the combo box’s length (that is, the column’s width) by placing the cursor at
the number following Length and entering the new length. For further details concerning
column width, see Length on page 5-55.

Height
You can edit the combo box’s height by placing the cursor at the number following
Height and entering the new height.

Accepts Combo
If you select Accepts Combo, the combo box will be populated by the list of values in the
selected field’s ACCEPT attribute in the Master File. This requires that the field’s
description in the Master File has an ACCEPT attribute that specifies a list of values.

Object Name
You may provide a name for the combo box, or accept the default name, so that you can
refer to the combo box within your procedure.

 Objects Menu

Maintaining Databases 5-79

Triggers
Press PF12 if you wish to assign control-level triggers to the combo box. For detailed
information about the Triggers dialog box see Triggers on page 5-59.

Tip:

You may want to avoid assigning a trigger to the Enter key. Because application end
users need to press the Enter key to select an item from a combo box, it is recommended
that you do not assign a trigger to the Enter key unless you intend end users to trigger the
specified function each time they select an item from the combo box.

Radio Group
A radio button group represents several mutually exclusive options: an application end
user can select one button from a group.

The radio button group is defined by a stack column:

• Each button’s value is provided at run time, when the Winform is displayed, by a
stack column. You identify which stack column to use when you design the group.

• The number of buttons in the group is determined at run time, when the Winform is
displayed, by the number of rows in the stack.

• The maximum number of buttons that the group can display is determined by the
dimensions of the radio button group, the number of columns in which the buttons
will be positioned within those dimensions, and the width of the columns, all of
which you define when you design the group. Be sure to design the radio button
group so that it can accommodate the greatest number of buttons that the application
may need to display. If, at run time, the number of rows in the group’s source stack
exceeds the number of buttons that the group can display, the excess buttons will not
be displayed.

When the application end user selects a radio button, FocIndex points to the stack row
that the user selected. For example, the following code displays a Winform that has a
radio button group populated by the CustID column in the CustStack stack, and then
assigns to the SelectedCustomer variable the value that the application end user had
selected from the group:

FOR ALL NEXT CustID INTO CustStack;
WINFORM SHOW CustForm;
SelectedCustomer = CustStack().CustID;

Using the Winform Painter

5-80 Information Builders

FocIndex determines which radio button is selected by default when the Winform is first
displayed at run time. You can control which button is the default by setting the value of
FocIndex. In the example below, the radio button group is populated by
CustStack.CustID, and the default value will be taken from the fifth row of
CustStack.CustID:

FOR ALL NEXT CustID INTO CustStack;
CustStack.FocIndex = 5;
WINFORM SHOW CustForm;
SelectedCustomer = CustStack().CustID;

For general information about how an application end user would manipulate a radio
button group, see Using Radio Buttons on page 5-6.

To place a radio button group in a Winform:

1. Select Radio group.

You are prompted to point to a location and press the Enter key or PF3 to cancel.

2. Place the cursor at the desired location and press the Enter key or press PF3 to
cancel.

If you press the Enter key, the radio button group dialog box is generated:

Field
The Field combo box lists all the fields in the Master Files that are used by the current
procedure. Select the field whose column in the selected stack you want to populate the
radio button group, or type the name of a user-defined column in the selected stack (that
is, a column created with the COMPUTE command) that you want to populate the radio
button group.

 Objects Menu

Maintaining Databases 5-81

If you specify a user-defined column, the procedure must declare it before displaying the
Winform.

Stack
Select the stack whose column will populate the radio button group when the Winform is
displayed. You can choose from all the stacks that are defined to the Winform.

Justification
Justification allows you to choose whether to center, left-justify or right-justify each
button’s text. Justification is not supported for radio button groups in the current release.

Columns
This determines the number of columns in which the buttons will be lined up.

Column Width
This determines the width of the columns in which the buttons are displayed. For database
stack columns this defaults to the length of the selected field as defined in the Master File,
plus six, to allow for spacing between columns; for user-defined stack columns it defaults
to 13.

If you specify a column width that is less than the field or variable length, any stack
values exceeding the specified width will be truncated when they are displayed.

Tip:

If you enter a two-digit width, or change the width’s units digit, be aware of the cursor
position before pressing Enter or a function key. This is because, when typing a units digit
in the Column Width field, the cursor’s automatic tabbing then moves the cursor to the
next control in the dialog box, which is the list of fields in the Fields combo box. If you
then press the Enter key or a function key to confirm your new width, you will also be
resetting the selected field to the field on which the cursor is positioned.

Border
Check Border to put a box around the radio button group.

Title
You can edit the radio button group’s title to another title of your choosing.

Using the Winform Painter

5-82 Information Builders

Object Name
You may provide a name for the radio button group, or accept the default name, so that
you can refer to the radio button group within your procedure.

Triggers
Press PF12 if you wish to assign control-level triggers to the radio button group. For
detailed information about the Triggers dialog box, see Triggers on page 5-59.

Gen Segment
Select Gen Segment to place all the fields in a segment into a Winform at one time.

To place a segment’s fields into a Winform, select Gen Segment. You are prompted to
point to the starting line. Press the Enter key, or press PF3 to cancel. If you press the
Enter key, the Pick Segment dialog box is displayed:

Place the cursor under the name of the segment you wish to display and press the Enter
key. Press PF3 if you wish to cancel.

 Objects Menu

Maintaining Databases 5-83

For example, if you choose CUST the following is displayed:

You may:

• Eliminate any fields you do not wish to display by placing the cursor on these fields
and pressing PF6.

• Edit each of the fields to change any options by moving the cursor to the field and
pressing PF12. The Change Field dialog box is displayed. For more information
about the Change Field dialog box see Field on page 5-52.

• Edit the text of the field by moving the cursor under the text and pressing PF12. The
Text dialog box is displayed. For more information about the Text dialog box see
Text on page 5-69.

• Reposition a field by placing the cursor under a field and pressing PF5. You are
prompted to point to a new location for the field and press the Enter key or to press
PF3 to cancel the transaction. If you point to a new location and press the Enter key,
the field moves to the new position on the screen.

Using the Winform Painter

5-84 Information Builders

Gen Master
Gen Master is similar to Gen Segment except it generates fields for all of the fields in a
data source rather than just for a single segment. For example, if you select Gen Master
and you are working with the VideoTrk data source, a screen similar to the following is
displayed:

You may perform the same actions on these fields that were discussed in Gen Segment on
page 5-83.

 Cases Menu

Maintaining Databases 5-85

Cases Menu
Selecting the Cases menu enables you to make changes to existing Maintain functions in a
Winform file. (Maintain functions—usually just called functions—are known in the
Winform Painter as cases.) Selecting the Cases menu yields the Cases dialog box:

Available Cases
The combo box in the left part of the Cases dialog box displays the functions available in
the Winform file.

Using the Winform Painter

5-86 Information Builders

Open
Select Open to open an existing function in order to read or edit it.

To open an existing function, position the cursor under the function you wish to edit and
press PF4. This generates the part of the FOCEXEC that contains the specified function.
For example, if you were to choose GetRental, the following Winform is displayed:

You may now edit the function. When you are finished with your editing, type FILE on
the command line and press the Enter key to save the changes. Press PF3 if you do not
wish to save the changes.

 Cases Menu

Maintaining Databases 5-87

All
Select All to display the contents of the entire FOCEXEC. In addition to viewing the
FOCEXEC, you may also make editing changes.

To display the entire FOCEXEC press PF5. The top section of the FOCEXEC is
displayed. If the FOCEXEC is larger than your screen you may scroll through the
FOCEXEC using PF7 and PF8. For example, if you choose All using the Cases dialog box
at the beginning of this section, the following is displayed:

When you are finished viewing and editing the FOCEXEC, position the cursor at the
command line and type the word FILE to save the changes and exit the FOCEXEC, or
press PF3 to cancel the changes you have made and exit the FOCEXEC.

Using the Winform Painter

5-88 Information Builders

Copy
Select Copy to copy a function to another function. This can be useful if a function that
exists is similar to a function you wish to create. Rather than starting from scratch, you
may use the existing function as a basis for the function you wish to create.

To copy a function, place the cursor under the function you wish to copy, and press PF6.
Pressing PF6 after positioning the cursor under NextCust yields the Case Copy dialog
box:

Fill in the name of the function that NextCust is to be copied to. After filling in the name
of the function, press PF4 to save it, or PF3 to exit without saving it.

Rename
Select Rename to change the name of a function.

To rename a function, position the cursor under the function name you wish to change,
and press PF2. For example, if you choose NextCust, the following Case Rename dialog
box is displayed after pressing PF2:

Fill in the name of the function that NextCust is to be renamed to. After filling in the
name of the function, press PF4 to save it, or PF3 to exit without saving it.

 Help Menu

Maintaining Databases 5-89

Delete
Select Delete to delete a function.

For example, if you wish to delete NextCust, the following dialog box is displayed after
pressing PF9:

Click OK if you wish to delete the function. If you do not wish to delete the function, click
Cancel.

Done
When you have finished, press PF3 to exit from the Cases dialog box.

Editor
You may choose which editor to use for the FOCEXEC. TED is the default. If you wish
to use an external editor, fill in the appropriate name and mark the box for External. The
external editor defaults to your system editor. TED is the only editor available under
MVS.

Help Menu
The Help menu displays the settings of the function keys in the Painter. Selecting Help
yields the PFKeys dialog box:

Maintaining Databases 6-1

CHAPTER 6

Language Rules Reference

Topics:

• Case Sensitivity

• Specifying Names

• Reserved Words

• What Can You Include in a
Procedure?

• Multi-Line Commands

• Terminating a Command’s Syntax

• Adding Comments

You can use the Maintain language more effectively if you are
familiar with its rules:

• When to use uppercase and lowercase characters.

• When to spell out keywords in full.

• How to name fields, functions, and other application
components.

• Which words to avoid using as names of application
components.

• What sorts of things you can enter into a procedure.

• How to continue a command onto additional lines.

• How to terminate a command’s syntax.

• How to include comments in a procedure.

Master Files are not part of the Maintain language and are
subject to different rules. The language rules for Master Files are
discussed in the Describing Data manual.

Language Rules Reference

6-2 Information Builders

Case Sensitivity
Maintain does not usually distinguish between uppercase and lowercase letters. You can
enter keywords and names (such as data source and field names) in any combination of
uppercase and lowercase. The only two exceptions are the MAINTAIN and END
keywords used to begin and end a request: these must be in uppercase.

For example, the following ways of specifying the REPEAT command are equally valid,
and Maintain considers them to be identical:

REPEAT

repeat

RePeat

REPeat

You can mix uppercase and lowercase to make variable names more understandable to a
reader. For example, the stack name SALARYSTACK could also be represented as
SalaryStack.

You may notice that when this manual presents sample Maintain code, it shows keywords
in uppercase, and user-defined names—such as field and stack names—in mixed case.
This is only a documentation convention, not a Maintain language rule. As already
explained, you can code Maintain commands in any case you wish.

This manual uses mixed case for user-defined names, in order to illustrate the use of
mixed case; however, the Winform Painter displays some names in uppercase. The same
item may be shown in mixed case in the manual and uppercase on the screen; the
difference is insignificant.

While Maintain is not sensitive to the case of syntax, it is sensitive to the case of data. For
example, the MATCH command distinguishes between the values ‘SMITH’ and ‘Smith’.

 Specifying Names

Maintaining Databases 6-3

Specifying Names
Maintain offers you a great deal of flexibility when naming and referring to application
components, such as fields, functions, Winform buttons, and stacks. (Maintain functions
are also known as cases.) When you name something, be aware of the following naming
guidelines:

• Length of names. Unqualified names that are defined in a Maintain procedure—such
as the unqualified names of Winforms, functions, and stacks—can be up to 66
characters long.

There is no limit on the length of a qualified name, as long as the length of each of its
component unqualified names does not exceed 66 characters.

Master File names, and names defined within a Master File (such as names of fields
and segments) are subject to standard Master File language conventions, as defined
in the Describing Data manual.

Procedure names can be a maximum of eight characters long.

• Valid characters in a name. All names must begin with a letter, and can include any
combination of letters, numbers, and underscores (_).

• Identical names. Most types of items in a Maintain application can have the same
name. The only exceptions are data sources, stacks, and Winforms, which cannot
have the same name within the same Maintain procedure.

For example, you may give the same name to fields in different segments, data
sources, and stacks, and to controls (also known as objects) in different Winforms, as
long as you prevent ambiguous references by qualifying the names. A data source, a
stack, and a Winform used in the same procedure can never have the same name.

• Qualified names. In general, whenever a name can be qualified, you should do so.

MAINTAIN requires that the qualification character be a period (.); the
QUALCHAR parameter of the SET command therefore must be set to . (the default).

If a qualified name cannot fit onto the current line, you can break the name at the end
of any one of its components, and continue it onto the next line. The continued name
must begin with the qualification character. In the following example, the continued
line is indented for reader clarity:

FOR ALL NEXT ThisIsAVeryLongDataSourceName.ThisIsAVeryLongSegmentName
.ThisIsAVeryLongFieldName INTO CreditStack;

Language Rules Reference

6-4 Information Builders

You can qualify the names of:

• Controls. You can qualify a control name with the name of the Winform in
which it is found. (Controls are also known as objects in the Winform Painter.)

• Member functions and member variables. When referring to an object’s
member functions and member variables, you should always use the function’s
or variable’s fully-qualified name (that is, the name in the form
objectname.functionname or objectname.variablename).

• Fields and columns. You can qualify a variable name with the name of the data
source, segment, and/or stack in which it is found, using a period (.) as the
qualification character. For example, if a button named UpdateButton is in a
Winform named CreditForm, you could refer to the button as:

CreditForm.UpdateButton

Qualification can be very helpful when you are working with two data sources in
one Maintain procedure, and the data sources have field names in common;
when a field is present in both a data source and a stack, but it is not clear from
the context which one is being referred to; and when different Winforms in the
same procedure include identically-named controls

For example, both the Employee and JobFile data sources have a field named
JobCode. If you wish to issue a NEXT command for the JobCode field in
Employee, you would use a qualified field name:

NEXT Employee.JobCode;

You can qualify a field name with any combination of its data source, segment,
and stack names. When including a stack name, you have the option of
specifying a particular row in the stack. If you use several qualifiers, they must
conform to the following order:

stackname(row).datasourceame.segmentname.fieldname

If you refer to a field using a single qualifier, such as Sales in the following
example

Sales.Quantity

and the qualifier is the name of both a segment and a stack, Maintain assumes
that the name refers to the stack. To refer to the segment in this case, use the data
source qualifier.

• Truncated names. You must spell out all names in full: Maintain does not recognize
truncated names, such as Dep for a field named Department.

• Name aliases. You cannot refer to a field by its alias in a Maintain procedure. (An
alias is defined by a field’s ALIAS attribute in a Master File.)

 Reserved Words

Maintaining Databases 6-5

Reserved Words
The words in the following table are reserved; you may not use them as identifiers.
Identifiers are names of application components (such as—but not limited to—classes,
functions, data sources, data source segments, stacks, stack columns, scalar variables, and
Winforms).

In addition to these words, you may not use the names of built-in functions to name
functions that you code yourself. See Chapter 9, Built-in Functions Reference, for a
complete list of built-in functions.

If an application uses an existing Master File that employs a reserved word as a field
name, you can refer to the field by qualifying its name with the name of the segment or
data source.
ALL AND AS ASK AT
BEGIN BIND BY CALL CASE
CFUN CLASS CLEAR COMMIT COMPUTE
CONTAINS CONTENTS COPY current DATA
DECLARE DECODE DELETE DEPENDENTS DESCRIBE
DFC DIV DROP DUMP ELSE
END ENDBEGIN ENDCASE ENDDESCRIBE ENDREPEAT
EQ EVENT EXCEEDS EXEC EXIT
EXITREPEAT FALSE FILE FILES FIND
FocCount FocCurrent FocEnd FocEndCase FocEOF
FocError FocErrorRow FocIndex FOR FROM
GE GOTO GT HIGHEST HOLD
IF IN INCLUDE INFER INTO
IS IS_LESS_THAN IS_NOT KEEP LE
LIKE LT MAINTAIN MATCH MISSING
MOD MODULE MOVE NE NEEDS
NEXT NOT NOWAIT OF OMITS
ON OR PERFORM QUIT REPEAT
REPOSITION RESET RETURN RETURNS REVISE
ROLLBACK SAY SELECTS self SOME
SORT SQL STACK TAKES THEN
TO TOP TRIGGER TRUE TYPE
UNTIL UPDATE WAIT WHERE WHILE
WINFORM XOR YRT

Language Rules Reference

6-6 Information Builders

What Can You Include in a Procedure?
You can include the following items in a Maintain procedure:

• Maintain language commands, which are described in Chapter 7, Command
Reference.

All Maintain commands must be located within a Maintain function (also known as a
case), except for the MAINTAIN, MODULE, DESCRIBE, CASE, and END
commands, as well as global DECLARE commands, all of which must be located
outside of a function.

• Comments, which are described in Adding Comments on page 6-8.

• Blank lines, which you may wish to add to separate functions and other logic so that
the procedure is easier for you to read.

If a Maintain procedure is an application’s root procedure (sometimes known as a starting
procedure), and it is not called by any other Maintain procedures, it can also contain
Dialogue Manager commands preceding the MAINTAIN command. Dialogue Manager
commands are described in the Developing Applications manual.

Multi-Line Commands
You can continue almost all Maintain commands onto additional lines. The continued
command can begin in any column, and can be continued for any number of lines.

The only exceptions are the TYPE command, which uses a special convention for
continuing, and the beginning of the REPEAT command, which cannot be continued.

In the following example, all continued lines are indented for reader clarity:

MAINTAIN FILES VideoTrk
AND Movies

.

.

.
IF CustInfo.FocIndex GT 1

THEN COMPUTE CustInfo.FocIndex = CustInfo.FocIndex - 1;
ELSE COMPUTE CustInfo.FocIndex = CustInfo.FocCount;

 Terminating a Command’s Syntax

Maintaining Databases 6-7

Terminating a Command’s Syntax
When you code a Maintain command, you terminate its syntax using one of the following:

• A semicolon (;). For most commands that can be terminated with a semicolon, the
semicolon is optional. Even when it is optional, it is recommended that you supply it.

Coding suggestion: One reason why it is preferable to supply optional semicolons is
that if you omit them, when you invoke functions in that procedure you must do so
using the COMPUTE or PERFORM commands. By supplying optional semicolons
in a procedure, you can invoke functions more directly, by simply specifying their
names. Another reason is that if you supply optional semicolons in a procedure, you
can code assignment statements more succinctly by omitting the COMPUTE
keyword.

For example, the following NEXT command, assignment statement, and invocation
of the DisplayEditForm function are all terminated with semicolons:

FOR ALL NEXT CustID INTO CustOrderStack;
EditFlag = CustOrderStack().Status;
DisplayEditForm();

• An end keyword. Some commands, such as BEGIN, CASE, and REPEAT, bracket a
block of code. You indicate the end of the block by supplying the command’s version
of the END keyword (for example, ENDBEGIN, ENDCASE, or ENDREPEAT).

In the following example, the CASE command is terminated with an ENDCASE
keyword:

CASE UpdateAcct
UPDATE SavingsAcct FROM TransactionStack;
IF FocError NE 0 THEN TransErrorLog();
ENDCASE

Most commands use one of these methods (a semicolon or an end keyword) exclusively,
as described for each command in Chapter 7, Command Reference.

Language Rules Reference

6-8 Information Builders

Adding Comments
By adding comments to a procedure you can document its logic, making it easier to
maintain. You can place a comment virtually anywhere in a Maintain procedure: on its
own line, at the end of a command, or even in the middle of a command; in the middle of
the procedure, at the very beginning of the procedure before the MAINTAIN command,
or at the very end of the procedure following the END command. You can place any text
within a comment.

There are two types of comments:

• Stream comments, which begin with $* and end with *$. Maintain interprets
everything between these two delimiters as part of the comment. A comment can
begin on one line and end on another line, and can include up to 51 lines.

For example:

MAINTAIN
$* This is a stream comment *$
TYPE "Hello world";

$* This is a second stream comment.

This is still inside the second comment!
This is the end of the second comment *$

$* Document the TYPE statement--> *$ TYPE "Hello again!"; $* Goodbye *$
END

 Adding Comments

Maintaining Databases 6-9

• Line comments, which begin with $$ or -* and continue to the end of the line. For
example:

MAINTAIN FILE Employee
FOR ALL NEXT Emp_ID INTO Pay;
-* This entire line is a comment.
COMPUTE Pay.NewSal/D12.2;
...
END

You can also place a comment at the end of a line of code:

MAINTAIN FILE Employee
FOR ALL NEXT Emp_ID INTO Pay; $$ Put root seg into a stack
COMPUTE Pay.NewSal/D12.2;
...
END

You can even place a comment at the end of a line containing a command that
continues onto the next line:

MAINTAIN FILE Employee
FOR ALL NEXT Emp_ID INTO Pay -* Put root seg into a stack

WHERE Department IS 'MIS';
COMPUTE Pay.NewSal/D12.2;
...
END

You can include all types of comments in the same procedure:

MAINTAIN
TYPE "Hello world"; -* This is a TYPE command
$* This is a stream comment

that runs onto a second line *$
$* Document the TYPE statement--> *$ TYPE "Hello again!"; $$ Goodbye
...
END

Note that while Maintain uses the same comment characters (-*) as Dialogue Manager, it
is only in a Maintain procedure that comments can be placed at the end of a line of code.

Maintaining Databases 7-1

CHAPTER 7

Command Reference

Topics:

• Language Summary

• Commands and System Variables

This reference provides a summary of the Maintain language’s
commands and system variables, grouped by primary use. It also
describes some commands that are outside the language but can
be used to manage Maintain procedures. It then describes each
command and system variable in detail.

Command Reference

7-2 Information Builders

Language Summary
This topic summarizes all Maintain language commands, grouping them by their primary
use (such as transferring control or selecting records). Each command and system variable
is described in detail later in this chapter.

Defining a Procedure
The basic syntax consists of the commands that start and terminate a Maintain procedure.
The commands are:

MAINTAIN Initiates the parsing and execution of a Maintain procedure. It is
always the first line of the procedure.

END Terminates the execution of a Maintain procedure.

Defining a Maintain Function (a Case)
You can use the CASE command to define a Maintain function. (Maintain functions are
also known as cases.)

Blocks of Code
You can use the BEGIN command to define a group of commands as a single block and
issue them as a group. You can place a BEGIN block anywhere individual commands can
appear.

Transferring Control
You can transfer control to another function within the current procedure, as well as to
another procedure.

The commands that allow transfer of control are:

PERFORM Transfers control to another function (functions are also known as
cases). When the function finishes, control is returned to the
command following PERFORM. (You can also invoke a function
directly, without PERFORM.)

GOTO Transfers control to another function or to a special label within the
current function. When the function finishes, control does not return.
(You can also invoke a function directly, without GOTO.)

CALL Executes another Maintain procedure.

 Language Summary

Maintaining Databases 7-3

The CALL command is advantageous because common code can be shared by many
developers, which speeds up both development and maintenance time. For example, a
generalized error message display procedure could be used by all Maintain developers.
After passing a message to the generalized procedure, the procedure would handle
message display. The developers do not need to worry about how to display the message,
and the error messages always look consistent to the end users. A second advantage to a
modular design is that code that is not executed very frequently can be placed in separate
programs in order to reduce the size of the system. Reducing the size makes maintenance
easier because the code is easier to understand. Furthermore, if the code is not executed,
less memory is used.

Executing Procedures
The following commands execute procedures or prepare them for execution:

CALL Executes a Maintain procedure, and enables you to pass data from
the calling procedure.

COMPILE Compiles a procedure to increase its execution speed. This command
is outside the Maintain language, but is described here for your
convenience.

EX Executes an uncompiled procedure. This command is outside the
Maintain language, but is described here for your convenience.

RECOMPILE Recompiles a procedure that had been compiled under an earlier
release of Maintain, in order to improve performance. This
command is outside the Maintain language, but is described here for
your convenience.

RUN Executes a compiled procedure. This command is outside the
Maintain language, but is described here for your convenience.

Loops
Maintain enables a circular flow of control using the REPEAT command.

Winforms
This command is responsible for presentation logic:

WINFORM Displays a Winform by which application end users can read, enter,
and edit data, and manipulates control properties. (Controls are also
known as Winform objects.)

Command Reference

7-4 Information Builders

Defining Classes
The DESCRIBE command defines classes and data type synonyms.

Creating Variables
The following commands enable you to create variables:

DECLARE Creates local and global variables, including objects.

COMPUTE Creates global variables, including global objects. It can also assign
values to existing variables.

Assigning Values
Maintain enables you to assign values to existing variables using the COMPUTE
command.

Manipulating Stacks
Maintain provides several stack commands to manage the contents of stacks. Unless
otherwise specified, each command operates on all rows in the stack. The following
example copies the contents of the Indata stack to the Outdata stack:

FOR ALL COPY FROM Indata INTO Outdata;

One row or a range of rows may be specified to limit which rows are affected. As an
example

FOR 100 COPY FROM Indata(4) INTO Outdata;

copies 100 records of the Indata stack starting from the 4th record and places them into
the stack Outdata.

The stack commands are:

COPY Copies data from one stack to another.

STACK SORT Sorts data in a stack.

STACK CLEAR Initializes a stack.

INFER Defines the columns in a stack.

In addition, there are two variables associated with a stack which can be used to
manipulate individual rows or groups of rows in the stack. The stack variables are:

FocCount The count of the number of rows in the stack.

FocIndex A pointer to the current instance in the stack.

 Language Summary

Maintaining Databases 7-5

Selecting and Reading Records
The record selection commands retrieve data from the data source, and change position in
the data source.

The commands are:

NEXT Starts at the current position and moves forward through the data
source. Can retrieve data from one or more rows.

MATCH Searches the entire segment for a matching field value. It retrieves an
exact match in the data source.

REPOSITION Changes data source position to be at the beginning of the chain.

In addition, there is a system variable that provides a return code for NEXT and MATCH:

FocFetch Signals the success or failure of a NEXT or MATCH command.

Conditional Actions
The conditional commands are:

IF Issues a command depending on how an expression is evaluated.

ON MATCH Determines the action to take when the prior MATCH command
succeeds.

ON NOMATCH Defines the action to take if the prior MATCH fails.

ON NEXT Defines the action to take if the prior NEXT command succeeds.

ON NONEXT Defines the action to take if the prior NEXT fails.

Writing Transactions
The commands that can be used to control transactions are:

INCLUDE Adds one or more new data source records.

UPDATE Updates data source columns listed. Can update one or more records
at a time.

REVISE Adds new records to the data source and updates existing records.

DELETE Deletes one or more records from the data source.

COMMIT Makes all data source changes since the last COMMIT permanent.

ROLLBACK Cancels all data source changes made since the last COMMIT.

Command Reference

7-6 Information Builders

In addition, there are several system variables that you can use to determine the success or
failure of a data source operation or an entire logical transaction:

FocCurrent Signals the success or failure of a COMMIT or ROLLBACK
command.

FocError Signals the success or failure of an INCLUDE, UPDATE, REVISE,
or DELETE command.

FocErrorRow If an INCLUDE, UPDATE, REVISE, or DELETE command that
writes from a stack fails, this returns the number of the row that
caused the error.

Using Libraries of Classes and Functions
You can import libraries of shared class definitions and shared Maintain functions into a
Maintain procedure using the MODULE command. (Maintain functions are also known
as cases.)

Messages and Logs
You can write messages to files, consoles, and Winforms using the following commands:

SAY Writes messages to a file or to the default output device.

TYPE Writes messages to a file or a Winform.

 BEGIN

Maintaining Databases 7-7

BEGIN
The BEGIN/ENDBEGIN construction enables you to issue a set of commands. Because
you can use this construction anywhere an individual Maintain command can be used, you
can use a set of commands where before you could issue only one command. For
example, it can follow ON MATCH, ON NOMATCH, ON NEXT, ON NONEXT, or IF.

Syntax BEGIN Command
The syntax for the BEGIN command is

BEGIN
command
.
.
.

ENDBEGIN

where:

BEGIN

Specifies the start of a BEGIN/ENDBEGIN block.
Note: You cannot assign a label to a BEGIN/ENDBEGIN block of code or execute it
outside the bounds of the BEGIN/ENDBEGIN construction in a procedure.

command

Is one or more Maintain commands except for MAINTAIN, MODULE, CASE,
DESCRIBE, DECLARE, and END. BEGIN blocks can be nested, allowing you to
place a BEGIN command within another BEGIN command.

ENDBEGIN

Specifies the end of a BEGIN block.

Example BEGIN in ON MATCH
The following example illustrates a block of code that executes when MATCH is
successful:

MATCH Emp_ID
ON MATCH BEGIN

COMPUTE Curr_Sal = Curr_Sal * 1.05;
UPDATE Curr_Sal;
COMMIT;
ENDBEGIN

Command Reference

7-8 Information Builders

Example BEGIN in ON NEXT
This example shows BEGIN and ENDBEGIN with ON NEXT:

ON NEXT BEGIN
TYPE "Next successful.";
COMPUTE New_Sal = Curr_Sal * 1.05;
PERFORM Cleanup;
ENDBEGIN

Example BEGIN in IF
You can also use BEGIN and ENDBEGIN with IF to execute a set of commands
depending on how an expression is evaluated. In the following example, BEGIN and
ENDBEGIN are used with IF and FocError to execute a series of commands when the
prior command fails:

IF FocError NE 0 THEN BEGIN
TYPE "There was a problem.";
.
.
.
ENDBEGIN

Example Nested BEGIN Blocks
The following example nests two BEGIN blocks. The first one starts if there is a MATCH
on Emp_ID and the second starts if UPDATE fails:

MATCH Emp_ID FROM Emps(Cnt);
ON MATCH BEGIN

TYPE "Found employee ID <Emps(Cnt).Emp_ID";
UPDATE Department Curr_Sal Curr_JobCode Ed_Hrs

FROM Emps(Cnt);
IF FocError GT 0 THEN BEGIN

TYPE "Was not able to update the data source.";
PERFORM Errorhnd;
ENDBEGIN

ENDBEGIN

Command Reference

7-9 Information Builders

CALL
Use the CALL command when you need one procedure to call another. When you use
CALL, both the calling and called procedures communicate via variables: local variables
that you pass between them and the global transaction variables FocError, FocErrorRow,
and FocCurrent. CALL allows you to link modular procedures, so each procedure can
perform its own set of discrete operations within the context of your application.

For additional information about requirements for passing variables, see Chapter 2,
Maintain Concepts.

Syntax CALL Command
The syntax of the CALL command is

CALL procedure [FROM var_list] [INTO var_list] [;]

var_list: {stack|current_var} [{stack|current_var} ...]

where:

procedure

Is the name of the Maintain procedure to execute.

FROM

Is included if this Maintain procedure passes one or more variables to the called
procedure.

INTO

Is included if the called Maintain procedure passes one or more variables back to this
procedure.

var_list

Are the variables, both Current Area variables and stacks, which are passed to or
from this procedure.

current_var

Is the name of a Current Area variable.

stack

Is the name of a stack.

;

Terminates the command. Although the semicolon is optional, it is recommended that
you include it to allow for flexible syntax and better processing. For more
information about the benefits of including the semicolon, see Chapter 6, Language
Rules Reference.

 CALL

Maintaining Databases 7-10

Example Calling Procedures to Validate Data
The following example shows three Maintain procedures. The first displays a Winform to
collect employee IDs and salaries. It then calls Validate to make sure that the salaries are
in a range. If they are all valid, it calls PutData and includes them in the data source. If
not, it sets FocError to the invalid row and redisplays the data.

MAINTAIN FILE EMPLOYEE
INFER EMP_ID CURR_SAL INTO EMPSTACK;
WINFORM SHOW EMPL;

CASE VALIDATE_DATA
CALL VALIDATE FROM EMPSTACK;
IF FOCERROR EQ 0 THEN BEGIN

CALL PUTDATA FROM EMPSTACK;
TYPE "DATA ACCEPTED";

ENDBEGIN
ELSE BEGIN

TYPE "THERE WAS AN ERROR IN ROW <FOCERROR";
TYPE "TRY AGAIN";

ENDBEGIN
ENDCASE
END

The Validate procedure contains:

MAINTAIN FILE EMPLOYEE FROM EMPSTACK
INFER EMP_ID INTO EMPSTACK;
COMPUTE CNT/I4=1;
REPEAT EMPSTACK.FOCCOUNT;
IF EMPSTACK(CNT).CURR_SAL GT 100000 THEN BEGIN

COMPUTE FOCERROR=CNT;
GOTO EXITREPEAT;

ENDBEGIN
ELSE COMPUTE CNT=CNT+1;

ENDREPEAT
END

The PutData procedure contains:

MAINTAIN FILE EMPLOYEE FROM EMPSTACK
INFER EMP_ID INTO EMPSTACK;
FOR ALL INCLUDE EMP_ID CURR_SAL FROM EMPSTACK;
END

Command Reference

7-11 Information Builders

Example Calling Procedures to Populate Stacks
The following example shows all of the models and body types for the displayed country
and car. The first calls GETCARS to populate the stack containing Country and Car.
Maintain then calls GETMODEL to populate the other stack with the proper information.
Each time a new Country/Car combination is introduced, Maintain calls GETMODEL to
repopulate the stack.

MAINTAIN FILE CAR
INFER COUNTRY CAR INTO CARSTK;
INFER COUNTRY CAR MODEL BODYTYPE INTO DETSTK;
CALL GETCARS INTO CARSTK;
PERFORM GET_DETAIL;
WINFORM SHOW CARFORM;

CASE GET_DETAIL
CALL GETMODEL FROM CARSTK INTO DETSTK;
ENDCASE

CASE NEXTCAR
IF CARSTK.FOCINDEX LT CARSTK.FOCCOUNT

THEN COMPUTE CARSTK.FOCINDEX= CARSTK.FOCINDEX +1;
ELSE COMPUTE CARSTK.FOCINDEX = 1;

PERFORM GET_DETAIL;
ENDCASE

CASE PREVCAR
IF CARSTK.FOCINDEX GT 1

THEN COMPUTE CARSTK.FOCINDEX= CARSTK.FOCINDEX -1;
ELSE COMPUTE CARSTK.FOCINDEX = CARSTK.FOCCOUNT;

PERFORM GET_DETAIL;
ENDCASE

The procedure GETCARS loads all Country and Car combinations into CARSTK.

MAINTAIN FILE CAR INTO CARSTK
FOR ALL NEXT COUNTRY CAR INTO CARSTK;
END

The procedure GETMODEL loads all model and body type combinations into CARSTK
for displayed Country and Car combinations.

MAINTAIN FILE CAR FROM CARSTK INTO DETSTK
INFER COUNTRY CAR INTO CARSTK;
STACK CLEAR DETSTK;
REPOSITION COUNTRY;
FOR ALL NEXT COUNTRY CAR MODEL BODYTYPE INTO DETSTK
WHERE COUNTRY EQ CARSTK(CARSTK.FOCINDEX).COUNTRY
AND CAR EQ CARSTK(CARSTK.FOCINDEX).CAR;

END

 CASE

Maintaining Databases 7-12

CASE
The CASE and ENDCASE commands allow you to define a Maintain function (Maintain
functions are also known as cases). The CASE command defines the function’s
beginning, and the ENDCASE command defines its end.

You can branch to a function by issuing a PERFORM or GOTO command, invoking the
function directly, or invoking the function as a trigger action. Once control has branched
to the function, it proceeds to execute the commands within it. If control reached the end
of the function (that is, the ENDCASE command), it returns or exits depending on how
the function was called.

• Branch and return. If the function was called by a branch-and-return command
(that is, by a PERFORM command or a trigger), or invoked, control returns to the
point immediately following the PERFORM, trigger, or function reference.

• Branch. If the function was called by a simple branch command (that is, by a GOTO
command), and control reaches the end of the function, it means that you have not
provided any logic to direct control elsewhere and so it exits the procedure. (If this is
not the result you want, simply call the function using PERFORM instead of GOTO,
or else issue a command before ENDCASE to transfer control elsewhere.)

A CASE command that is encountered in the sequential flow of a procedure is not
executed.

You assign a unique name to each function using the CASE command.

Syntax CASE Command
The syntax for the CASE command is

CASE functionname [TAKES p1/t1[,…, pn/tn]] [RETURNS result/t] [;]
[declarations]
commands
.
.
.

ENDCASE

where:

functionname

Is the name you give to the function, and can be up to 66 characters long. The name
must begin with a letter, and can include any combination of letters, digits, and
underscores (_).

Command Reference

7-13 Information Builders

TAKES p1/t1

Specifies that the function takes parameters. p1/t1…pn/tn are the function’s
parameter variables (p) and the data type of each variable (t). When you invoke the
function, you pass it variable names or values to substitute for these parameters.
Parameters must be scalar; they cannot be stacks.
If the function is the Top function or is being used as a trigger action, it cannot take
parameters. See Chapter 5, Using the Winform Painter, for information about
triggers.

RETURNS result/t

Specifies that the function returns a value. result is the name of the variable being
returned, and t is the variable’s data type. The return value must be scalar; it cannot
be a stack.
If the function is the Top function or is being used as a trigger action, it cannot return
a value. See Chapter 5, Using the Winform Painter, for information about triggers.

declarations

Is an optional DECLARE command to declare any variables that are local to the
function. These declarations must precede all other commands in the function.

commands

Is one or more commands, except for CASE, DESCRIBE, END, MAINTAIN, and
MODULE.

;

Terminates the CASE command’s parameter and return variable definitions.
Although the semicolon is optional, it is recommended that you include it to allow for
flexible syntax and better processing. For more information about the benefits of
including the semicolon, see Chapter 6, Language Rules Reference.

Reference Usage Notes for CASE

• The first function in a procedure must be an explicit or implicit Top function.

• CASE commands cannot be nested.

Reference Commands Related to CASE

• PERFORM transfers control to another function. When control reached the end of
that function, it returns to the command following PERFORM. See PERFORM on
page 7-80.

• GOTO transfers control to another function or to the end of the current function.
Unlike the PERFORM command, it does not return the control of the command that
called the function. See GOTO on page 7-40.

 CASE

Maintaining Databases 7-14

Invoking a Function: Flow of Control
When a function is invoked, and control in the function completes, control returns to the
next command after the invocation.

After the Increase function completes in the following example, processing resumes with
the line after the PERFORM command (the TYPE command):

PERFORM Increase;
TYPE "Returned from Increase";
.
.
.
CASE Increase
COMPUTE Salary = Salary * 1.05;
.
.
.
ENDCASE

Using a Function’s Return Value
If a function returns a value via the RETURNS phrase, you can use that value anywhere
you can use an expression. For example:

MAINTAIN FILE HousePlan
.
.
.

CASE FindArea TAKES Length/D6.2, Width/D6.2 RETURNS Area/D6.2;
Area = Length * Width;
ENDCASE
.
.
.

COMPUTE ConferenceRoom/D6.2 = FindArea(CRlength,CRwidth);

Command Reference

7-15 Information Builders

Effects of Function Parameters
When a function takes parameters or returns a value, you cannot assign it as a trigger
action in the Winform Painter. See Chapter 5, Using the Winform Painter, for information
about triggers.

The Top Function
When you execute a Maintain procedure, the procedure begins by executing its Top
function. Every Maintain procedure has a Top function. Top does not take or return
parameters. You can choose to define the Top function:

• Explicitly, beginning it with a CASE command and ending it with an ENDCASE
command, as all other Maintain functions are defined. This is the recommended
method for defining Top.

For example:

CASE Top
.
.
.
ENDCASE

• Implicitly, without a CASE Top command. In the absence of CASE Top, Maintain
assumes that there is an implied Top function that:

• Begins with the first executable command that is outside of a function (that is,
outside of a CASE command).

• Ends with the next non-executable command.

For the purpose of this description, Maintain considers non-executable commands to
be CASE, DECLARE, DESCRIBE, END, MAINTAIN, and MODULE; all other
commands are considered to be executable.

 COMMIT

Maintaining Databases 7-16

COMMIT
The COMMIT command processes a logical transaction. A logical transaction is a group
of data source operations in an application that are treated as one. The COMMIT
operation signals a successful end of a transaction and writes the transaction’s INCLUDE,
UPDATE, and DELETE operations to the data source. The data source is (or should be)
in a consistent state and all of the updates made by that transaction are now made
permanent.

Syntax COMMIT Command
The syntax of the COMMIT command is

COMMIT [;]

where:

;

Terminates the command. Although the semicolon is optional, it is recommended that
you include it to allow for flexible syntax and better processing. For more
information about the benefits of including the semicolon, see Chapter 6, Language
Rules Reference.

Reference Usage Notes for COMMIT

• When you issue a transaction that writes to multiple types of data sources, each
DBMS (database management system) evaluates its part of the transaction
independently. When a COMMIT command ends the transaction, the success of the
COMMIT against each data source type is independent of the success of the
COMMIT against the other data source types.

For example, if you run a procedure that accesses the FOCUS data sources Employee
and JobFile and the DB2 data source Salary, the success or failure of the COMMIT
for Salary is independent of the success of the COMMIT for Employee and JobFile.
This is known as a broadcast commit.

• COMMIT is automatically issued when a procedure does not contain any COMMIT
commands, and the application is exited normally. This means an error did not cause
program termination. If a procedure does not contain any COMMIT commands and it
is terminated abnormally (for example if the system has run out of memory), a
COMMIT is not issued. When a called procedure is exited, an automatic COMMIT
is not issued. COMMIT is only issued when exiting the application.

• The variable FocCurrent is set after a COMMIT finishes. If the COMMIT is
successful, FocCurrent is set to zero. If FocCurrent is not zero, it means that the
COMMIT failed and all of the records in the logical unit of work will be rolled back
because an internal ROLLBACK is issued.

Command Reference

7-17 Information Builders

COMPILE
The COMPILE command creates a compiled procedure with a file type of FOCCOMP
(under CMS) or allocated to ddname FOCCOMP (under OS/390). You can reduce the
time needed to start a procedure that contains Winforms by compiling the procedure. The
more frequently the procedure will be run, the more time you save by compiling it.

This command is outside the Maintain language, but is described here for your
convenience. You cannot issue this command within a Maintain procedure.

Syntax COMPILE Command
The syntax of the COMPILE command is

COMPILE procedure_name [AS newname]

where:

procedure_name

Is the name of the uncompiled procedure.

newname

Is the name given to the new compiled procedure file. If you do not supply a name,
the name of the compiled procedure defaults to the name of the uncompiled
procedure.

Reference Commands Related to COMPILE

• RECOMPILE enables you to recompile a procedure to run with maximum
efficiency under a later release of Maintain.

• RUN executes compiled procedures.

 COMPUTE

Maintaining Databases 7-18

COMPUTE
The COMPUTE command enables you to:

• Create a global variable (including global objects), and optionally assign it an initial
value. (You can use the DECLARE command to create both local and global
variables. See Local and Global Declarations on page 7-29 for more information
about local and global variables.)

• Assign a value to an existing variable.

Syntax COMPUTE Command
The syntax of the COMPUTE command is

[COMPUTE]
target_variable[/datatype [DFC cc YRT yy] [missing]][= expression];
.
.
.

missing: [MISSING {ON|OFF} [NEEDS] [SOME |ALL][DATA]]

where:

COMPUTE

Is an optional keyword. It is required if the preceding command can take an optional
semicolon terminator, but was coded without one. In all other situations it is
unnecessary.
When the COMPUTE keyword is required, and there is a sequence of COMPUTE
commands, the keyword needs to be specified only once for the sequence, for the
first command in the sequence.

target_variable

Is the name of the variable which is being created and/or to which a value is being
assigned. It can be qualified, and must resolve to a single field or stack cell. If the
variable does not have a prefix, it is assumed to be a Current Area variable. Even
when a prefix is provided, it is the corresponding column in the Current Area that
receives the value. The only two variables that can be assigned a value are a stack
cell and a Current Area column. A variable must start with a letter and can only
contain letters, numbers and underscores (_).

datatype

Is included in order to create a new variable. If creating a simple variable, you can
specify all FOCUS built-in formats and edit options (except for TX) as described for
the Master File FORMAT attribute in the Describing Data manual; if creating an
object, you can specify a class. You must specify a data type when you create a new
variable. You can only specify a variable’s data type once, and you cannot redefine
an existing variable’s data type.

Command Reference

7-19 Information Builders

DFC cc

Specifies a default century that will be used to interpret any dates with unspecified
centuries in expressions assigned to this variable. cc is a two-digit number indicating
the century (for example, 19 would indicate the twentieth century). If this is not
specified, it defaults to 19. For more information about working with cross-century
dates, see the Developing Applications manual.
Specifying DFC cc is optional if the data type is a built-in format (such as
alphanumeric or integer). It is not specified if the data type is a class, as it is relevant
only for scalar variables.

YRT yy

Specifies a default threshold year for applying the default century identified in DFC
cc. yy is a two-digit number indicating the year. If this is not specified, it defaults to
00. For more information about working with cross-century dates, see the Developing
Applications manual.
When the year of the date being evaluated is less than the threshold year, the century
of the date being evaluated defaults to the century defined in DFC cc plus one. When
the year is equal to or greater than the threshold year, the century of the date being
evaluated defaults to the century defined in DFC cc.
Specifying YRT yy is optional if the data type is a built-in format (such as
alphanumeric or integer). It is not specified if the data type is a class, as it is relevant
only for scalar variables.

missing

Is used to interpret null data. This is optional if the data type is a built-in format (such
as alphanumeric or integer). It is not specified if the data type is a class, as it is
relevant only for scalar variables.

MISSING

If the MISSING syntax is omitted, the variable’s default value is zero for numeric
variables and a space for alphanumeric and date variables. If it is included, its default
value is null.

ON

Sets the default value to null.

OFF

Sets the default value to zero or a space.

NEEDS

Is an optional keyword that clarifies the meaning of the command for a reader.

SOME

Indicates that for the target variable to have a value, some (at least one) of the
variables in the expression must have a value. If all of the variables in the expression
are null, the target variable will be null. This is the default.

 COMPUTE

Maintaining Databases 7-20

ALL

Indicates that for the target variable to have a value, all the variables in the
expression must have values. If any of the variables in the expression is null, the
target variable will be null.

DATA

Is an optional keyword that clarifies the meaning of the command for a reader.

=

Is optional when COMPUTE is used solely to establish format. The equal sign is
required when expression is used.

expression

Is any standard Maintain expression, as defined in Chapter 8, Expressions Reference.
Each expression must be terminated with a semicolon (;). When creating a new
variable using a class data type, you must omit expression.

Example Moving the COMPUTE Keyword
You can place an expression on the same line as the COMPUTE keyword, or on a
different line, so that

COMPUTE
TempEmp_ID/A9 = 000000000;

is the same as:

COMPUTE TempEmp_ID/A9 = 000000000;

Example Multi-Statement COMPUTE Commands
You can type a COMPUTE command over as many lines as you need. You can also
specify a series of assignments so long as each expression is ended with a semicolon. For
example:

COMPUTE TempEmp_ID/A9 = 000000000;
TempLast_Name/A15 ;
TempFirst_Name/A10;

Command Reference

7-21 Information Builders

Example Combining Several Statements Onto One Line
Several expressions can be placed on one line as long as each expression ends with a
semicolon. The following shows two COMPUTE expressions on one line and a third
COMPUTE on the next line. The first computes a five percent raise and the second
increases education hours by eight. The third concatenates two name fields into one field:

COMPUTE Raise=Curr_Sal*1.05; Ed_Hrs=Ed_Hrs+8;
Name/A25 = First_Name || Last_Name;

Reference Usage Notes for COMPUTE

• If the names of incoming data fields are not listed in the Master File, they must be
defined before they can be used. Otherwise, rejected fields are unidentified and the
procedure is terminated.

There are two different ways these fields can be defined. The first uses the notation:

COMPUTE target_variable/format =;

Because there is no expression after the equal sign (=), the field and its format is
made known, but nothing else happens. If this style is used for a field in a Winform,
the field appears on the Winform without a default value. Because COMPUTE is
used solely to establish format, the equal sign is optional and the following syntax is
also correct:

COMPUTE target_variable/format;

The second method of defining a user-defined field can be used when an initial value
is desired. The syntax is:

COMPUTE target_variable/format = expression;

• Each field referred to or created in a Maintain procedure counts as one field toward
the 3,072 field limit, regardless of how often its value is changed by COMPUTE
commands. However, if a data source field is read by a WINFORM command and
also has its value changed by a COMPUTE command, it counts as two fields.

Reference Commands Related to COMPUTE

• DEFINE is a Master File attribute (not a command) that defines temporary fields and
derives their values from other fields in the data source. This type of temporary field
is called a virtual field. DEFINE automatically creates a corresponding virtual
column in every stack that includes the field’s segment.

• DECLARE creates local and global variables. See DECLARE on page 7-27.

 COMPUTE

Maintaining Databases 7-22

Using COMPUTE to Invoke Functions
When you invoke a function as a separate statement (that is, outside of a larger
expression), if the preceding command can take an optional semicolon terminator, but
was coded without one, you must invoke the function in a COMPUTE or PERFORM
command. (You can use PERFORM for Maintain functions only, though not for Maintain
functions that return a value.). For example, in the following source code, the NEXT
command is not terminated with a semicolon, so the function that follows it must be
invoked in a COMPUTE command:

NEXT CustID INTO CustStack
COMPUTE VerifyCustID();

However, in all other situations, you can invoke functions directly, without a COMPUTE
command. For example, in the following source code, the NEXT command is terminated
with a semicolon, so the function that follows it can be invoked without a COMPUTE
command:

NEXT CustID INTO CustStack;
VerifyCustID();

For more information about terminating commands with semicolons, see Chapter 6,
Language Rules Reference.

 COPY

Maintaining Databases 7-23

COPY
The COPY command copies some or all of the rows of one stack into another stack. You
can use the COPY command to overwrite existing rows in the destination stack, to add
new rows, or to create the entire destination stack.

You must define the contents of a stack before copying data into it. This can be
accomplished by issuing a NEXT or an INFER command for data source fields, and
COMPUTE for non-data source fields.

Syntax COPY Command
The syntax of the COPY command is

[{FOR|STACK} {int|ALL}] COPY FROM {stk[(row)]|CURRENT} into
{stk[(row)]|CURRENT}[where] [;]

where: [WHERE expression1 operator expression2]

where:

FOR

Is a prefix used with int or ALL to specify the number of rows to copy from the
FROM stack into the INTO stack.

int

Is an integer constant or variable that specifies how many rows of the FROM stack
are copied into the INTO stack.

ALL

Indicates that all of the rows starting with either the first row or the subscripted row
are copied from the FROM stack into the INTO stack.

STACK

Is a synonym for the prefix FOR ALL.

FROM

Is used with a stack name to specify which stack to copy the data from.

INTO

Is used with a stack name to specify the stack to be created or modified.

stk

Is the name of the stack that the data is copied from or to.

Command Reference

7-24 Information Builders

row

Is a stack subscript that specifies a starting row number. It can be a constant, an
integer variable or any Maintain expression that results in an integer value.

CURRENT

Specifies the Current Area.

where

Is the selection criterion for copying stack rows.

WHERE

Indicates the start of the WHERE phrase. If you specify a WHERE phrase, you must
also specify a FOR phrase.

expression

Can be any valid Maintain expression. Unlike an expression in the WHERE phrase of
the NEXT command, it does not need to refer to a data source field.

operator

Is used to combine two or more expressions.

;

Terminates the command. Although the semicolon is optional, it is recommended that
you include it to allow for flexible syntax and better processing. For more
information about the benefits of including the semicolon, see Chapter 6, Language
Rules Reference.

Example Copying All Rows of a Stack
The following copies the entire Emp stack into a new stack called Newemp:

FOR ALL COPY FROM Emp INTO Newemp;

Example Copying a Specified Number of Stack Rows
The following copies 100 rows from the Emp stack starting with row number 101. The
rows are inserted beginning with row one of the stack Subemp:

FOR 100 COPY FROM Emp(101) INTO Subemp;

Example Copying the First Row of a Stack
The following copies the first row of the Emp stack into the first row in the Temp stack.
Only the first row in the FROM stack is copied because this is the default when a prefix is
not specified for the COPY command. The data is copied into the first row of the Temp
stack because the first row is the default when a row number is not supplied for the INTO
stack:

COPY FROM Emp INTO Temp;

 COPY

Maintaining Databases 7-25

Example Copying a Row Into the Current Area
The following example copies the tenth row of the Emp stack into the Current Area. Only
one row is copied from the Emp stack because the COPY command does not have a
prefix. Every column in the stack is copied into the Current Area. If there is already a
field in the Current Area with the same name as a column in the stack, the Current Area
variable is replaced with data from the Emp stack:

COPY FROM Emp(10) INTO CURRENT;

Copying Rows Based on Selection Criteria
You can also copy selected rows based on selection criteria. The following example
copies every row in the World stack that has a Country equal to USA into a new stack
called USA:

FOR ALL COPY FROM World INTO USA WHERE Country EQ 'USA';

The following takes data from one stack and places it into three different stacks, one to
add data, one to change data, and one to update data.

FOR ALL COPY FROM Inputstk INTO Addstk WHERE Flag EQ 'A';
FOR ALL COPY FROM Inputstk INTO Delstk WHERE Flag EQ 'D';
FOR ALL COPY FROM Inputstk INTO Chngstk WHERE Flag EQ 'C';
FOR ALL INCLUDE Dbfield FROM Addstk;
FOR ALL DELETE Dbfield FROM Delstk;
FOR ALL UPDATE Dbfield1 Dbfield2 FROM Chngstk;

Appending One Stack to Another
The following example takes an entire stack and adds it to the end of an existing stack.
The subscript consists of an expression. Yeardata.FocCount is a stack variable where
Yeardata is the name of the stack and FocCount contains the number of rows currently in
the stack. By adding one to FocCount, the data is added after the last row:

FOR ALL COPY FROM Junedata INTO Yeardata(Yeardata.FocCount+1);

Reference Usage Notes for COPY

• If the FOR int prefix specifies more rows than are in the FROM stack, all of the rows
are copied.

• Only the first row of the FROM stack is copied if the COPY command does not
include FOR.

• The entire stack is copied if the FROM stack is not subscripted and FOR ALL is
used.

Command Reference

7-26 Information Builders

• The row to start copying from defaults to the first row unless the FROM stack is
subscripted. If the FROM stack is subscripted, the copy process starts with the row
number and copies as many rows as specified in the FOR n prefix, or the remainder
of the stack if FOR ALL is specified.

• No change is made to the FROM stack unless it is also the INTO stack.

• INTO CURRENT cannot be used with the FOR phrase and generates an error if
specified.

• Stack columns created using the COMPUTE command cannot be copied into the
Current Area.

• If the FROM stack is the Current Area, the only Current Area fields that are copied
are those that have a corresponding column name in the INTO stack.

• If the INTO stack is not subscripted, the data is copied into the first row in the stack.
If the INTO stack is subscripted, the copied row or rows are inserted at this row.

• If the COPY command specifies the command output destination as a row or rows of
an existing stack that already have data in them, then the old data in these rows is
overwritten with the new data when the COPY is executed.

• If the FROM stack has fewer columns than the INTO stack, the columns that do not
have any data are initialized to blank, zero or null (missing) as appropriate.

• If the FROM stack has more columns than the INTO stack, only corresponding
columns are copied.

• The FOR prefix copies rows from the source stack one row at a time, not all at the
same time. For example, the following command

FOR ALL COPY FROM Car(Car.FocIndex) INTO Car(Car.FocIndex+1);

copies the first row into the second, then copies those same values from the second
row into the third, and so on. When the command has finished executing, all rows
will have the same values as the first row.

Reference Commands Related to COPY

• INFER defines the columns in a stack.

• COMPUTE defines the columns in a stack for non-data source fields.

• NEXT defines the columns in a stack and places data into it.

 DECLARE

Maintaining Databases 7-27

DECLARE
The DECLARE command creates global and local variables (including objects), and
gives you the option of assigning an initial value.

Where you place a DECLARE command within a procedure depends on whether you
want it to define local or global variables; see Local and Global Declarations on page
7-29 for more information.

Syntax DECLARE Command
The syntax of the DECLARE command is

DECLARE
[(]
objectname/datatype [DFC cc YRT yy] [missing]][= expression];
.
.
.
[)]

missing: [MISSING {ON|OFF} [NEEDS] [SOME|ALL][DATA]]

where:

objectname

Is the name of the object or other variable that you are creating. The name is subject
to the Maintain language’s standard naming rules; see Chapter 6, Language Rules
Reference for more information.

datatype

Is a data type (a class or built-in format).

expression

Is an optional expression that will provide the variable’s initial value. If the
expression is omitted, the variable’s initial value is the default for that data type: a
space or null for date and alphanumeric data types, and zero or null for numeric data
types. When declaring a new variable using a class data type, you must omit
expression.

Command Reference

7-28 Information Builders

DFC cc

Specifies a default century that will be used to interpret any dates with unspecified
centuries in expressions assigned to this variable. cc is a two-digit number indicating
the century (for example, 19 would indicate the twentieth century). If this is not
specified, it defaults to 19. For more information about working with cross-century
dates, see the Developing Applications manual.
This is optional if the data type is a built-in format. It is not specified if the data type
is a class, as it is relevant only for scalar variables.

YRT yy

Specifies a default threshold year for applying the default century identified in DFC
cc. yy is a two-digit number indicating the year. If this is not specified, it defaults to
00. For more information about working with cross-century dates, see the Developing
Applications manual.
When the year of the date being evaluated is less than the threshold year, the century
of the date being evaluated defaults to the century defined in DFC cc plus one. When
the year is equal to or greater than the threshold year, the century of the date being
evaluated defaults to the century defined in DFC cc.
This is optional if the data type is a built-in format. It is not specified if the data type
is a class, as it is relevant only for scalar variables.

missing

Is used to interpret null data. This is optional if the data type is a built-in format. It is
not specified if the data type is a class, as it is relevant only for scalar variables.

MISSING

If the MISSING syntax is omitted, the variable’s default value is zero for numeric
variables and a space for alphanumeric and date variables. If it is included, its default
value is null.

ON

Sets the default value to null.

OFF

Sets the default value to zero or a space.

NEEDS

Is an optional keyword that clarifies the meaning of the command for a reader.

SOME

Indicates that for the target variable to have a value, some (at least one) of the
variables in the expression must have a value. If all of the variables in the expression
are null, the target variable will be null. This is the default.

 DECLARE

Maintaining Databases 7-29

ALL

Indicates that for the target variable to have a value, all the variables in the
expression must have values. If any of the variables in the expression is null, the
target variable will be null.

DATA

Is an optional keyword that clarifies the meaning of the command for a reader.

()

Groups a sequence of declarations into a single DECLARE command. The
parentheses are required for groups of local declarations; otherwise they are optional.

Reference Commands Related to DECLARE

• DESCRIBE defines classes and data type synonyms. See DESCRIBE on page 7-34.

• COMPUTE creates global variables (including objects) and assigns values to
existing variables. See COMPUTE on page 7-18.

Local and Global Declarations
When you declare a new variable, you choose between making the variable:

• Local (that is, known only to the function in which it is declared). To declare a local
variable, issue the DECLARE command inside the desired function. The DECLARE
command must precede all other commands in the function.

If you wish to declare a local variable in the Top function, note that you cannot issue
a DECLARE command in an implied Top function, but you can issue it within an
explicit Top function.

• Global (that is, known to all the functions in the procedure). To declare a global
variable, place the DECLARE command outside of a function (for example, at the
beginning of the procedure prior to all functions), or define it using the COMPUTE
command anywhere in the procedure.

We recommend declaring your variables locally, and—when you need to work with a
variable outside the function in which it was declared—passing it to the other function as
an argument. Local variables are preferable to global variables because they are protected
from unintended changes made in other functions.

Command Reference

7-30 Information Builders

DELETE
The DELETE command identifies segment instances from a transaction source—a stack
or the Current Area—and deletes the corresponding instances from the data source.

When you issue the command you specify an anchor segment. For each row in the
transaction source DELETE searches the data source for a matching segment instance
and, when it finds a match, deletes that anchor instance and all its descendants.

If the anchor segment is not the root, you must establish a current instance in each of the
anchor’s ancestor segments, or provide ancestor segment key values in the source stack.
This ensures that DELETE can navigate from the root to the anchor segment’s first
instance.

Syntax DELETE Command
The syntax of the DELETE command is

[FOR {int|ALL}] DELETE segment [FROM stack[(row)]] [;]

where:

FOR

Is used with ALL or an integer to specify how many stack rows to use to identify
segment instances. If FOR is omitted, one stack row will be used.
When you specify FOR, you must also specify FROM to identify a source stack.

int

Is an integer constant or variable that indicates the number of stack rows to use to
identify segment instances to be deleted.

ALL

Specifies that the entire stack is used to delete the corresponding records in the data
source.

segment

Specifies the anchor segment of the path you wish to delete. To specify a segment,
provide the name of the segment or of a field within the segment.

 DELETE

Maintaining Databases 7-31

FROM

Is used to specify a stack whose key columns identify records to delete. If no stack is
specified, data from the Current Area is used.

stack

Is a stack name. Only one stack can be specified.

row

Is a subscript that specifies which stack row to begin with.

;

Terminates the command. Although the semicolon is optional, it is recommended that
you include it to allow for flexible syntax and better processing. For more
information about the benefits of including the semicolon, see Chapter 6, Language
Rules Reference.

Example Specifying Which Segments to Delete
The DELETE command removes the lowest specified segment and all of its descendant
segments. For example, if a data source structure has four segments in a single path
(named First, Second, Third, and Fourth), the command:

DELETE First.Field1 Second.Field2;

will delete instances from the Second, Third and Fourth segments.

If you issue the command:

DELETE First.Field1;

you will delete the entire data source path.

Example Deleting Records Identified in a Stack
In the following example the data in rows 2, 3, and 4 of the Stkemp stack is used to delete
data from the data source. The stack subscript indicates start in the second row of the
stack and the FOR 3 means DELETE data in the data source based on the data in the next
3 rows.

FOR 3 DELETE Emp_ID FROM Stkemp(2);

Command Reference

7-32 Information Builders

Example Deleting a Record Identified in a Winform
The first example prompts the user for the employee ID in the EmployeeIDForm
Winform. If the employee is already in the data source, all records for that employee are
deleted from the data source. This includes the employee’s instance in the root segment
and all descendent instances (such as pay dates, addresses, etc.). In order to find out if the
employee is in the data source, a MATCH command is issued:

MAINTAIN FILE Employee
WINFORM SHOW EmployeeIDForm;
CASE DELEMP
MATCH Emp_ID;
ON MATCH DELETE Emp_ID;
ON NOMATCH TYPE "Employee id <Emp_ID not found. Reenter";
COMMIT;
ENDCASE
END

When the user presses the Enter key, function DELEMP is triggered from a Winform.
Control is then passed back to EmployeeIDForm.

The second example provides the same functionality. The only difference is that a
MATCH is not used to determine if the employee already exists in the data source. The
DELETE can only work if the record exists. Therefore if an employee ID is entered that
does not exist, the only action that can be taken is to display a message. In this case, the
variable FocError is checked. If FocError is not equal to zero, then the DELETE failed
and the message is displayed:

MAINTAIN FILE Employee
WINFORM SHOW EmployeeIDForm;
CASE DELEMP
DELETE Emp_ID;
IF FocError NE 0 THEN

TYPE "Employee id <Stackemp.Emp_ID not found. Reenter";
COMMIT;
ENDCASE
END

 DELETE

Maintaining Databases 7-33

Reference Usage Notes for DELETE

• Because the DELETE command removes the instance pointed to by the segment
position marker, after the deletion, the marker has a null value and the segment has
no current position. If you need to reestablish position you can issue the
REPOSITION command.

• You delete a unique segment by deleting its parent. If you wish to erase a unique
segment’s fields without affecting its parent, you can instead update its fields to
space, zero, or null.

• In order for the DELETE to work, the data must exist in the data source. When a set
of rows are changed without first finding out if they already exist in the data source,
then it is possible that some of the rows in the stack will be rejected. Upon the first
rejection, the process stops and the rest of the set is rejected. If you want all rows to
be accepted or rejected as a unit, you should treat the stack as a logical transaction:
evaluate the FocError transaction variable, and then issue a ROLLBACK command if
the entire stack is not accepted. The transaction variable FocErrorRow is
automatically set to the number of the first row that failed.

• After the DELETE is processed, the transaction variable FocError is given a value. If
the DELETE is successful, FocError is zero. If the DELETE fails (i.e., the key values
do not exist in the data source), FocError is set to a non-zero value and—if the
DELETE is set-based—FocErrorRow is set to the number of the row that failed. If at
COMMIT time there is a concurrency conflict, the transaction variable FocCurrent is
set to a non-zero value.

• A DELETE command cannot have more than one input (FROM) stack.

• After a DELETE command completes, the variable FocError is set. If the
DELETE is successful (the records to be deleted exist in the data source) then
FocError is set to zero. If the records do not exist, FocError is set to a non-zero
value. If the DELETE operation was set-based, Maintain sets FocErrorRow to
the number of the row that failed.

• Maintain requires that data sources to which it writes have unique keys.

Reference Commands Related to DELETE

• COMMIT makes all data source changes since the last COMMIT permanent. See
COMMIT on page 7-16.

• ROLLBACK cancels all data sources changes made since the last COMMIT. See
ROLLBACK on page 7-94.

Command Reference

7-34 Information Builders

DESCRIBE
The DESCRIBE command enables you to define classes and to create synonyms for data
types.

Syntax DESCRIBE Command
You must issue the DESCRIBE command outside of a function—for example, at the
beginning of the procedure prior to all functions. (Functions are also known as cases.)

The syntax of the DESCRIBE command to define a new class is

DESCRIBE classname = ([superclass +] memvar/type [, memvar/type] ...) [;]

[memfunction

[memfunction] ...

ENDDESCRIBE]

The syntax of the DESCRIBE command to define a synonym for a data type is

DESCRIBE synonym = datatype ;

where:

classname

Is the name of the class that you are defining. The name is subject to the Maintain
language’s standard naming rules; see Chapter 6, Language Rules Reference for
more information.

superclass

Is the name of the superclass from which you wish to derive this class. Include this
only if this is to be a subclass.

memvar

Names one of the class’s member variables. The name is subject to the Maintain
language’s standard naming rules; see Chapter 6, Language Rules Reference for
more information.

type

Is a data type (a built-in format or a class).

memfunction

Defines one of the class’s member functions. Member functions are defined the same
way as other Maintain functions, using the CASE command; see CASE on page 7-12
for more information.

synonym

Is a synonym for a data type (a class or format). The synonym is subject to the
Maintain language’s standard naming rules; see Chapter 6, Language Rules
Reference for more information.

 DESCRIBE

Maintaining Databases 7-35

;

For class definitions, this terminates the definition if the definition omits member
functions. If it includes member functions, the semicolon is omitted and the
ENDDESCRIBE command is required.
For synonym definitions, this terminates the definition and is required.

ENDDESCRIBE

Ends the class definition if it includes member functions. If it omits member
functions, the ENDDESCRIBE command must also be omitted, and the definition
must be terminated with a semicolon.

Example Data Type Synonyms
Data type synonyms can make it easier for you to maintain variable declarations. For
example, if your application creates many variables for people’s names, and defines them
all as A30, you would define a data type synonym for A30:

DESCRIBE NameType = A30;

You would then define all of the name variables as NameType:

DECLARE UserName/NameType;

DECLARE ManagerName/NameType;

DECLARE CustomerName/NameType;

If you needed to change all name variables to A/40, you could change all of them at once
simply by changing one data type synonym:

DESCRIBE NameType = A40;

Example Defining a Class
The following DESCRIBE command defines a class named Floor in an architecture
application:

DESCRIBE Floor = (Length/I4, Width/I4, Area/I4)
CASE PrintFloor
SAY "length=" Length " width=" Width " area=" Area "\n";
ENDCASE

ENDDESCRIBE

Reference Commands Related to DESCRIBE

• DECLARE creates local and global variables, including objects. See DECLARE on
page 7-27.

• COMPUTE creates global variables, including global objects, and assigns values to
existing variables. See COMPUTE on page 7-18.

Command Reference

7-36 Information Builders

END
The END command marks the end of a Maintain procedure and terminates its execution.

Syntax END Command
The syntax of the END command is

END

where:

END

Is the last line of the procedure, and must be coded in uppercase letters.

Reference Commands Related to END

• MAINTAIN is used to initiate the parsing and execution of a Maintain procedure.
See MAINTAIN on page 7-53.

• CALL is used to call one procedure from another. See CALL on page 7-9.

 EX

Maintaining Databases 7-37

EX
You can execute an uncompiled Maintain procedure by issuing the EX command (which
is sometimes lengthened to EXEC).

This command is outside the Maintain language, but is described here for your
convenience. You cannot issue this command from within a Maintain procedure.

Syntax EX Command
The syntax of the EX command is

EX[EC] procedure_name

where:

EC

Is an optional extension of the command, and is provided only for user readability.

procedure_name

Is the name of the procedure.

Example Using EX
For example, the following command executes the uncompiled version of the EmpInfo
procedure:

EX EmpInfo

Command Reference

7-38 Information Builders

FocCount
The FocCount stack variable contains the number of rows in the stack. This variable is
automatically maintained and the user does not need to do anything when new rows are
added or deleted from the stack. For example, the following stack variable contains the
number of rows in the EmpInfo stack:

EmpInfo.FocCount

The FocCount variable is useful as a test to see whether or not a data source retrieval
command is successful. For example, after putting data into a stack, FocCount can be
checked to see if its value is greater than zero. FocCount can also be used to perform an
action on every row in a stack. A repeat loop can be set up that will loop the number of
times specified by the FocCount variable.

The following example computes a new salary for each row retrieved from the data
source:

FOR ALL NEXT Emp_ID Curr_Sal INTO Pay;
COMPUTE Pay.NewSal/D12.2=;
REPEAT Pay.FocCount Cnt/I4=1;

COMPUTE Pay(Cnt).NewSal = Pay(Cnt).Curr_Sal * 1.05;
ENDREPEAT Cnt=Cnt+1;

FocCurrent
FocCurrent contains the return code from logical transaction processing. This variable
indicates whether or not there is a conflict with another transaction. If the variable value is
zero, there is no conflict and the transaction is accepted. If the value is not zero, there is a
conflict. FocCurrent is set after each COMMIT and ROLLBACK command.

FocCurrent is a global variable: you do not need to pass it between procedures.

FocError
FocError contains the return code from the INCLUDE, UPDATE, and DELETE
commands. If all the rows in the stack are successfully processed, FocError is set to zero.
FocError is set to a non-zero value if:

• INCLUDE rejects the input.

• UPDATE rejects the update.

• DELETE rejects the delete.

• REVISE rejects the changes.

FocError is a global variable; you do not need to pass it between procedures.

 FocErrorRow

Maintaining Databases 7-39

FocErrorRow
After any set-based data source operation (FOR … UPDATE, DELETE, REVISE, or
INCLUDE), if FocError is set to a non-zero value, then FocErrorRow is the number of
the row that caused the error. FocErrorRow is a global variable; you do not need to pass it
between procedures.

FocFetch
FocFetch contains the return code of the most recently issued NEXT or MATCH
command. If the NEXT or MATCH command returned data, FocFetch is set to zero;
otherwise, it is set to a non-zero value.

It is recommended that you test FocFetch in place of issuing the ON NEXT, ON
NONEXT, ON MATCH, and ON NOMATCH commands: FocFetch accomplishes the
same thing more efficiently.

For example:

FOR ALL NEXT CustID INTO CustOrderStack;
IF FocFetch NE 0 THEN ReadFailed();

FocFetch is a global variable; you do not need to pass it between procedures.

FocIndex
The FocIndex stack variable is a pointer to the current instance in a stack. This variable is
manipulated by the developer and can be used to do things such as determine which row
of a stack is to be displayed on a Winform. A Winform displays data from a stack based
on the value of FocIndex. For example, if a Winform currently displays data from the
PayInfo stack and the following compute is issued:

COMPUTE PayInfo.FocIndex=15;

The fifteenth row of the stack is displayed in the Winform.

Command Reference

7-40 Information Builders

GOTO
The GOTO command is used to transfer control to a different Maintain function, to a
special point within the current function, or terminates the application.

If you wish to transfer control to a different function, it is recommended that you use the
PERFORM command instead of GOTO.

Syntax GOTO Command
The syntax of the GOTO command is

GOTO functionname [;]
or

GOTO Top [;]
or
GOTO END [KEEP|RESET] [;]

or

GOTO EXIT [;]

or

GOTO ENDCASE [;]

or

GOTO ENDREPEAT [;]

or
GOTO EXITREPEAT [;]

where:

functionname

Specifies the name of the function that control is transferred to. Maintain expects to
find a function by that name in the procedure. You cannot use GOTO with a function
that has parameters.

Top

Transfers control to beginning of the Top function. All local variables are freed;
current data source positions are retained, as are any uncommitted data source
transactions. See GOTO and PERFORM on page 7-43 and PERFORM on page 7-80
for more information.

 GOTO

Maintaining Databases 7-41

END

Terminates the procedure; control returns to whatever called the procedure. No
function may be named END, as such a function would be ignored and never
executed.

KEEP

Terminates a called procedure, but keeps its data—the values of its variables and data
source position pointers—in memory. It remains in memory through the next
invocation, or (if it is not called again) until the application terminates.

RESET

Terminates a called procedure and clears its data from memory. This is the default.

EXIT

This is similar to GOTO END but immediately terminates all procedures in an
application. This means that if one procedure calls another and the called procedure
issues a GOTO EXIT, both procedures are ended by the GOTO EXIT command. No
function may be named EXIT.

ENDCASE

Transfers control to the ENDCASE command in the function, and the function is
exited. For information about the ENDCASE command, see CASE on page 7-12.

ENDREPEAT

Transfers control to the ENDREPEAT command in the current REPEAT loop. The
loop is not exited. All appropriate loop counters specified on the ENDREPEAT
command are incremented. For information about the REPEAT and ENDREPEAT
commands, see REPEAT on page 7-83.

EXITREPEAT

Exits the current REPEAT loop. Control transfers to the next line after the
ENDREPEAT command. For information about the REPEAT and ENDREPEAT
commands, see REPEAT on page 7-83.

;

Terminates the command. Although the semicolon is optional, it is recommended that
you include it to allow for flexible syntax and better processing. For more
information about the benefits of including the semicolon, see Chapter 6, Language
Rules Reference.

For example, to branch to the function named MainMenu, you would issue the command:

GOTO MainMenu

Command Reference

7-42 Information Builders

Reference Usage Notes for GOTO

• If the GOTO specifies a function name that does not exist in the program, an error
occurs at parse time, which occurs before execution.

• When one procedure calls another, and the called procedure has a GOTO END
command, GOTO END ends only the called procedure. The calling procedure is
unaffected. A GOTO END does not cause a COMMIT. This allows a called
procedure to exit and have the calling program issue the COMMIT when appropriate.
For information about the COMMIT command, see COMMIT on page 7-16.

Reference Commands Related to GOTO

• PERFORM transfers control to another function. When the function finishes, control
is returned to the command following the PERFORM. See PERFORM on page 7-80.

• CASE/ENDCASE allows a set of commands to be grouped together. See CASE on
page 7-12.

• REPEAT/ENDREPEAT provides a general looping facility. See REPEAT on page
7-83.

Using GOTO With Data Source Commands
A GOTO command can be executed in a MATCH command following an ON MATCH
or ON NOMATCH command, or in NEXT following ON NEXT or ON NONEXT. The
following branches to the function MatchEdit when a MATCH occurs:

ON MATCH GOTO MatchEdit;

GOTO and ENDCASE
When control is transferred to a function with the GOTO command, every condition for
exiting that function must have a command indicating where control should pass to next.
If an ENDCASE command is reached by either GOTO or normal program flow, and
Maintain has not received any instructions as to where to go next, Maintain takes a default
action and exits the procedure. ENDCASE is treated differently when GOTO and
PERFORM are combined. See PERFORM on page 7-80 for more information.

 GOTO

Maintaining Databases 7-43

GOTO and PERFORM
It is recommended that you do not issue a GOTO command within the scope of a
PERFORM command.

A PERFORM command’s scope extends from the moment at which it is issued to the
moment at which control returns normally to the command or Winform control point
immediately following it. The scope includes any additional PERFORM commands
nested within it.

For example, if the Top function PERFORMs Case One, Case One PERFORMs Case
Two, Case Two PERFORMs Case Three, and control then returns to Case Two, returns
from there to Case One, and finally returns to the Top function, you should not issue a
GOTO command from the time the original PERFORM branches out of the Top function
until it returns to the Top function.

If, when you code your application, you cannot know every potential runtime combination
of PERFORM and GOTO branches, it is recommended that you refrain from coding any
GOTO commands in your application.

Command Reference

7-44 Information Builders

IF
The IF command allows conditional processing depending on how an expression is
evaluated.

Syntax IF Command
The syntax of the IF command is

IF boolean_expr THEN maint_command [ELSE maint_command]

where:

boolean_expr

Is an expression that resolves to a value of true (1) or false (0), and can include stack
cells and user-defined fields. See Chapter 8, Expressions Reference, for more
information about Boolean expressions.
Maintain handles the format conversion in cases where the expressions have a format
mismatch. If the conversion is not possible, an error message is displayed. See
Chapter 8, Expressions Reference, for additional information.
It is highly recommended that parentheses be used when combining expressions. If
parentheses are not used, the operators are evaluated in the following order:

1. **

2. * /

3. + -

4. LT LE GT GE

5. EQ NE

6. OMITS CONTAINS

7. AND

8. OR
maint_command

You can place any Maintain command inside an IF command except for CASE,
DECLARE, DESCRIBE, END, MAINTAIN, and MODULE.

 IF

Maintaining Databases 7-45

Example Simple Conditional Branching
The following uses an IF command to compare variable values. The function No_ID is
performed if the Current Area value of Emp_ID does not equal the value of Emp_ID in
Stackemp:

IF Emp_ID NE Stackemp(StackEmp.FocIndex).Emp_ID THEN PERFORM No_ID;
ELSE PERFORM Yes_ID;

You might also use an IF command to issue another Maintain command. This example
causes a COMMIT if there are no errors:

IF FocCurrent EQ 0 THEN COMMIT;

Example Using BEGIN to Execute a Block of Conditional Code
This example executes a set of code depending on the value of Department. Additional IF
commands could be placed within the BEGIN block of code:

IF Department EQ 'MIS' THEN BEGIN
.
.
.
ENDBEGIN

ELSE IF Department EQ 'MARKETING' THEN BEGIN
.
.
.

Example Nesting IF Commands
IF commands can be nested as deeply as needed, allowing only for memory constraints.
The following shows an IF command nested two levels. There is only one IF command
after each ELSE:IF command (Maintain)

IF Dept EQ 1 THEN TYPE "DEPT EQ 1";
ELSE IF Dept EQ 2 THEN TYPE "DEPT EQ 2";
ELSE IF Dept EQ 3 THEN TYPE "DEPT EQ 3";
ELSE IF Dept EQ 4 THEN TYPE "DEPT EQ 4";

Of course this example could be executed much more efficiently by issuing the following
command:

TYPE "DEPT EQ <Dept";

Command Reference

7-46 Information Builders

You can also use the BEGIN command to place another IF within a THEN phrase. For
example:

IF A EQ 1 THEN BEGIN
IF B EQ 1 THEN BEGIN

IF C EQ 1 THEN PERFORM C111;
IF C EQ 2 THEN PERFORM C112;
IF C EQ 3 THEN PERFORM C113;
ENDBEGIN

ELSE IF B EQ 2 THEN BEGIN
IF C EQ 1 THEN PERFORM C121;
IF C EQ 2 THEN PERFORM C122;
IF C EQ 3 THEN PERFORM C123;
ENDBEGIN

ENDBEGIN
IF A EQ 2 THEN BEGIN

IF B EQ 1 THEN BEGIN
IF C EQ 1 THEN PERFORM C211;
IF C EQ 2 THEN PERFORM C221;
IF C EQ 3 THEN PERFORM C231;
ENDBEGIN

ELSE IF B EQ 2 THEN BEGIN
IF C EQ 1 THEN PERFORM C221;
IF C EQ 2 THEN PERFORM C222;
IF C EQ 3 THEN PERFORM C223;
ENDBEGIN

ENDBEGIN
ELSE TYPE "A, B AND C did not have expected values";

Coding Conditional COMPUTE Commands
When you need to assign a value to a variable, and the value you assign is conditional
upon the truth of an expression, you can use a conditional COMPUTE command.
Maintain offers you two methods of coding this, using either:

• An IF command with two COMPUTE commands embedded within it. For example:

IF Amount GT 100
THEN COMPUTE Tfactor/I6 = Amount;
ELSE COMPUTE Tfactor/I6 = Amount * (Factor - Price) / Price;

• A conditional expression within a COMPUTE command. For example:

COMPUTE Tfactor/I6 = IF Amount GT 100 THEN Amount
ELSE Amount * (Factor - Price) / Price;

The two methods are equivalent.

 INCLUDE

Maintaining Databases 7-47

INCLUDE
The INCLUDE command inserts segment instances from a transaction source—a stack or
the Current Area—into a data source.

When you issue the command, you specify a path running from an anchor segment to a
target segment. For each row in the transaction source, INCLUDE searches the data
source for matching segment instances and, if none exist, writes the new instances from
the transaction source to the data source.

If the anchor segment is not the root, you must establish a current instance in each of the
anchor’s ancestor segments, or provide ancestor segment key values in the source stack.
This ensures that INCLUDE can navigate from the root to the anchor segment’s first
instance.

Syntax INCLUDE Command
The syntax of the INCLUDE command is

[FOR {int|ALL}] INCLUDE path_spec [FROM stack[(row)]] [;]

where:

FOR

Is used with ALL or an integer to specify how many stack rows to add to the data
source. If FOR is omitted, one stack row will be added.
When you specify FOR, you must also specify FROM to identify a source stack.

int

Is an integer constant or variable that indicates the number of stack rows to add to the
data source.

ALL

Specifies that the entire stack is to be added to the data source.

Command Reference

7-48 Information Builders

path_spec

Identifies the path to be added to the data source. To identify a path specify its
anchor and target segments. (You cannot specify a unique segment as the anchor.) If
the path contains only one segment, the anchor and target are identical: simply
specify the segment once. (For paths with multiple segments, if you wish to make the
source code clearer to readers, you can also specify segments between the anchor and
target.)
To add a unique segment instance to a data source, you must explicitly specify the
segment in path_spec. Otherwise the unique segment instance will not be added even
if it is on the path between the anchor and target segments. This preserves the
advantage of assigning space for a unique segment instance only when the instance is
needed.
To specify a segment, provide the name of the segment or of a field within the
segment.

FROM

Is used to specify a stack containing records to insert. If no stack is specified, data
from the Current Area is used.

stack

Is a stack name. Only one stack can be specified.

row

Is a subscript that specifies the first stack row to add to the data source.

;

Terminates the command. Although the semicolon is optional, it is recommended that
you include it to allow for flexible syntax and better processing. For more
information about the benefits of including the semicolon, see Chapter 6, Language
Rules Reference.

Example Adding Data From Multiple Stack Rows
The following example tries to add the data in rows 2, 3, and 4 of Stkemp into the data
source. The stack subscript indicates start in the second row of the stack and the FOR 3
indicates INCLUDE the next 3 rows.

FOR 3 INCLUDE Emp_ID FROM Stkemp(2);

 INCLUDE

Maintaining Databases 7-49

Example Preventing Duplicate Records
You can execute the INCLUDE command after a MATCH command that fails to find a
matching record. For example:

MATCH Emp_ID FROM Newemp;
ON NOMATCH INCLUDE Emp_ID FROM Newemp;

The INCLUDE command can also be issued without a preceding MATCH. In this
situation the key field values are taken from the source stack or Current Area and a
MATCH is performed internally. When a set of rows are input without a prior
confirmation that they do not already exist in the data source, it is possible that one or
more of the rows in the stack will be rejected. Upon the first rejection, the process stops
and the rest of the set is rejected. For all of the rows to be accepted or rejected as a unit,
the set should be treated as a logical unit of work, and ROLLBACK issued if the entire set
was not accepted. After an INCLUDE the transaction variable FocError is given a value.
If the INCLUDE is successful, FocError is zero. If the INCLUDE fails (for example, if
the key values already exist in the data source), Maintain assigns a non-zero value to
FocError, and—if the include was set-based—assigns the value of the row that failed to
FocErrorRow. If at COMMIT time there is a concurrency conflict, Maintain sets
FocCurrent to a non-zero value.

Example Adding Multiple Segments
This example shows adding data from two segments in the same path. The data comes
from a stack named EmpInfo and the entire stack is used. After the INCLUDE completes,
the variable FocError is checked to see if the INCLUDE was successful. If it failed, a
general error handling function is called:

FOR ALL INCLUDE Emp_ID Dat_Inc FROM EmpInfo;
IF FocError NE 0 THEN PERFORM Errhandle;

Example Adding Data From the Current Area
This example shows using data from the Current Area. The user is prompted for the
employee’s ID and name. The data is included if it does not already exist in the data
source. If the data already exists it is not included and the variable FocError is set to a
non-zero value. Since the procedure does not check FocError, no error handling takes
place and the user does not know whether or not the data is added:

NEXT Emp_ID Last_Name First_Name;
INCLUDE Emp_ID;

Command Reference

7-50 Information Builders

Reference Usage Notes for INCLUDE

• If there is a FOR prefix, a stack must be mentioned in the FROM phrase.

• After an INCLUDE command completes, the variable FocError is set. If the
INCLUDE is successful (the records to be added do not exist in the data source) then
FocError is set to zero. If the records do exist, FocError is set to a non-zero value,
and—if it is a set-based INCLUDE—FocErrorRow is set to the number of the row
that failed.

• Maintain requires that data sources to which it writes have unique keys.

Reference Commands Related to INCLUDE

• COMMIT makes all data source changes since the last COMMIT permanent. See
COMMIT on page 7-16.

• ROLLBACK cancels all data sources changes made since the last COMMIT. See
ROLLBACK on page 7-94.

Data Source Position
A Maintain procedure always has a position either within a segment or just prior to the
first segment instance. If data has been retrieved, the position is the last record
successfully retrieved on that segment. If a retrieval operation fails, the data source
position remains unchanged.

If an INCLUDE is successful, the data source position is changed to the new record. On
the other hand, if the INCLUDE fails, it might be because there is already a record in the
data source with the same keys. In this case the attempted retrieval prior to the INCLUDE
is successful, and the position is on that record. Therefore the position in the data source
changes.

Null Data
If you add a segment instance that contains fields for which no data has been provided,
and those fields have been defined in the Master File:

• With the MISSING attribute, they are assigned a null value.

• Without the MISSING attribute, they are assigned a default value of a space (for
alphanumeric fields) or zero (for numeric fields).

 INFER

Maintaining Databases 7-51

INFER
Stacks are array variables containing rows and columns. When defining a stack and its
structure, you provide a name for the stack and a name, format, and order for each of the
columns in the stack. Stacks can be defined in two ways:

• Performing actual data retrieval with the NEXT command, the stack is defined and
populated at the same time. The stack is defined with all the segments that are
retrieved. This is convenient when the procedure is processing on the same physical
platform as the data source.

• If the procedure referring to a stack does not retrieve data, you need to issue the
INFER command to define the stack’s structure. When you issue the command you
specify a data source path; INFER defines the stack with columns corresponding to
each field in the specified path. The data source’s Master File provides the columns’
names and formats. INFER may only be used to define stack columns that correspond
to data source fields. To define user-defined variables, use the COMPUTE command.

A procedure that includes an INFER command must:

• Specify the name of the corresponding Master File in the procedure’s
MAINTAIN command.

• Have access to the Master File.

Syntax INFER Command
The syntax of the INFER command is

INFER path_spec INTO stackname [;]

where:

path_spec

Identifies the path to be defined for the data source. To identify a path specify its
anchor and target segments. If the path contains only one segment, the anchor and
target are identical: simply specify the segment once. (For paths with multiple
segments, if you wish to make the code clearer to readers, you can also specify
segments between the anchor and target.)
To specify a segment, provide the name of the segment or of a field within the
segment.

stackname

Is the name of the stack that you wish to define.

Command Reference

7-52 Information Builders

;

Terminates the command. Although the semicolon is optional, it is recommended that
you include it to allow for flexible syntax and better processing. For more
information about the benefits of including the semicolon, see Chapter 6, Language
Rules Reference.

Example Inferring Two Stacks
In the following called procedure, two INFER commands define the EmpClasses and
ClassCredits stacks:

MAINTAIN FROM EmpClasses INTO ClassCredits
INFER Emp_ID Ed_Hrs Date_Attend Course_Code INTO EmpClasses;
INFER Emp_ID Course_Code Grade Credits INTO ClassCredits;
.
.
.
END

Reference Commands Related to Infer

• CALL is used to call one Maintain procedure from another. See CALL on page 7-9.

• COPY can be used to copy data from one stack to another. See COPY on page 7-23.

• COMPUTE can be used to define the contents of a stack for non-data source fields.
See COMPUTE on page 7-18.

Defining Non-Data Source Columns
To define stack columns in a procedure for non-data source fields, that is, fields created
with the COMPUTE command, you do not need to provide a value for the column. The
syntax is:

COMPUTE stackname.target_variable/format = ;

Note that the equal sign is optional when the COMPUTE is issued solely to establish
format.

In the following example, the stack column TempEmp was passed to the called
procedure. The COMPUTE is issued in the called procedure to define the variable prior
to use:

COMPUTE EmpClasses.TempEmp_ID/A9 ;

 MAINTAIN

Maintaining Databases 7-53

MAINTAIN
The MAINTAIN command marks the beginning of a Maintain procedure. You can
identify any data sources the procedure will access using the FILE phrase. If the request is
to be called from another procedure, you can identify variables to be passed from and to
the calling procedure using the FROM and INTO phrases.

Syntax MAINTAIN Command
The syntax of the MAINTAIN command is

MAINTAIN [FILE[S] filelist] [FROM varlist] [INTO varlist]

filelist: filedesc [{AND|,} filedesc ...]

varlist: {stack|current_var} [{stack|current_var}...]

where:

MAINTAIN

Identifies the beginning of a Maintain request. It must be coded in uppercase letters.

FILE[S]

Indicates that the procedure accesses Master Files. The ‘S’ can be added to FILE for
clarity. The keywords FILE and FILES may be used interchangeably.
You access a Master File when you read or write to a data source, and when you use
an INFER command to define a stack’s data source columns for example, when you
redefine a stack that has been passed from a parent procedure.

FROM

Is included if this procedure is called by another procedure, and that procedure
passes one or more variables.

INTO

Is included if this procedure is called by another procedure, and this procedure passes
one or more variables back to the calling procedure.

filelist

Are the names of the Master Files this procedure accesses.

filedesc

Is the name of the Master File that describes the data source that is accessed in the
procedure.

AND

Is used to separate Master File names.

,

Is used to separate Master File names.

Command Reference

7-54 Information Builders

varlist

Are the variables, both Current Area variables and stacks, which are passed to or
from this procedure.

current_var

Is the name of a Current Area variable.

stack

Is the name of a stack.

Reference Usage Notes for MAINTAIN

• To access more than one data source, you can specify up to 16 Master Files per
MAINTAIN command. If you need to access more than 16 data sources, you can call
other procedures that can each access an additional 16 data sources.

• There is a limit of 64 segments per procedure for all referenced data sources,
although additional procedures can reference additional segments.

Reference Commands Related to MAINTAIN

• END terminates the execution of a Maintain procedure. See END on page 7-36.

• CALL is used to call one procedure from another. See CALL on page 7-9.

Specifying Data Sources With the MAINTAIN Command
The MAINTAIN command does not require that any parameters be supplied; that is,
Maintain procedures do not need to access data sources or stacks. You can use a
procedure as a subroutine when sharing functions among different procedures, or when
certain logic is not executed very frequently. For example, to begin a procedure that does
not access any data sources and does not have any stacks as input or output, you simply
begin the procedure with the keyword MAINTAIN.

However, the keyword FILE and the name of the Master File are required if you want to
access a data source. The following example accesses the Employee data source:

MAINTAIN FILE Employee

A Maintain procedure can access several data sources by naming the corresponding
Master Files in the MAINTAIN command:

MAINTAIN FILES Employee AND EducFile AND JobFile

 MAINTAIN

Maintaining Databases 7-55

Calling a Procedure From Another Procedure
You can use the CALL command to pass control to another procedure. When the CALL
command is issued, control is passed to the named procedure. Once that procedure
completes, control returns to the item that follows the CALL command in the calling
procedure.

For additional information about calling one procedure from another, see Chapter 2,
Maintain Concepts, and CALL on page 7-9.

Example Passing Variables Between Procedures
You can pass stacks and variables between procedures by using FROM and INTO
variable lists. In the following example, when the CALL Validate command is reached,
control is passed to the procedure named Validate along with the Emps stack. Once
Validate completes, the data in the stack ValidEmps is sent back to the calling procedure.
Notice that the calling and called procedures both have the same FROM and INTO stack
names. Although this is not required, it is good practice to avoid giving the same stacks
different names in different procedures.

The calling procedure contains:

MAINTAIN FILE Employee
FOR ALL NEXT Emp_ID INTO Emps;
INFER emp_id into VALIDATE;

CALL Validate FROM Emps INTO ValidEmps;
.
.
.
END

The called procedure (Validate) contains:

MAINTAIN FILE Employee FROM Emps INTO ValidEmps
.
.
.
END

Command Reference

7-56 Information Builders

MATCH
The MATCH command enables you to identify and retrieve a single segment instance or
path instance by key value. You provide the key value using a stack or the Current Area.
MATCH finds the first instance in the segment chain that has that key.

You specify which path to retrieve by identifying its anchor and target segments. If the
anchor segment is not the root, you must establish a current instance in each of the
anchor’s ancestor segments. This enables MATCH to navigate from the root to the anchor
segment instance.

The command always matches on the full key. If you wish to match on a partial key, use
the NEXT command and identify the value of the partial key in the command’s WHERE
phrase.

If the data source has been defined without a key, you can retrieve a segment instance or
path using the NEXT command, and identify the desired instance using the command’s
WHERE phrase.

Syntax MATCH Command
The syntax of the MATCH command is

MATCH path_spec [FROM stack[(row)]] [INTO stack[(row)]] [;]

where:

path_spec

Identifies the path to be read from the data source. To identify a path specify its
anchor and target segments. If the path contains only one segment, the anchor and
target are identical: simply specify the segment once. (For paths with multiple
segments, if you wish to make the code clearer to readers, you can also specify
segments between the anchor and target.)
To specify a segment, provide the name of the segment or of a field within the
segment.

FROM

Is used to specify a stack containing a key value on which to match. If you omit this,
Maintain uses a value in the Current Area. In either case, the columns containing the
key value must have the same names as the corresponding key fields in the data
source.

INTO

Is used to specify the stack that the data source values are to be placed into. Values
retrieved by MATCH are placed into the Current Area when an INTO stack is not
supplied.

 MATCH

Maintaining Databases 7-57

stack

Is a stack name. Only one stack can be specified for each FROM or INTO phrase.
The stack name should have a subscript specifying which row is to be used. If a stack
is not specified, the values retrieved by the MATCH go into the Current Area.

row

Is a subscript that specifies which row is used. The first row in the stack is matched
against the data source if the FROM stack does not have a subscript. The data is
placed in the first row in the stack if the INTO stack does not have a subscript.

;

Terminates the command. Although the semicolon is optional, it is recommended that
you include it to allow for flexible syntax and better processing. For more
information about the benefits of including the semicolon, see Chapter 6, Language
Rules Reference.

Example Matching Keys in the Employee Data Source
The following example performs a MATCH on the key field in the PayInfo segment. It
gets its value of Pay_Date from the field Pay_Date which is in the Current Area. After the
match is found, all of the field values in the PayInfo segment are copied from the data
source into the Current Area:

MATCH Pay_Date;

The next example shows a MATCH on the key in the EmpInfo segment. It gets the value of
Emp_ID from the Emp_ID column in the Cnt row of the Stackemp stack. After the match is
found, all of the fields in the EmpInfo segment are copied into the Current Area:

MATCH Emp_ID FROM Stackemp(Cnt);

The last example is the same as the previous example except an output stack is
mentioned. The only difference in execution is that after the match is found, all of the
fields in the EmpInfo segment are copied into a specific row of a stack rather than into the
Current Area:

MATCH Emp_ID FROM Stackemp(Cnt) INTO Empout(Cnt);

Reference Commands Related to MATCH

• NEXT starts at the current position and moves forward through the data source.
NEXT can retrieve data from one or more records. See NEXT on page 7-60.

• REPOSITION changes data source position to be at the beginning of the chain. See
REPOSITION on page 7-90.

Command Reference

7-58 Information Builders

How the MATCH Command Works
When a MATCH command is issued, Maintain tries to retrieve a corresponding record
from the data source. If there is no corresponding value and an ON NOMATCH
command follows, it is executed.

The MATCH command looks through the entire segment to find a match. The NEXT
command with a WHERE qualifier also locates a data source record, but does it as a
forward search. That is to say, it starts at its current position and moves forward. It is not
an exhaustive search unless positioned at the start of a segment. This can always be done
with the REPOSITION command. A MATCH is equivalent to a REPOSITION on the
segment followed by a NEXT command with a WHERE phrase specifying the key. If any
type of test other than the equality test that the MATCH command provides is needed, the
NEXT command should be used.

 MODULE

Maintaining Databases 7-59

MODULE
The MODULE command accesses a source code library so that the current procedure can
use the library’s class definitions and Maintain functions. (A library is a kind of
non-executable procedure.)

Syntax MODULE Command
The syntax of the MODULE command is

MODULE IMPORT (library_name [, library_name] ...);

where:

library_name

Is the name of the library that you wish to import as a source code library. Specify its
file name without an extension. The library is a FOCEXEC file, and its naming and
allocation requirements are the same as those for FOCEXEC files generally.

Reference Commands Related to MODULE

• DESCRIBE defines classes; you can use DESCRIBE to include classes in a library.
See DESCRIBE on page 7-34.

• CASE defines a function; you can use CASE to include functions in a library. See
CASE on page 7-12.

Reference Usage Notes for MODULE

• Maintain implements a library as a Maintain procedure without a Top function (that
is, a non-executable procedure).

• If you issue a MODULE command, it must immediately follow the MAINTAIN
command.

• You can nest libraries to any depth. To nest library B within library A, issue a
MODULE IMPORT B command within library A.

• If a library is referenced several times within one procedure (for example, listed
multiple times in the MODULE command, or included multiple times in a series of
nested libraries), Maintain will include it only once to avoid a loop.

• A library cannot contain an explicit Top function.

Command Reference

7-60 Information Builders

NEXT
The NEXT command selects and reads segment instances from a data source. You can
use NEXT to read an entire set of records at a time, or a just single segment instance; you
can select segments by field value or sequentially.

You specify a path running from an anchor segment to a target segment; NEXT reads all
the fields from the anchor through the target, and—if the anchor segment is not the root—
all the keys of the anchor’s ancestor segments. It copies what it has read to the stack that
you specify or, if you omit a stack name, to the Current Area.

If the anchor segment is not the root, you must establish a current instance in each of the
anchor’s ancestor segments. This enables NEXT to navigate from the root to the anchor
segment’s current instance.

In each segment that it reads, NEXT works its way forward through the segment chain.
When no more records are available, the NONEXT condition arises and no more records
are retrieved unless the procedure issues a REPOSITION command. REPOSITION
causes a reposition to just prior to the beginning of the segment chain. For those who are
familiar with the SQL language, the NEXT command acts as a combination of the SQL
commands SELECT and FETCH, and allows you to use the structure of the data source to
your advantage when retrieving data.

Syntax NEXT Command
The syntax of the NEXT command is

[FOR {int|ALL}] NEXT path [INTO stack[(row)]] [WHERE expr [AND expr ...]]
[;]

expr: operand comparison_op operand

where:

FOR

Is a prefix that is used with int or ALL to specify how many data source records are
to be retrieved. If FOR is not specified, NEXT works like FOR 1 and the next record
is retrieved. If the FOR phrase is used, the INTO phrase must also be used.

int

Is an integer constant or variable that specifies the number of data source records that
are retrieved from the data source. Retrieval starts at the current position in the data
source.

ALL

Specifies that starting at the current data source position, all data source segments
referred to in the field list are examined.

 NEXT

Maintaining Databases 7-61

path

Identifies the path to be read from the data source. To identify a path specify its
anchor and target segments. If the path contains only one segment, the anchor and
target are identical: simply specify the segment once. (For paths with multiple
segments, if you wish to make the code clearer to readers, you can also specify
segments between the anchor and target.)
To specify a segment, provide the name of the segment or of a field within the
segment.

INTO

Is used with a stack name to specify the name of the stack into which the data source
records are copied.

stack

Specify the name of the stack that the data source values are placed into. Only one
stack can be specified.

row

The stack name can have a subscript specifying which row in the stack the data
source values are placed. If no subscript is provided, the data is placed in the stack
starting with the first row.

expr

Is any valid NEXT WHERE expression as defined below.

operand

Is an operand. In each NEXT WHERE expression, one operand must be a data
source field, and one must be a valid Maintain expression that does not refer to a data
source field. In most situations, the non-data source operand should not refer to a
subscripted variable: see Subscripted Variables in WHERE Expressions on page 7-63
to learn when this restriction applies and how you can achieve the same result using a
simple (non-subscripted) variable.
For more information about Maintain expressions, see Chapter 8, Expressions
Reference.

Command Reference

7-62 Information Builders

comparison_op

Is any of the following comparison operators:

• Numeric. EQ, IS, NE, IS_NOT, GE, GT, EXCEEDS, LT, LE.

• Alphanumeric. EQ, IS, NE, IS_NOT, CONTAINS, OMITS, IN (list).
The alphanumeric operators IS and EQ enable you to select data source values using
wildcard characters (you embed the wildcards in an alphanumeric constant in the
non-data source operand). You can use dollar sign wildcards ($) throughout the
constant to signify that any character is acceptable in the corresponding position of
the data source value. For example:

WHERE ZipCode IS '112$$'

If you wish to allow any value of any length at the end of the data source value, you
can combine a dollar sign wildcard with an asterisk ($*) at the end of the constant.

;

Terminates the command. Although the semicolon is optional, it is recommended that
you include it to allow for flexible syntax and better processing. For more
information about the benefits of including the semicolon, see Chapter 6, Language
Rules Reference.

Reference Usage Notes for NEXT

• If an INTO stack is specified, and that stack already exists, new rows are added
starting at the row specified. If no stack row number is specified then data is added
starting at the first row. In either case, it is possible that some existing rows may be
written over. If a NEXT command causes only some of the rows in a stack to be
overwritten, the rest of the stack remains intact. If the subscript provided on the
INTO stack is past the end of the existing stack, the intervening rows are initialized
to spaces, zeroes, or nulls (missing values) as appropriate. If the new stack overwrites
some of the rows of the existing stack, only those rows are affected. The rest of the
stack remains intact.

• If no FOR prefix is used and no stack name is supplied, the values retrieved by the
NEXT command go into the Current Area.

Reference Commands Related to NEXT

• REPOSITION changes data source position to be at the beginning of the chain.

• MATCH searches the entire segment for a matching field value. It retrieves an exact
match in the data source.

 NEXT

Maintaining Databases 7-63

Subscripted Variables in WHERE Expressions
If you wish to use a subscripted variable (for example, CustomerStack().CustID) in the
WHERE expression of a NEXT command, it is usually necessary to:

1. Assign the subscripted variable’s value to a simple (that is, unsubscripted) variable
immediately preceding the NEXT command.

2. Use the simple variable in the WHERE expression.

For example:

COMPUTE CompareCustID/A4 = CustomerStack().CustID;
FOR ALL NEXT CustID TransCode INTO TransStack

WHERE CustID EQ CompareCustID;

This restriction applies to relational data sources only; however, we recommend that you
observe this restriction for all data sources in order to maximize the portability of your
source code.

The WHERE expression in a NEXT command compares a data source value to a
non-data source value. The non-data source value cannot be a subscripted variable if the
NEXT command may be executed multiple times during the application. This means that
you cannot use a subscripted variable for the non-data source value if the NEXT
command is in a:

• REPEAT loop.

• Function that may be invoked multiple times.

• Procedure that may be called multiple times.

Command Reference

7-64 Information Builders

Example When Subscripted Variables Cannot be Used in WHERE
Expressions
In the following source code, the NEXT command’s WHERE expression is not valid
because CustomerStack(Row).CustID is a subscripted variable that is executed in each
iteration of the REPEAT loop:

COMPUTE Row/I4 = 1;
STACK CLEAR OrderStack;
REPEAT CustomerStack.FocCount;

REPOSITION CustID;
FOR ALL NEXT CustID OrderNum INTO OrderStack(OrderStack.FocCount+1)

WHERE CustID EQ CustomerStack(Row).CustID;
ENDREPEAT Row = Row + 1;

The next example is also invalid, because CustomerStack(Row).CustID is a subscripted
variable that is executed each time that the GetCustomer function is invoked:

MAINTAIN FILE CustData;
.
.
.
GetCustomer(Row);
.
.
.
CASE GetCustomer TAKES Row/I4;

REPOSITION CustID;
STACK CLEAR OrderStack;
FOR ALL NEXT CustID OrderNum INTO OrderStack

WHERE CustID EQ CustomerStack(Row).CustID;
ENDCASE
.
.
.
END

The simple way around this restriction is to assign a subscripted variable’s value to a
simple (that is, unsubscripted) variable immediately preceding the NEXT command, and
then use the simple variable in the WHERE expression. In the following example, the
WHERE expression is valid because the non-data source value is supplied by a simple
variable, not by a subscripted variable:

COMPUTE Row/I4 = 1;
STACK CLEAR OrderStack;
REPEAT CustomerStack.FocCount;

REPOSITION CustID;
COMPUTE ThisCustomer/A4 = CustomerStack(Row).CustID;
FOR ALL NEXT CustID OrderNum INTO OrderStack(OrderStack.FocCount+1)

WHERE CustID EQ ThisCustomer;
ENDREPEAT Row = Row + 1;

 NEXT

Maintaining Databases 7-65

Copying Data Between Data Sources
You can use the NEXT command to copy data between data sources. It is helpful to copy
data between data sources when transaction data is gathered by one application and needs
to be stored for use by another application. It is also helpful when the transaction data is
to be applied to the data source at a later time or in a batch environment.

Example Copying Data to the Movies Data Source
For example, assume that you want to copy data from a fixed-format file named FilmData
into a FOCUS data source named Movies. You describe FilmData using the following
Master File:

FILENAME=FILMDATA, SUFFIX=FIX
SEGNAME=MOVINFO, SEGTYPE=S0
FIELDNAME=MOVIECODE, ALIAS=MCOD, USAGE=A6, ACTUAL=A6,$
FIELDNAME=TITLE, ALIAS=MTL, USAGE=A39, ACTUAL=A39,$
FIELDNAME=CATEGORY, ALIAS=CLASS, USAGE=A8, ACTUAL=A8,$
FIELDNAME=DIRECTOR, ALIAS=DIR, USAGE=A17, ACTUAL=A17,$
FIELDNAME=RATING, ALIAS=RTG, USAGE=A4 ACTUAL=A4,$
FIELDNAME=RELDATE, ALIAS=RDAT, USAGE=YMD ACTUAL=A6,$
FIELDNAME=WHOLESALEPR, ALIAS=WPRC USAGE=F6.2, ACTUAL=A6,$
FIELDNAME=LISTPR, ALIAS=LPRC, USAGE=F6.2, ACTUAL=A6,$
FIELDNAME=COPIES, ALIAS=NOC, USAGE=I3, ACTUAL=A3,$

The fields in FilmData have been named identically to those in Movies to establish the
correspondence between them in the INCLUDE command that writes the data to Movies.

You can read FilmData into Movies using the following procedure:

MAINTAIN FILE Movies AND FilmData
FOR ALL NEXT FilmData.MovieCode INTO FilmStack;
FOR ALL INCLUDE Movies.MovieCode FROM FilmStack;
END

All field names in the procedure are qualified to distinguish between identically named
fields in the input file (FilmData) and the output file (Movies).

Command Reference

7-66 Information Builders

Loading Multi-Path Transaction Data
When you wish to load data from a transaction file into multiple paths of a data source,
you should process each path independently: use one pair of NEXT and INCLUDE
commands per path.

For example, assume that you have a transaction file named TranFile whose structure is
identical to that of the VideoTrk data source. If you wish to load the transaction data from
both paths of TranFile into both paths of VideoTrk, you could use the following
procedure:

MAINTAIN FILES TranFile AND VideoTrk
FOR ALL NEXT TranFile.CustID TranFile.ProdCode INTO ProdStack;
REPOSITION CustID;
FOR ALL NEXT TranFile.CustID TranFile.MovieCode INTO MovieStack;
FOR ALL INCLUDE VideoTrk.CustID VideoTrk.ProdCode FROM ProdStack;
FOR ALL INCLUDE VideoTrk.CustID VideoTrk.MovieCode FROM MovieStack;
END

Alternatively, if you choose to store each path of transaction data in a separate
single-segment transaction file, the same principles apply. For example, if the two paths
of TranFile are stored separately in transaction files TranProd and TranMove, the
previous procedure would change as shown below in bold:

MAINTAIN FILES TranProd AND TranMove AND VideoTrk
FOR ALL NEXT TranProd.CustID INTO ProdStack;
FOR ALL NEXT TranMove.CustID

INTO MovieStack;
FOR ALL INCLUDE VideoTrk.CustID VideoTrk.ProdCode FROM ProdStack;
FOR ALL INCLUDE VideoTrk.CustID VideoTrk.MovieCode FROM MovieStack;
END

Retrieving Multiple Rows: The FOR Phrase
The FOR phrase is used to specify the number of data source records that are to be
retrieved. As an example, if FOR 10 is used, ten records are retrieved. A subsequent FOR
10 retrieves the next ten records starting from the last position. If an attempt to retrieve
ten records only returns seven because the end of the chain is reached, the command
retrieves seven records and the ON NONEXT condition is raised.

The following retrieves the next 10 instances of the EmpInfo segment and places them
into Stackemp:

FOR 10 NEXT Emp_ID INTO Stackemp;

 NEXT

Maintaining Databases 7-67

Using Selection Logic to Retrieve Rows
The following example retrieves every instance of the EmpInfo segment that has a
department value of MIS:

FOR ALL NEXT Emp_ID WHERE Department EQ 'MIS';

Literals can be enclosed in either single (') or double (“) quotation marks. For example,
the following produces exactly the same results as the last example:

FOR ALL NEXT Emp_ID WHERE Department EQ "MIS";

The ability to use either single or double quotation marks provides the added flexibility of
being able to use either single or double quotation marks in text. For example:

NEXT Emp_ID WHERE Last_Name EQ "O'HARA";
NEXT Product WHERE Descr CONTAINS '"TEST"';

This example starts at the beginning of the segment chain and searches for all employees
that are in the MIS department. All retrieved segment instances are copied into a stack:

REPOSITION Emp_ID;
FOR ALL NEXT Emp_ID INTO Misdept WHERE Department EQ 'MIS';

After FOR ALL NEXT is processed, you are positioned at the end of the segment chain.
Therefore, before issuing an additional NEXT command on the same segment chain, you
should issue a REPOSITION command to be positioned prior to the first instance in the
segment chain.

NEXT After a MATCH
NEXT can also be used in conjunction with the MATCH command. This example issues
a MATCH for employee ID. If there is not a match, a message is displayed. If there is a
match, all the instances of the child segment for that employee are retrieved and placed in
the stack Stackemp. The NEXT command can be coded as part of an ON MATCH
condition, but it is not required because the NEXT will only retrieve data based on the
current position of higher level segments.

MATCH Emp_ID
ON NOMATCH BEGIN

TYPE "The employee ID is not in the data source.";
GOTO Getmore;
ENDBEGIN

FOR ALL NEXT Dat_Inc INTO Stackemp;

Command Reference

7-68 Information Builders

Data Source Navigation Using NEXT: Overview
The segments that NEXT operates on are determined by the fields mentioned in the
NEXT command. The list of fields is used to determine the anchor segment (the segment
closest to the root) and the target segment (the segment furthest from the root). Every
segment starting with the anchor and ending with the target make up the scope of the
NEXT command, including segments not mentioned in the NEXT command. Both the
target and the anchor must be in one data source path.

NEXT does not retrieve outside the scope of the anchor and target segment. All segments
not referenced remain constant, which is why NEXT can act like a “next within parent.”
As an example, look at a partial view of the Employee data source:

EMP_ID
LAST_NAME
FIRST_NAME
HIRE_DATE

DED_CODE
DED_AMT

EMPINFO S1

DEDUCT S1

PAY_DATE
GROSS

SALINFO SH1

If a NEXT command has SalInfo as the anchor segment and the target is the Deduct
segment, it also needs to retrieve data for the EmpInfo segment which is the parent of the
SalInfo segment based on its current position. The position for the EmpInfo segment can
be established by either a prior MATCH or NEXT command. If no position has been
established for the EmpInfo segment, an error occurs.

You can use the NEXT command:

• With one segment.

• With multiple segments.

• Following another NEXT or MATCH command.

 NEXT

Maintaining Databases 7-69

Data Source Navigation: NEXT With One Segment
If a NEXT references only one segment and has no WHERE phrase or FOR prefix, it
always moves forward one instance within that segment. If the segment is not the root, all
parent segments must have a position in the data source and only those instances
descending from those parents are examined and potentially retrieved. The NEXT
command starts at the current position within the segment and each time the command is
encountered, it moves forward one instance. If a prior position has not been established
within the segment (no prior NEXT, MATCH, or REPOSITION command has been
issued), the NEXT retrieves the first instance.

The following command references the root segment, so there is no parent segment in
which to have a position:

NEXT Emp_ID;

The following command refers to a child segment, so the parents to this segment must
already have a position and that position does not change during the NEXT operation:

NEXT Pay_Date;

If the NEXT command uses the FOR prefix, it works the same as described above but
rather than moving forward only one data source instance, it moves forward as many rows
as the FOR specifies. The following retrieves the next 3 instances of the EmpInfo
segment:

FOR 3 NEXT Emp_ID INTO Stemp;

If a FOR prefix is used, an INTO stack must be specified. However, an INTO stack can
be specified without the FOR prefix.

If a WHERE phrase is specified and there is no FOR prefix, the NEXT moves forward as
many times as necessary to retrieve one row that satisfies the selection criteria specified in
the WHERE phrase. The following retrieves the next employee in the MIS department:

NEXT Emp_ID WHERE Department EQ 'MIS';

If the NEXT command does not have an INTO stack name, the output of the NEXT (the
value of all of the fields in the segment instance) goes into the Current Area. If an INTO
stack is specified, the output goes into the stack named in the command. If more than one
row is retrieved by using a FOR prefix, the number of rows specified in the FOR are
placed in the stack. If the INTO stack specifies a row number (e.g., INTO Mystack(10))
then the rows are added to the stack starting with that row number. If the INTO stack does
not specify a row number, the rows are added to the stack starting at the first row.

Command Reference

7-70 Information Builders

The following retrieves all of the fields from the next instance in the segment that
Emp_ID is in and places the output into the first row of the Stemp stack:

NEXT Emp_ID INTO Stemp;

If the NEXT command has both a WHERE phrase and a FOR prefix it moves forward as
many times as necessary to retrieve the number of rows specified in the FOR phrase that
satisfies the selection criteria specified in the WHERE phrase. The following retrieves the
next three employees in the MIS department and places the output into the stack called
Stemp:

FOR 3 NEXT Emp_ID INTO Stemp WHERE Department EQ 'MIS';

If there may not have been as many rows to be retrieved as you specified in the FOR
prefix, you can determine how many rows were actually retrieved by checking the
destination stack’s FocCount variable.

Data Source Navigation: NEXT With Multiple Segments
If a NEXT command references more than one segment, each time the command is
executed it moves forward within the target (the lowest level child segment). Once the
target no longer has any more instances, the next NEXT moves forward on the parent of
the target and repositions itself at the beginning of the chain of the child. In the following
example, the REPOSITION command changes the position of EmpInfo to the beginning
of the data source (EmpInfo is in the root). The first NEXT command finds the first
instance of both segments. When the second NEXT is executed, what happens depends on
whether there is another instance of the SalInfo segment, because the NEXT command
does not retrieve short path instances (that is, it does not retrieve path instances that are
missing descendant segments). If there is another instance, the second NEXT moves
forward one instance in the SalInfo segment. If there is only one instance in the SalInfo
for the employee retrieved in the first NEXT, the second NEXT moves forward one
instance in the EmpInfo segment. When this happens, the SalInfo segment is positioned at
the beginning of the chain and the first SalInfo instance is retrieved. If there is no instance
of SalInfo, the NEXT command retrieves the next record that has a SalInfo segment
instance.

REPOSITION Emp_ID;
NEXT Emp_ID Pay_Date;
NEXT Emp_ID Pay_Date;

 NEXT

Maintaining Databases 7-71

When there is a possibility of short paths, and the intention is to retrieve the data from the
parent even if there is no data for the child, NEXT should be used on one segment at a
time, as described in Data Source Navigation: NEXT Following NEXT or MATCH on
page 7-72. If a NEXT command uses the FOR n prefix, it works the same as described
above, but rather than moving forward only one data source instance, it moves forward as
many records as required to retrieve the number specified in the FOR prefix. For instance,
the following command retrieves the next five instances of the EmpInfo and SalInfo
segments and places the output into the Stemp stack. The five records may or may not all
have the same EmpInfo segment.

FOR 5 NEXT Emp_ID Dat_Inc INTO Stemp;

If the data source is populated as follows,

EMP_ID
 071382660

EMP_ID
 112847612

EMP_ID
 117593129

DAT_INC
 820101

820101

DAT_INC
 820101

DAT_INC
 820101

820501

all of the fields from the following segment instances are added to the stack:

1. EMP_ID 071382660, DAT_INC 820101

2. EMP_ID 071382660, DAT_INC 810101

3. EMP_ID 112847612, DAT_INC 820101

4. EMP_ID 117593129, DAT_INC 820601

5. EMP_ID 117593129, DAT_INC 820501

Command Reference

7-72 Information Builders

If a WHERE phrase is specified, the NEXT moves forward as many times as necessary to
retrieve one record that satisfies the selection criteria specified in the WHERE phrase. For
example, the following retrieves the next record where the child segment has the field
Gross greater than 1,000:

NEXT Emp_ID Pay_Date WHERE Gross GT 1000;

If both a WHERE phrase and a FOR prefix are specified, the NEXT moves forward as
many times as necessary to retrieve the number specified in the FOR prefix that satisfies
the selection criteria specified in the WHERE phrase. For instance, the following retrieves
all of the records where the Gross field is greater than 1,000. As stated above, if more
than one segment is mentioned and there is a FOR prefix, the data retrieved may come
from more than one employee:

FOR ALL NEXT Emp_ID Pay_Date INTO Stemp WHERE Gross GT 1000;

If the NEXT command does not have an INTO stack name provided, the output of the
NEXT is copied into the Current Area. If an INTO stack is specified, the output is copied
into the stack named in the command. The number of records retrieved is the number that
is placed in the stack. If the INTO stack specifies a row number (e.g., INTO Mystack(10))
then the records are added to the stack starting at the row number. If the INTO stack does
not specify a row number, the rows are added to the stack starting with the first row in the
stack. If data already exists in any of the rows, those rows are cleared and replaced with
the new values.

If the NEXT command can potentially retrieve more than one record (the FOR prefix is
used), an INTO stack must be specified. If no stack is provided, an error message is
displayed and the procedure is terminated.

Data Source Navigation: NEXT Following NEXT or MATCH
In order to NEXT through several segments, specify all the segments in one NEXT
command or use several NEXT commands. If all of the segments are placed into one
NEXT command there is no way to know when data is retrieved from a parent segment
and when it is retrieved from a child. To have control over when each segment is
retrieved, each segment should have a NEXT command of its own. In this way the first
NEXT establishes the position for the second NEXT.

A NEXT command following a MATCH command works in a similar way: the first
command (MATCH) establishes the data source position.

In the following example, the REPOSITION command places the position in the EmpInfo
segment and all of its children to the beginning of the chain. Both NEXT commands
move forward to the first instance in the appropriate segment:

REPOSITION Emp_ID;
NEXT Emp_ID;
NEXT Pay_Date;

 NEXT

Maintaining Databases 7-73

If one of the NEXT commands uses the FOR prefix, it works the same as described above
but rather than moving forward only one segment instance, NEXT moves forward
however many records the FOR specifies. For example, the following retrieves the first
instance in the EmpInfo segment and the next three instances of the SalInfo segment. All
three records are for only one employee because the first NEXT establishes the position:

REPOSITION Emp_ID;
NEXT Emp_ID;
FOR 3 NEXT Pay_Date INTO Stemp;

After this code is executed, the stack contains data from the following segments:

1. Emp_ID instance 1 and Pay_Date instance 1

2. Emp_ID instance 1 and Pay_Date instance 2

3. Emp_ID instance 1 and Pay_Date instance 3

Every NEXT command that uses a FOR prefix does so independently of any other NEXT
command. If there are two NEXT commands, the first executes and when it completes,
the position is the last instance retrieved. The second NEXT command then executes and
retrieves data from within the parent established by the first NEXT. In the following
example, the first NEXT retrieves the first two instances from the EmpInfo segment and
places the instances into the stack. The second NEXT retrieves the next three instances of
the SalInfo segment. Note its parent instance is the second EmpInfo segment instance.
The stack variable FocCount indicates the number of rows currently in the stack. The
prefix Stemp is needed to indicate which stack.

STACK CLEAR Stemp;
REPOSITION Emp_ID;
FOR 2 NEXT Emp_ID INTO Stemp(1);
FOR 3 NEXT Pay_Date INTO Stemp(Stemp.FocCount);

The stack contains data from the following segments after the first NEXT is executed:

1. Emp_ID instance 1

2. Emp_ID instance 2

The stack contains data from the following segments after the second NEXT is executed:

1. Emp_ID instance 1

2. Emp_ID instance 2 and Pay_Date instance 1

3. Emp_ID instance 2 and Pay_Date instance 2

4. Emp_ID instance 2 and Pay_Date instance 3

Command Reference

7-74 Information Builders

The row in the INTO stack that the output is placed in is specified by supplying the row
number after the stack name. When two NEXT commands are used in a row for the same
stack, care must be taken to ensure that data is written to the appropriate row in the stack.
If a stack row number is not specified for the second NEXT command, data is placed into
the last row written to by the first NEXT, and existing data is overwritten. In order to
place data in a different row, a row number or an expression to calculate the row number
can be used. For example, the second NEXT command specifies the row after the last row
by adding one to the variable FocCount:

FOR 2 NEXT Emp_ID INTO Stemp(1);
FOR 3 NEXT Pay_Date INTO Stemp(Stemp.FocCount+1);

The stack now looks like the following. Notice that there is a new row 2.

1. Emp_ID instance 1

2. Emp_ID instance 2

3. Emp_ID instance 2 and Pay_Date instance 1

4. Emp_ID instance 2 and Pay_Date instance 2

5. Emp_ID instance 2 and Pay_Date instance 3

If a WHERE phrase is specified, the NEXT moves forward as many times as necessary to
retrieve one record that satisfies the selection criteria specified in the WHERE phrase. For
instance, the following retrieves the next record where the child segment’s Gross field is
greater than 1,000. Like the previous example, the data retrieved is only for the employee
that the first NEXT retrieves:

NEXT Emp_ID;
NEXT Pay_Date WHERE Gross GT 1000;

If both a FOR prefix and a WHERE phrase are specified, the NEXT moves forward as
many times as necessary to retrieve the number of records specified in the FOR prefix that
satisfy the selection criteria specified in the WHERE phrase.

For example, the following retrieves the next 3 records where the child segment’s Gross
field is greater than 1,000. Like above, the data retrieved is only for the employee that the
first NEXT retrieves:

NEXT Emp_ID;
FOR 3 NEXT Pay_Date INTO Stemp WHERE Gross GT 1000;

 NEXT

Maintaining Databases 7-75

Unique Segments
One of the ways Maintain allows separate segments to be joined together is uniquely, that
is, in a one to one relation. Unique segments are indicated by specifying a SEGTYPE of
U, KU or DKU in the Master File, or by issuing a JOIN command. In a NEXT command,
you retrieve a unique segment by specifying a field from the segment in the command’s
field list. You cannot specify the unique segment as an anchor segment.

If an attempt is made to retrieve data from a unique segment and it does not exist, the
fields are treated as if they are fields in the parent segment. This means that the returned
data is spaces, zeroes, and/or nulls (missing values), depending on how the segment is
defined. In addition, the answer set contains as many rows as the parent to the unique. If
an UPDATE or a DELETE command subsequently uses the data in the stack and the
unique segment does not exist, it is not an error because unique segments are treated as if
the fields are fields in the parent. If an INCLUDE is issued, the data source is not
updated.

Command Reference

7-76 Information Builders

ON MATCH
The ON MATCH command defines the action to take if the prior MATCH command
succeeds—that is, if it is able to retrieve the specified segment instance. There can be
intervening commands between the MATCH and ON MATCH commands, and they can
be in separate functions.

It is recommended that you query the FocFetch system variable in place of issuing the ON
MATCH command: FocFetch accomplishes the same thing more efficiently. For more
information, see FocFetch on page 7-39.

Syntax ON MATCH Command
The syntax of the ON MATCH command is

ON MATCH command

where:

command

Is the action that is taken when the prior MATCH command succeeds.
You can specify any Maintain command except for CASE, DECLARE, DESCRIBE,
END, MAINTAIN, MODULE, and another ON command.

Example Using On Match
The following example displays a message stating that there was a MATCH:

MATCH Emp_ID;
ON MATCH TYPE "Employee was found in the data source";

This example shows an UPDATE that is performed after a MATCH occurs:

MATCH Emp_ID;
ON MATCH UPDATE Salary;

The following shows several commands being executed after a MATCH:

MATCH Emp_ID;
ON MATCH BEGIN

TYPE "Employee was found in the data source";
UPDATE Salary;
PERFORM Jobs;
ENDBEGIN

 ON NEXT

Maintaining Databases 7-77

ON NEXT
The ON NEXT command defines the action to take if the prior NEXT command
succeeds—that is, if it is able to retrieve all of the specified records. There can be
intervening commands between the NEXT and ON NEXT commands, and they can be in
separate functions.

It is recommended that you query the FocFetch system variable in place of issuing the ON
NEXT command: FocFetch accomplishes the same thing more efficiently. For more
information, see FocFetch on page 7-39.

Syntax ON NEXT Command
The syntax of the ON NEXT command is

ON NEXT command

where:

command

Is the action that is taken when NEXT is successful.
You can specify any Maintain command except for CASE, MAINTAIN, END,
MODULE, or another ON command.

Example Using On Next
The first example displays a message stating that the NEXT was successful:

NEXT Emp_ID;
ON NEXT TYPE "Was able to NEXT another employee";

This example computes a 5 percent increase for the next employee in the data source:

NEXT Emp_ID;
ON NEXT COMPUTE NewSal = Curr_Sal * 1.05;

The following example shows several commands that are executed after a NEXT:

ON NEXT BEGIN
TYPE "Was able to NEXT another employee";
COMPUTE NewSal = Curr_Sal * 1.05;
ENDBEGIN

Command Reference

7-78 Information Builders

ON NOMATCH
The ON NOMATCH command defines the action to take if the prior MATCH command
fails—that is, if it is unable to retrieve the specified segment instance. There can be
intervening commands between the MATCH and ON NOMATCH commands, and they
can be in separate functions.

It is recommended that you query the FocFetch system variable in place of issuing the ON
NOMATCH command: FocFetch accomplishes the same thing more efficiently. For more
information, see FocFetch on page 7-39.

Syntax ON NOMATCH Command
The syntax of the ON NOMATCH command is

ON NOMATCH command

where:

command

Is the action that is taken when the prior MATCH command fails.
You can specify any Maintain command except for CASE, MAINTAIN, END,
MODULE, or another ON command.

Example Using On NOMATCH
The first example displays a message stating that the MATCH was unsuccessful:

MATCH Emp_ID;
ON NOMATCH TYPE "Employee was not found in the data source";

This example shows an INCLUDE of a row from the Emp stack:

MATCH Emp_ID FROM Emp(Cnt);
ON NOMATCH INCLUDE Emp_ID FROM Emp(Cnt);

The following example shows several commands that are executed after a MATCH
command fails:

MATCH Emp_ID;
ON NOMATCH BEGIN

TYPE "Employee was not found in the data source";
INCLUDE Emp_ID;
PERFORM Cleanup;
ENDBEGIN

 ON NONEXT

Maintaining Databases 7-79

ON NONEXT
The ON NONEXT command defines the action to take if the prior NEXT command
fails—that is, if it is unable to retrieve all of the specified records. There can be
intervening commands between the NEXT and ON NONEXT commands, and they can be
in separate functions.

For example, when the following NEXT command is executed

FOR 10 NEXT Emp_ID INTO Stkemp;

only eight employees are left in the data source, so only eight records are retrieved,
raising the ON NONEXT condition.

It is recommended that you query the FocFetch system variable in place of issuing the ON
NONEXT command: FocFetch accomplishes the same thing more efficiently. For more
information, see FocFetch on page 7-39.

Syntax ON NONEXT Command
The syntax of the ON NONEXT command is

ON NONEXT command

where:

command

Is the action that is taken when NEXT fails.
You can specify any Maintain command except for CASE, MAINTAIN, END,
MODULE, or another ON command.

Example Using ON NONEXT
The first example displays a message stating that the NEXT was unsuccessful:

NEXT Emp_ID;
ON NONEXT TYPE "There are no more employees";

If all of the employees have been processed, the program is exited:

NEXT Emp_ID;
ON NONEXT GOTO EXIT;

The following example shows several commands being executed after a NEXT fails:

ON NONEXT BEGIN
TYPE "There are no more employees in the data source";
PERFORM Wrapup;
ENDBEGIN

Command Reference

7-80 Information Builders

PERFORM
You can use the PERFORM command to pass control to a Maintain function. Once that
function is executed, control returns to the command immediately following the
PERFORM.

Syntax PERFORM Command
The syntax of the PERFORM command is

PERFORM functionname [;]

where:

functionname

Specifies the name of the function to perform.

;

Terminates the command. Although the semicolon is optional, it is recommended that
you include it to allow for flexible syntax and better processing. For more
information about the benefits of including the semicolon, see Chapter 6, Language
Rules Reference.

For example, to perform the function named NextSet, you would issue the command:

PERFORM NextSet;

Reference Commands Related to PERFORM

• CASE/ENDCASE defines a Maintain function. See CASE on page 7-12.

• GOTO transfers control to another function or to the end of the current function. See
GOTO on page 7-40.

 PERFORM

Maintaining Databases 7-81

Using PERFORM to Invoke Maintain Functions
When you invoke a function as a separate statement (that is, outside of a larger
expression), if the preceding command can take an optional semicolon terminator, but
was coded without one, you must invoke the function in a COMPUTE or PERFORM
command. (You can use PERFORM for Maintain functions only, though not for Maintain
functions that return a value.) For example, in the following source code, the NEXT
command is not terminated with a semicolon, so the function that follows it must be
invoked in a PERFORM command:

NEXT CustID INTO CustStack
PERFORM VerifyCustID();

However, in all other situations, you can invoke functions directly, without a PERFORM
command. For example, in the following source code, the NEXT command is terminated
with a semicolon, so the function that follows it can be invoked without a PERFORM
command:

NEXT CustID INTO CustStack;
VerifyCustID();

For more information about terminating commands with semicolons, see Chapter 6,
Language Rules Reference.

Using PERFORM With Data Source Commands
A PERFORM can be executed in a MATCH command following an ON MATCH or ON
NOMATCH command, or in NEXT following ON NEXT or ON NONEXT. In the
following example, the function NotHere is performed after a NOMATCH condition
occurs:

ON NOMATCH PERFORM NotHere;

Nesting PERFORM Commands
PERFORM commands can branch to functions containing other PERFORM commands.
As each ENDCASE command is encountered, control returns to the command after the
most recently executed PERFORM command. In this manner, control eventually returns
to the original PERFORM.

Avoiding GOTO With PERFORM
It is recommended that you do not include a GOTO command within the scope of a
PERFORM command. See GOTO and PERFORM on page 7-43 for information on the
incompatibility of the PERFORM and GOTO commands.

Command Reference

7-82 Information Builders

RECOMPILE
If you compile a procedure under one release of FOCUS, and then run that procedure
under a later release of FOCUS, the start up time of the first screen may be slow. In this
case, Maintain displays a message informing you of the situation. To increase the start up
speed of your procedure, you should recompile under the later release using the
RECOMPILE command.

This command is outside the Maintain language, but is described here for your
convenience. You cannot issue this command from within a Maintain procedure.

Syntax RECOMPILE Command
The syntax of the RECOMPILE command is

RECOMPILE procedure_name [AS newname]

where:

procedure_name

Is the name of the originally-compiled procedure file.

newname

Is the name given to the recompiled procedure file. If you do not supply a name, the
name of the newly-compiled procedure defaults to the name of the
originally-compiled procedure.

Reference Commands Related to RECOMPILE

• COMPILE compiles a procedure, reducing the time needed to display its first
Winform.

• RUN executes compiled procedures.

 REPEAT

Maintaining Databases 7-83

REPEAT
The REPEAT command enables you to loop through a block of code. REPEAT defines
the beginning of the block, and ENDREPEAT defines the end. You control the loop by
specifying the number of loop iterations, and/or the conditions under which the loop
terminates. You can also define counters to control processing within the loop, for
example incrementing a row counter to loop through the rows of a stack.

Syntax REPEAT Commands
The syntax of the REPEAT command is

REPEAT �int � � [counter[/fmt]=init_expr;...]�
�ALL � � �
�WHILE condition� � [;] �
�UNTIL condition�

command
.
.
.

ENDREPEAT [counter[/fmt]=increment_expr;...]

where:

int

Specifies the number of times the REPEAT loop is to execute. The value of int can
be an integer constant, an integer field, or a more complex expression that resolves to
an integer value. If you use an expression, it is recommended that the expression
resolve to an integer, although other types of expressions are possible. If the
expression resolves to a floating-point or packed-decimal value, the decimal portion
of the value will be truncated. If it resolves to an alphanumeric representation of a
numeric value, it will be converted to an integer value.
Expressions are described in Chapter 8, Expressions Reference.

ALL

Specifies that the loop is to repeat indefinitely, terminating only when a GOTO
EXITREPEAT command is issued from within the loop.

WHILE

Specifies that the WHILE condition is to be evaluated prior to each execution of the
loop. If the condition is true, the loop is entered; if the condition is false, the loop is
terminated and control passes directly to the command immediately following
ENDREPEAT. If the condition is false when the REPEAT command is first
executed, the loop is never entered.

Command Reference

7-84 Information Builders

UNTIL

Specifies that the UNTIL condition is to be evaluated prior to each execution of the
loop. If the condition is false, the loop is entered; if the condition is true, the loop is
terminated and control passes directly to the command immediately following
ENDREPEAT. If the condition is true when the REPEAT command is first executed,
the loop is never entered.

condition

Is a valid Maintain expression that can be evaluated as true or false (that is, a
Boolean expression).

counter

Is a variable that you can use as a counter within the loop. You can assign the
counter’s initial value in the REPEAT command, or in a COMPUTE command
issued prior to the REPEAT command. You can increment the counter at the end of
each loop iteration in the ENDREPEAT command. If you wish, you can also change
the counter’s value in a COMPUTE command within the loop. You can refer the
counter throughout the loop, including:

• Inside the loop, as a stack subscript.

• Inside the loop, in an expression.

• In a WHILE or UNTIL condition in the REPEAT command.

fmt

Is the counter’s format. It can be any valid FOCUS format except for TX. The format
is required only if you are defining the variable in this command.

init_expr

Is an expression whose value is assigned to the counter before the first iteration of the
loop. It can be any valid Maintain expression.

increment_expr

Is an expression whose value is assigned to the counter at the end of each complete
loop iteration. It can be any valid Maintain expression.

command

Is one or more Maintain commands, except for the CASE, DECLARE, DESCRIBE,
END, MAINTAIN, and MODULE commands.

;

Terminates the command. If you do not specify a counter, the semicolon is optional
but recommended: including it allows for flexible syntax and better processing. For
more information about the benefits of including the semicolon, see Chapter 6,
Language Rules Reference.

 REPEAT

Maintaining Databases 7-85

Example Simple Loops
The following code has a loop that executes ten or fewer times. The REPEAT line
initiates the loop. The number 10 indicates that the loop will execute ten times, barring
any conditions or commands to exit the loop. The ON NONEXT GOTO EXITREPEAT
command causes the loop to be exited when there are no more instances of Sales in the
data source. The COMPUTE command calculates TotSales within an execution of the
loop. The ENDREPEAT command is the boundary for the loop. Commands after
ENDREPEAT are not part of the loop. Because there is no loop counter there is no way
to know which repetition of the loop is currently executing:

COMPUTE TotSales = 0;
REPEAT 10;

NEXT Sales;
ON NONEXT GOTO EXITREPEAT;
COMPUTE TotSales = TotSales + Sales;

ENDREPEAT

Example Specifying Loop Iterations
You can control the number of times that the flow of control cycles through the loop by
specifying the number of iterations. For example:

REPEAT 27;

You can also specify a condition that must be true or false for looping to continue:

REPEAT WHILE Rows GT 15;

Example Repeating a Loop a Variable Number of Times
The REPEAT variable construct indicates that the loop is repeated the number of times
indicated by the value of the variable. In this example, Stk1 is the name of a stack and
FocCount is a stack variable that contains the number of rows in the stack. The loop
executes a variable number of times based on the value of Stk1.FocCount:

FOR ALL NEXT Country INTO Stk1;
COMPUTE Cnt = 1;
REPEAT Stk1.FocCount;

TYPE "Country = <Stk1(Cnt).Country";
COMPUTE Cnt = Cnt +1;

ENDREPEAT

Command Reference

7-86 Information Builders

Example REPEAT WHILE and UNTIL
The REPEAT WHILE construct indicates that the loop should be repeated as long as the
expression is true. Once the expression is no longer true, the loop is exited. In this
example, the loop will be executed Stk1.FocCount number of times. Stk1 is the name of a
stack and FocCount is a stack variable that contains the number of rows in the stack:

FOR ALL NEXT Country INTO Stk1;
COMPUTE CNT = 1;
REPEAT WHILE Cnt LE Stk1.FocCount;
TYPE "Country = <Stk1(Cnt).Country ";
COMPUTE Cnt = Cnt + 1;

ENDREPEAT

The REPEAT UNTIL construct indicates that the loop is repeated as long as the
expression is not true. Once the expression is true, the loop is exited. In this example, the
loop is executed Stk1.FocCount number of times. Stk1 is the name of a stack and
FocCount is a stack variable that contains the number of rows in the stack. The
COMPUTE increments the counter, although this could have been specified on the
ENDREPEAT command. ENDREPEAT indicates the end of the loop:

FOR ALL NEXT Country INTO Stk1;
COMPUTE Cnt = 1;
REPEAT UNTIL Cnt GT Stk1.FocCount;

TYPE "Country = <Stk1(Cnt).Country";
COMPUTE Cnt = Cnt + 1;

ENDREPEAT

Example Establishing Counters
You can use as many counters as you wish in each loop. The only restriction is that all
counter initializations performed in the REPEAT command must fit on the single line of
the REPEAT command, and all counter incrementation performed in the ENDREPEAT
command must fit on the single line of the ENDREPEAT command. You can avoid the
single-line limitation by defining and incrementing counters using COMPUTE
commands. It is legitimate, however, to have a REPEAT loop and never refer to any
counter within the loop. If this is done, the same row of data is always worked on and
unexpected results can occur.

 REPEAT

Maintaining Databases 7-87

The following examples do not have any index notation on the stack Stackemp, so each
NEXT puts data into the same row of the stack. In other words, INTO Stackemp is the
same as INTO Stackemp(1). Row one is always referenced because, by default, if there is
a stack name without a row number, the default row number of one is used.

REPEAT 10;
NEXT Emp_ID INTO Stackemp;
.
.
.

ENDREPEAT

is the same as:

REPEAT 10 Cnt=1;
NEXT Emp_ID INTO Stackemp;
.
.
.

ENDREPEAT Cnt=Cnt+1;

To resolve this problem, the REPEAT loop can establish counters and how they are
incremented. Inside the loop, individual rows of a stack can be referenced using one of
the REPEAT loop counters. The REPEAT command can be used to initialize many
variables that will be used in the loop. For example

REPEAT 100 Cnt=1; Flag=IF Factor GT 10 THEN 2 ELSE 1;

or:

REPEAT ALL Cnt = IF Factor GT 10 THEN 1 ELSE 10;

On the ENDREPEAT command the counters are incremented by whatever calculations
follow the keyword ENDREPEAT. Two examples are

ENDREPEAT Cnt = Cnt + 1; Flag = Flag*2;

and:

ENDREPEAT Cnt=IF Department EQ 'MIS' THEN Cnt+5 ELSE Cnt+1;

Command Reference

7-88 Information Builders

The following code sets up a repeat loop and computes the variable New_Sal for every
row in the stack. The REPEAT line initiates the loop. The ALL indicates that the loop
continues until a command in the loop tells the loop to exit. A GOTO EXITREPEAT
command is needed in a loop when REPEAT ALL is used. The Cnt = 1 initializes the
counter to 1 the first time through the loop. The COMPUTE command calculates a five
percent raise. It uses the REPEAT counter (Cnt) to access each row in the stack one at a
time. The counter is checked to see if it is greater than or equal to the number of rows in
the Stackemp stack. The stack variable FocCount always contains the value of the number
of rows in the stack. After every row is processed, the loop is exited. The ENDREPEAT
command contains the instructions for how to increment the counter:

REPEAT ALL Cnt=1;
COMPUTE Stkemp(Cnt).NewSal=Stkemp(Cnt).Curr_Sal * 1.05;
IF Cnt GE Stackemp.FocCount THEN GOTO EXITREPEAT;

ENDREPEAT Cnt=Cnt+1;

Example Nested Repeat Loops
REPEAT loops can be nested. This example shows one repeat loop nested within another
loop. The first REPEAT command indicates that the loop will execute as long as the
value of A is less than 3. It also initializes the counter A to 1. The second REPEAT
command indicates that the nested loop will execute until the value of B is greater than 4.
It initializes the counter B to 1. Two ENDREPEAT commands are needed, one for each
REPEAT command. Each ENDREPEAT increments its respective counters.

REPEAT WHILE A LT 3; A = 1;
TYPE "In A loop with A = <A";
REPEAT UNTIL B GT 4; B = 1;

TYPE " ***In B loop with B = <B ";
ENDREPEAT B = B + 1;

ENDREPEAT A = A + 1;

The output of these REPEAT loops would look like the following:

In A loop with A = 1
***In B loop with B = 1
***In B loop with B = 2
***In B loop with B = 3
***In B loop with B = 4

In A loop with A = 2
***In B loop with B = 1
***In B loop with B = 2
***In B loop with B = 3
***In B loop with B = 4

 REPEAT

Maintaining Databases 7-89

Reference Usage Notes for REPEAT

• The actual number of loop iterations can be affected by other phrases and commands
in the loop. The loop can end before completing the specified number of iterations if
it is terminated by a WHERE or UNTIL condition, or by a GOTO EXITREPEAT
command issued within the loop.

Reference Commands Related to REPEAT

• COMPUTE is used to define user-defined variables and assign values to existing
variables. For information about the COMPUTE command, see COMPUTE on page
7-18.

• GOTO transfers control to another function or to the end of the current function.

Branching Within a Loop
There are two branching instructions that facilitate the usage of REPEAT and
ENDREPEAT to control loop iterations:

• GOTO ENDREPEAT causes a branch to the end of the repeat loop and executes
any computes on the ENDREPEAT line.

• GOTO EXITREPEAT causes the loop to be exited and goes to the next logical
instruction after the ENDREPEAT.

Example Terminating the Loop From the Inside
You can terminate a REPEAT loop by branching from within the loop to outside the loop.
When you issue the command GOTO EXITREPEAT, Maintain branches to the command
immediately following the ENDREPEAT command. It does not increment counters
specified in the ENDREPEAT command. For example:

REPEAT ALL;
.
.
.

GOTO EXITREPEAT;
.
.
.
ENDREPEAT

Command Reference

7-90 Information Builders

REPOSITION
For a specified segment and each of its descendants, the REPOSITION command resets
the current position to the beginning of that segment’s chain. That is, each segment is
reset to just prior to the first instance.

Most data source commands change the current segment position to the instance that they
most recently accessed. When you wish to search an entire data source or path for
records, it is recommended that you ensure that you begin searching from the beginning
of the data source or path by first issuing the REPOSITION command.

Syntax REPOSITION Command
The syntax of the REPOSITION command is

REPOSITION segment_spec [;]

where:

segment_spec

Is the name of a segment or the name of a field in a segment. The specified segment
and all of its descendants are repositioned to the beginning of the segment chain.

;

Terminates the command. Although the semicolon is optional, it is recommended that
you include it to allow for flexible syntax and better processing. For more
information about the benefits of including the semicolon, see Chapter 6, Language
Rules Reference.

Example Using REPOSITION
The following example repositions the root segment and all of the descendant segments of
the Employee data source:

REPOSITION Emp_ID;

The next example repositions both the SalInfo and Deduct segments in the Employee data
source:

REPOSITION Pay_Date;

Reference Commands Related to REPOSITION

• NEXT starts at the current position and moves forward through the data source and
can retrieve data from one or more records. See NEXT on page 7-60.

• MATCH searches entire segments for a matching field value and can retrieve an
exact match in the data source. See MATCH on page 7-56.

 REVISE

Maintaining Databases 7-91

REVISE
The REVISE command reads a stack of transaction data and writes it to a data source,
inserting new segment instances and updating existing instances.

REVISE combines the functionality of the INCLUDE and UPDATE commands. It reads
each stack row and processes each segment in the specified path using the following
logic:

MATCH key
ON MATCH UPDATE fields
ON NOMATCH INCLUDE segment

You specify a path running from an anchor segment to a target segment. For each segment
in the path, REVISE matches the segment’s instances in the stack against the
corresponding instances in the data source. If an instance’s keys fail to find a match in the
data source, REVISE adds the instance. If an instance does find a match, REVISE
updates it using the fields that you have specified. The values that REVISE writes to the
data source are provided by the stack.

Data source commands treat a unique segment as an extension of its parent, so that the
unique fields seem to reside in the parent. Therefore, when REVISE adds an instance to a
segment that has a unique child, it automatically also adds an instance of the child.

If the anchor segment is not the root, you must establish a current instance in each of the
anchor’s ancestor segments, or provide ancestor segment key values in the source stack.
This enables REVISE to navigate from the root to the anchor segment’s first instance.

Syntax REVISE Command
The syntax of the REVISE command is

[FOR {int|ALL}] REVISE data_spec [FROM stack [(row)]] [;]

where:

FOR

Indicates that an integer or ALL will be used to specify how many stack rows to write
to the data source.
If you specify FOR, you must also specify a source stack using the FROM phrase. If
you omit FOR, REVISE defaults to writing one row.

int

Is an integer expression that specifies the number of stack rows to write to the data
source.

ALL

Specifies that all of the stack’s rows are to be written to the data source.

Command Reference

7-92 Information Builders

data_spec

Identifies the path to be written to the data source and the fields to be updated:

1. Specify each field that you want to update in existing segment instances. (You
can update only non-key fields: because a key uniquely identifies an instance,
keys can be added and deleted but not changed.)

2. Specify the path by identifying its anchor and target segments. You can specify a
segment by providing its name or the name of one of its non-key fields.

If you have already identified the anchor and target segments in the process of
specifying update fields, you do not need to do anything further to specify the path.
Otherwise, if either the anchor or the target segment has not been identified via
update fields, specify it using its segment name.

FROM

Indicates that the transaction data will be supplied by a stack. If this is omitted, the
transaction data is supplied by the Current Area.

stack

Is the name of the stack whose data is being written to the data source.

row

Is a subscript that specifies the first stack row to be written to the data source. If
omitted, it defaults to 1.

;

Terminates the command. Although the semicolon is optional, it is recommended that
you include it to allow for flexible syntax and better processing. For more
information about the benefits of including the semicolon, see Chapter 6, Language
Rules Reference.

 REVISE

Maintaining Databases 7-93

Example Using REVISE
In the following example the user is able to enter information for a new employee, or
change an existing employee’s last name. Existing employee records are displayed in a
grid. All of the information is stored in a stack named EmpStk.

MAINTAIN FILE EMPLOYEE
FOR ALL NEXT Emp_ID INTO EmpStk;
WINFORM SHOW GetData;

CASE Alter_Data
FOR ALL REVISE Last_Name FROM EmpStk;
ENDCASE

END

When function Alter_Data is invoked from a Winform’s trigger, the REVISE command
reads EmpStk and tries to find each row’s Emp_ID in the Employee data source. If
Emp_ID exists in the data source, REVISE updates that segment instance’s Last_Name
field. If it does not exist, then REVISE inserts a new EmpInfo instance into the data
source, and writes EmpInfo’s fields from the stack to the new instance.

Reference Usage Notes for REVISE

• Maintain requires that data sources to which it writes have unique keys.

Reference Commands Related to REVISE

• INCLUDE adds new segment instances to a data source. See INCLUDE on page
7-47.

• UPDATE updates data source fields. See UPDATE on page 7-105.

• COMMIT makes all data source changes since the last COMMIT permanent. See
COMMIT on page 7-16.

• ROLLBACK cancels all data source changes made since the last COMMIT. See
ROLLBACK on page 7-94.

Command Reference

7-94 Information Builders

ROLLBACK
The ROLLBACK command processes a logical transaction. A logical transaction is a
group of data source changes that are treated as one. The ROLLBACK command cancels
prior UPDATE, INCLUDE, and DELETE operations that have not yet been committed to
the data source via the COMMIT command.

Syntax ROLLBACK Command
The syntax of the ROLLBACK command is

ROLLBACK [;]

where:

;

Terminates the command. Although the semicolon is optional, it is recommended that
you include it to allow for flexible syntax and better processing. For more
information about the benefits of including the semicolon, see Chapter 6, Language
Rules Reference.

Example Using ROLLBACK
This example shows part of a procedure where an employee ID needs to be changed.
Because Emp_ID is a key, it cannot be changed. To accomplish this, it is necessary to
collect the existing field values, make the necessary changes, delete the employee from
the data source, and add a new segment instance. The following shows partial code where
the existing instance is deleted and a new one is added. If for some reason the INCLUDE
does not work, the DELETE should not occur.

CASE Chngempid
DELETE Emp_ID;
IF FocError NE 0 PERFORM DeleteError;
INCLUDE Emp_ID Bank_Name Dat_Inc Type Pay_Date Ded_Code;
IF FocError NE 0 PERFORM Undo;
ENDCASE

CASE Undo
ROLLBACK;
ENDCASE

 ROLLBACK

Maintaining Databases 7-95

Reference Usage Notes for ROLLBACK

• A ROLLBACK is automatically issued when a program is exited abnormally.

• A successful ROLLBACK issued in a called procedure frees the data source position
maintained by that procedure and by all calling procedures.

• A ROLLBACK is automatically issued if an attempt to COMMIT fails.

DBMS Combinations
When an application accesses more than one type of data source (for example, FOCUS
and Teradata), ROLLBACK is treated as a broadcast rollback. There is no coordination
between the different types of data sources, therefore the ROLLBACK might succeed
against one type of data source but fail against another.

Command Reference

7-96 Information Builders

RUN
You can execute a compiled procedure by using the RUN command.

This command is outside the Maintain language, but is described here for your
convenience. You cannot issue this command from within a Maintain procedure.

Syntax RUN Command
The syntax of the RUN command is

RUN procedure_name

where:

procedure_name

Is the name of the compiled procedure.

Example Using Run
For example, the following command executes the compiled version of the EmpInfo
procedure:

RUN EmpInfo

You can create a compiled procedure using the COMPILE command.

 SAY

Maintaining Databases 7-97

SAY
The SAY command wr ites messages to a file or to the default output device. SAY has
many uses, includ ing t racing flow-of-control to debug an application, and recording an
accounting trail.

Syntax SAY Command
The syntax of the SAY command is

SAY [TO ddname] expression [expression ...] ;

where:

expression

Is any Maintain expression. Multiple expressions must be separated by spaces.
Each message is written on the current line, beginning in the column that follows the
end of the previous message. When a message reaches the end of the current line in
the file or display device, or encounters a line feed (the string \n) in the message text,
the message stream continues in column 1 of the next line.
If you write to output devices that buffer messages before displaying them, you may
wish to end each message with an explicit line feed to force the buffer to display the
message’s last line.

TO ddname

Specifies the logical name of the file to which the SAY message is written. ddname is
an alphanumeric expression; if you supply a literal for ddname, it must be enclosed
by single or double quotation marks.
You must define the logical name (using a FILEDEF command on CMS, or a
DYNAM command on OS/390 or MVS) before the SAY command is executed. In
order to append to an existing file (for example, to write to a file from more than one
procedure), specify the appropriate option in the DYNAM or FILEDEF command.
If TO ddname is omitted, the message is written to the default output device of the
environment in which the SAY command is issued. For applications run from a
terminal in an S/390 environment, the default device is the terminal.

Reference Commands Related to SAY

• TYPE writes messages to a file or to a Winform. See TYPE on page 7-101.

Command Reference

7-98 Information Builders

Writing Segment and Stack Values
You can use the SEG and STACK prefixes to write the values of all a segment’s fields or
a stack’s columns to a message. This can be helpful when you write messages to log and
checkpoint files.

SEG.fieldname inserts Current Area values for all of the specified segment’s fields.
STACK.stackname(row) inserts, for the specified stack, the specified row’s values.

Choosing Between the SAY and TYPE Commands
The rules for specifying messages using the SAY command are simpler and more
powerful than those for the TYPE command. For example, you can include all kinds of
expressions in a SAY command, but only character string constants and scalar variables
in a TYPE command.

Note that, unlike the TYPE command, the SAY command does not generate a default line
feed at the end of each line.

 STACK CLEAR

Maintaining Databases 7-99

STACK CLEAR
STACK CLEAR clears the contents of each of the stacks listed, so that each stack has no
rows. This is done by resetting the stack variables FocCount to zero and FocIndex to one.

Syntax STACK CLEAR Command
The syntax of the STACK CLEAR command is

STACK CLEAR stacklist [;]

where:

stacklist

Specifies the stacks to be initialized. Stack names are separated by blanks.

;

Terminates the command. Although the semicolon is optional, it is recommended that
you include it to allow for flexible syntax and better processing. For more
information about the benefits of including the semicolon, see Chapter 6, Language
Rules Reference.

Example Using Stack Clear
The following initializes the Emp stack:

STACK CLEAR Emp;

The next example initializes both the Emp and the Dept stacks:

STACK CLEAR Emp Dept;

Command Reference

7-100 Information Builders

STACK SORT
The STACK SORT command enables you to sort the contents of a stack in ascending or
descending order based on the values in one or more columns.

Syntax STACK SORT Command
The syntax for the STACK SORT command is

STACK SORT stackname BY [HIGHEST] column [BY [HIGHEST] column ...] [;]

where:

stackname

Specifies the stack to be sorted. The stack name cannot be subscripted with a row
range in order to sort only part of the stack.

HIGHEST

If specified, sorts the stack in descending order. If not specified, the stack is sorted in
ascending order.

column

Is a stack column name. At least one column name must be specified. The column
must exist in the specified stack.

;

Terminates the command. Although the semicolon is optional, it is recommended that
you include it to allow for flexible syntax and better processing. For more
information about the benefits of including the semicolon, see Chapter 6, Language
Rules Reference.

Example Using STACK SORT
The following sorts the stack Emp using the values in the stack column Emp_ID:

STACK SORT Emp BY Emp_ID;

The following sorts the stack Emp so that the employees with the highest Salary are
placed first in the stack:

STACK SORT Emp BY HIGHEST Salary;

The next example sorts the stack by Department. Within Department the rows are ordered
by highest Salary:

STACK SORT Emp BY Department BY HIGHEST Salary;

 TYPE

Maintaining Databases 7-101

TYPE
The TYPE command displays messages in a TYPE message box (if the procedure has
Winforms), writes them to the screen, or to a sequential file (if the command names a
file). You can use TYPE to trace application flow-of-control and record an accounting
trail.

Syntax TYPE Command
The syntax of the TYPE command is

TYPE [ON ddname] "message" [[|] "message"] ... [;]

where:

ON ddname

Specifies the logical name of the file that the TYPE message is written to when ON is
specified. You must define the ddname (using a DYNAM or FILEDEF command)
prior to the first usage. The message string can be up to 256 characters in length. The
output starts in column 1. In order to append to an existing file or to write to a file
from more than one procedure, append to the file by specifying the appropriate
option in the DYNAM or FILEDEF command.
If ON ddname is not provided and the procedure includes Winforms, the message
string is displayed in a TYPE Winform.

message

Is the information to be displayed or written. The message must be enclosed in
double quotation marks ("). The message can contain:

• Any literal text

• Variables

• Horizontal spacing information

• Vertical spacing information
The layout of the message is exactly what is specified.

;

Terminates the command. Although the semicolon is optional, it is recommended that
you include it to allow for flexible syntax and better processing. For more
information about the benefits of including the semicolon, see Chapter 6, Language
Rules Reference.

Command Reference

7-102 Information Builders

Reference Commands Related to TYPE
SAY writes messages to a file or to the default output device; messages can include
multiple expressions of all types. See SAY on page 7-97.

Including Variables in a Message
You can embed variables in a message by prefixing the variable with a left caret (<).
Unless the field name is the last item in the string, it must be followed by a space.
Maintain does not include the caret and space in the display. For example:

TYPE "Accepted: <Indata(Cnt).Fullname";

Embedding Horizontal Spacing Information
TYPE information can be placed in a specific column or can be moved a number of
columns away from the current position. The following example

TYPE "<20 This starts in column 20";
TYPE "Skip <+8 8 spaces within text";
TYPE "Back up <-4 4 spaces and overwrite";

results in:

This starts in column 20
Skip 8 spaces within text
Back4 spaces and overwrite

Embedding Vertical Spacing Information
Lines can be skipped by supplying a left caret (<), slash (/) and the number of lines to be
advanced. If the line advance specification is at the beginning of the line, the specified
number of lines are advanced before the following text.

TYPE "</3 Displays 3 blank lines" |
" before this line";

If the </number is encountered in the middle of the line, the line feed occurs when
</number is encountered.

TYPE "This will </2 leave one" |
" blank line before the word leave";

 TYPE

Maintaining Databases 7-103

Coding Multi-Line Message Strings
Sometimes, a message string needs to be coded on more than one line of a TYPE
command. This can occur if indented TYPE lines, spacing information, or field prefixes
extend the message string beyond the end of the line. You can wrap a message string onto
the next line of a TYPE command if you:

1. End the first line with an ending quotation mark, followed by a vertical bar (|).

2. Begin the second line with a quotation mark. For example:

TYPE "Name: <Employee.First_Name" |
"<Employee(Cnt).Last_Name" |
"Salary: <Employee(Cnt).Salary";

Justifying Variables and Truncating Spaces
To either truncate or display trailing spaces within a field, a left caret (<) or a double left
caret (<<) may be used respectively. For alphanumeric fields, the field values are always
left justified. For example

TYPE "*** <Car.Country ***";
TYPE "*** <<Car.Country ***";

produces:

*** ENGLAND***
*** ENGLAND ***

For numeric fields, the left caret causes the field values to be left justified, and trailing
spaces are truncated. The double left caret causes the field values to be right justified and
leading spaces are displayed.

For example

TYPE "*** <Car.Seats ***"
TYPE "*** <<Car.Seats ***"

produces:

*** 4***
*** 4***

Command Reference

7-104 Information Builders

Writing Information to a File
You can use TYPE commands to write information to a file. The following example
writes every transaction record to a log file:

FOR ALL NEXT Emp_ID Last_Name First_Name INTO Stackemp;
COMPUTE Cnt=Cnt+1;
TYPE ON TransLog "<Stackemp(Cnt).Emp_ID " |
"<Stackemp(Cnt).Last_Name" |
"<Stackemp(Cnt).First_Name";

The next example places a message into an errors log file if the salary in the stack is
greater than allowed:

IF Stackemp(Cnt).Curr_Sal GT Allowamt THEN TYPE ON ErrsFile
"Salary for employee <Stackemp.Emp_ID" |
"is greater than is allowed.";

The last example writes three lines to the file NoEmpl if the employee is not in the data
source:

MATCH Emp_ID;
ON NOMATCH TYPE ON NoEmpl "<Emp_ID"

"<Last_Name"
"<First_Name";

 UPDATE

Maintaining Databases 7-105

UPDATE
The UPDATE command writes new values to data source fields using data from a stack
or the Current Area. All of the fields must be in the same data source path. The key fields
in the stack or Current Area identify which segment instances to update.

The segment containing the first update field is called the anchor. If the anchor segment is
not the root, you must establish a current instance in each of the anchor’s ancestor
segments, or provide ancestor segment key values in the source stack or Current Area.
This enables UPDATE to navigate from the root to the anchor segment’s first instance.

Syntax UPDATE Command
The syntax of the UPDATE command is

[FOR {int|ALL}] UPDATE fields [FROM stack[(row)]] [;]

where:

FOR

Is used with int or ALL to specify how many rows of the stack to use to update the
data source. When FOR is used, a FROM stack must be supplied. If no FOR prefix is
used, the UPDATE works the same way that FOR 1 UPDATE works.

int

Is an integer constant or variable that indicates the number of rows to use to update
the data source.

ALL

Specifies that the entire stack is used to update the corresponding records in the data
source.

fields

Is used to specify which data source fields to update. You must specify every field
that you wish to update. You cannot update key fields. All fields must be in the same
path.

FROM

Is used to specify a stack containing records to insert. If no stack is specified, data
from the Current Area is used.

stack

Is the name of the stack whose data is used to update the data source. Only one stack
can be specified.

Command Reference

7-106 Information Builders

row

Is a subscript that specifies the first stack row to use to update the data source.

;

Terminates the command. Although the semicolon is optional, it is recommended that
you include it to allow for flexible syntax and better processing. For more
information about the benefits of including the semicolon, see Chapter 6, Language
Rules Reference.

Example Using Update
The UPDATE command can be executed after a MATCH command finds a matching
record. For example:

MATCH Emp_ID;
ON MATCH UPDATE Department Curr_Sal Curr_Jobcode Ed_Hrs FROM Chgemp;

Consider an application used when an employee changes his or her last name. The
application user is prompted for the employee ID and new last name in a Winform. The
user enters the name and triggers the ChngName function: if the employee is in the data
source, ChngName updates the data source; if the employee is not in the data source,
ChngName displays a message asking the user to try again.

CASE ChngName
REPOSITION Emp_ID;
MATCH Emp_ID;
ON MATCH BEGIN

UPDATE Last_Name;
COMMIT;
WINFORM CLOSE;
ENDBEGIN

ON NOMATCH BEGIN
TYPE "Employee ID <Emp_ID was not found"

"Try again";
ENDBEGIN

ENDCASE

The command can also be issued without a preceding MATCH. In this situation the key
field values are taken from the FROM stack or Current Area and a MATCH is issued
internally. When a set of rows are changed without first finding out if they already exist in
the data source, it is possible that some of the rows in the stack will be rejected. Upon the
first rejection, the process stops and the rest of the set is rejected. For all rows to be
accepted or rejected as a unit, the set should be treated as a logical unit of work, and a
ROLLBACK issued if the entire set is not accepted.

 UPDATE

Maintaining Databases 7-107

Reference Usage Notes for UPDATE

• Key fields cannot be updated.

• There can only be one input or FROM stack in an UPDATE command.

• After an UPDATE command completes, the variable FocError is set. If the UPDATE
is successful, FocError is set to zero. If the records do not exist, and are therefore
unchanged, FocError is set to a non-zero value and—if the UPDATE is set-based—
FocErrorRow is set to the number of the row that failed.

• Maintain requires that data sources to which it writes have unique keys.

Reference Commands Related to UPDATE

• COMMIT makes all data source changes since the last COMMIT permanent. See
COMMIT on page 7-16.

• ROLLBACK cancels all data sources changes made since the last COMMIT. See
ROLLBACK on page 7-94.

Update and Transaction Variables
After the UPDATE is processed, the internal variable FocError is given a value. If the
UPDATE is successful, FocError is zero. If the UPDATE fails (i.e., the key values did
not exist in the data source) FocError is set to a non-zero value, and—if the UPDATE
was set-based—FocErrorRow is set to the number of the row that failed. If at COMMIT
time there is a concurrency conflict, FocError and the internal variable FocCurrent are set
to non-zero values.

Command Reference

7-108 Information Builders

Example Using Stacks
In the following example the user is allowed to enter many employee IDs and new names
at one time. Rather than performing a MATCH on each row in the stack, this function
checks FocError after the UPDATE command. If FocError is zero, a COMMIT is issued
and the function is exited. If FocError is not zero, another function is performed which
tries to clean up the data. The IF command which starts at the beginning of the function
checks to see if there are any rows in the stack. If the stack does not have any rows, then a
Winform is displayed allowing the user to enter new data. If the stack has rows, it is
because the user made a mistake, so a different Winform is displayed allowing the user to
edit the entered data.

The Maintain procedure contains:

STACK CLEAR Namechng;
PERFORM Chngname;
CASE Chngname
IF Namechng.FocCount LE 0

THEN WINFORM SHOW Myform1;
ELSE WINFORM SHOW Myform2;

FOR ALL UPDATE Last_Name FROM Namechng;
IF FocError EQ 0 BEGIN

COMMIT;
GOTO ENDCASE;
ENDBEGIN

PERFORM Fixup;
GOTO Chngname;
ENDCASE

Data Source Position
A Maintain procedure always has a position either in a segment or before the beginning of
the chain. If positioned within a segment, the position is the last record successfully
retrieved on that segment. If a retrieval operation fails, then the data source’s position
remains unchanged.

If an UPDATE is successful, the data source position is changed to the last record it
updated. If an UPDATE fails, the position is at the end of the chain because the MATCH
prior to the UPDATE also fails.

Unique Segments
The UPDATE command treats fields in unique segments the same as fields in other types of
segments.

 WINFORM

Maintaining Databases 7-109

WINFORM
The WINFORM command controls the Winforms that appear on the screen. Winforms
are forms that can be used to edit and display data. They act as an application’s user
interface, whereas a procedure controls the application’s logic and use of data.

Syntax WINFORM Command
The syntax of the WINFORM command for displaying and controlling Winforms is

WINFORM �SHOW[_ACTIVE]� formname [;]
�SHOW_INACTIVE�
�HIDE �
�UNHIDE �
�REFRESH �
�STOP �
�CLOSE_ERROR �
�CLOSE_TYPE �
�CLOSE_ALL �
�CLOSE �

You can also use the WINFORM command to manipulate control properties (controls are
sometimes referred to as Winform objects). The syntax of the WINFORM command for
changing a control property is:

WINFORM SET formname[.controlname].property TO value [;]

The syntax of the WINFORM command for querying a control property is:

WINFORM GET formname[.controlname].property INTO variable [;]

where:

SHOW

Makes the specified Winform active: it displays the Winform and transfers control to
it, enabling an application user to manipulate the Winform’s controls such as buttons
and fields. If other Winforms are currently displayed on the screen, the specified
Winform is displayed on top.

SHOW_ACTIVE

Can be used for clarity. It is functionally identical to SHOW.

SHOW_INACTIVE

Displays the specified Winform without making it active. Because the Winform is
inactive, control passes to the next command, not to the Winform.
This is used when changing Winform properties dynamically at run time before the
Winform is displayed.

Command Reference

7-110 Information Builders

HIDE

Removes the specified Winform from the screen. You can hide any Winform except
for the active one. You can later redisplay it using the WINFORM UNHIDE
command.

UNHIDE

Is used to display a Winform which has been hidden using the WINFORM HIDE
command, or which has been covered on the screen by other Winforms. If multiple
Winforms are on the screen, the specified Winform is displayed on top. This
command does not make the specified Winform active. If the specified Winform was
already displayed and unobstructed by other Winforms, this command is ignored.
As an alternative, the application end user can unhide a partially covered Winform by
clicking it with the ONTOP function key (PF24).

REFRESH

Re-populates the Winform’s data values as if control had returned to the Winform
from a trigger, but without making the Winform active.

CLOSE_ALL

Closes all Winforms. The Winform environment remains active.

CLOSE

Closes the chain of Winforms from the currently active Winform back up to the
specified Winform. If you do not specify a Winform, the command closes only the
currently active Winform.
The close operation does the following:

• Passes control directly to the beginning of the chain, to the point just following
the WINFORM SHOW command that invoked the specified Winform.

• Removes closed popup Winforms from the screen. Closed non-popup Winforms
remain on the screen until hidden by a WINFORM HIDE command or the end
of the current Maintain procedure.

STOP

Closes all Winforms. Terminates the Winform environment. Directs TYPE messages
to the screen.

SET

Changes the specified property of the named control to the specified value. For
information about using the WINFORM SET command, see Dynamically Changing
Winform Control Properties on page 7-114.

 WINFORM

Maintaining Databases 7-111

GET

Determines the specified property’s value at the time the WINFORM GET command
is executed, and copies that value to the specified variable. For information about
using the WINFORM GET command, see Dynamically Changing Winform Control
Properties on page 7-114.

formname

Is the name of the Winform.

controlname

Is the name of the Winform control whose property you wish to set or get. Omit the
control name if you are changing the color of an entire Winform, or if you are getting
the name of the control that has input focus; otherwise you must specify it.
Except where noted otherwise in Dynamically Changing Winform Control Properties
on page 7-114, properties can be set for all types of controls.

property

Is any valid property. Properties are described in Dynamically Changing Winform
Control Properties on page 7-114.

value

Is a value that is valid for the specified property. Properties and their values are
described in Dynamically Changing Winform Control Properties on page 7-114.

variable

Is any scalar variable—a user-defined field or a stack cell—to which you will assign
the value of the specified property of the specified Winform control.

;

Terminates the command. Although the semicolon is optional, it is recommended that
you include it to allow for flexible syntax and better processing. For more
information about the benefits of including the semicolon, see Chapter 6, Language
Rules Reference.

Reference Commands Related to WINFORM

• NEXT retrieves sets of data from a data source into a stack; you can then display the
stack’s data in a Winform, as described in NEXT on page 7-60.

• TYPE displays messages on the screen or writes them to a file. See TYPE on page
7-101 for more information.

Command Reference

7-112 Information Builders

Managing the Flow of Control in a Winform
When a WINFORM command is encountered that contains the SHOW option, control is
passed to the named Winform. Control does not return to the procedure until the user
exits the Winform. While the Winform is active, controls within the Winform can invoke
Maintain functions (controls are also known as Winform objects, and functions are also
known as cases). This is accomplished by the use of triggers that specify what happens
when the associated event occurs.

The following is an example of a triggered Maintain function. Two Winforms are hidden,
a background Winform is displayed, and the main Winform is made active. The
background Winform is just a background graphic, so there is no need to activate it:

WINFORM HIDE Addr;
WINFORM HIDE Info;
WINFORM SHOW_INACTIVE Back;
WINFORM SHOW_ACTIVE Main;

The next example uses the WINFORM command after a MATCH in a triggered function.
If there is a match on Emp_ID, two WINFORM commands are performed. Empinput, the
Winform used to enter the employee’s ID number, is hidden and EmpInfo, the Winform
that displays information for the employee whose ID was found, is activated. If the
MATCH is unsuccessful, the procedure displays the NotFound Winform which informs
the application user that the employee ID was not found. It does not hide the Empinput
Winform because the application’s user should be able to see the unsuccessful employee
ID in case the error was caused by a typing mistake:

CASE Findemp
MATCH Emp_ID;
ON MATCH BEGIN

WINFORM HIDE Empinput;
WINFORM SHOW EmpInfo;

ENDBEGIN
ON NOMATCH WINFORM SHOW Notfound;
ENDCASE

A trigger action can be a case (also known as a function) or a system action (such as
Exit).

When a trigger that specifies a function is invoked, the function is performed. The
Winform remains visible to the end user but does not accept keyboard activity. When the
function or functions finish processing, the Winform again becomes available to end user
activity.

 WINFORM

Maintaining Databases 7-113

A trigger can display another Winform. This is done by specifying a WINFORM
command within the triggered Maintain function. In this situation, if the Winform in the
function is made active by the SHOW or SHOW_ACTIVE option, the Winform that
triggers the function continues to be displayed but is no longer active. When the second
Winform is exited, control returns to the function that invoked it. When that function is
exited, control returns to the Winform from which the trigger was invoked, and at that
time the calling Winform becomes active again. The following are the steps in a generic
example:

1. Winform A is active, and the user invokes a trigger.

2. The trigger calls a function.

3. The function displays Winform B and makes B active. Winform A is no longer
active.

4. Once Winform B is exited, the rest of the function is performed.

5. When the function is exited, Winform A becomes active again.

In this example, if Winform B has a trigger that issues a WINFORM SHOW A command,
a warning message is displayed because SHOW cannot be specified for a Winform that is
already displayed to the user.

Displaying Default Values in a Winform
If a Winform displays a variable that has not been assigned a value, the Winform will
display the default value. A variable’s default is determined by its data type and whether
it was defined with the MISSING attribute:

Data Type Default Value Without the
MISSING Attribute

Default Value With
the MISSING
Attribute

Alphanumeric space null

Numeric zero null

Date space null

A null value is displayed as a period (.) by default; you can specify a different character
using the SET NODATA command.

Command Reference

7-114 Information Builders

Dynamically Changing Winform Control Properties
You can change the properties of Winform controls at run time using the WINFORM
SET command. You can determine the current state of control properties using the
WINFORM GET command. (Controls are also known as Winform objects.) You can use
these commands with all Winform controls. (For some properties, such as a grid’s current
column, you invoke a function instead of using WINFORM SET and GET.)

If you want to dynamically set a Winform’s initial properties, you can first display the
Winform in an inactive state using the WINFORM SHOW_INACTIVE command, then
issue the desired WINFORM SET or invoke the function, and finally issue a WINFORM
SHOW command to make the Winform active. If you wish to change a Winform’s
properties in response to user activity in the Winform, you trigger a function containing
WINFORM SET commands and function calls from those user events. You cannot
dynamically set a Winform’s properties before it has been opened with either a
WINFORM SHOW or WINFORM SHOW_INACTIVE.

For example, you could develop a data entry function that checks if a user has entered
data into a field; if the user has not, you could use the WINFORM SET command to
change the field’s color and give it focus, effectively drawing the user’s attention to it and
making it the target of any keyboard activity.

You can set and query the following properties:

• Color: controls in general. You can change the foreground and background colors
of a Winform control, or of the entire Winform, by setting the
FOREGROUND_COLOR and BACKGROUND_COLOR properties respectively.
You can set these properties to a color’s name or to its corresponding numeric value;
the WINFORM GET command retrieves the numeric value. The following colors are
available:

Colors Numeric Values

BLACK 1

BLUE 2

GREEN 3

TURQ 4

RED 5

PINK 6

YELLOW 7

WHITE 8

For each control, you can change the foreground color or the background color, but
not both at the same time: when you set one, the other is automatically set to black.

 WINFORM

Maintaining Databases 7-115

For example, the following command changes the Sales entry field in the
SalesSummary Winform to red:

WINFORM SET SalesSummary.Sales.BACKGROUND_COLOR TO RED;

• Color: grid columns. You can change the background and foreground colors of a
grid column using the ChangeColBcolor and ChangeColFcolor functions
respectively. The syntax for calling these functions is

[COMPUTE] formname.gridname.ChangeColBcolor(ColumnNumber, ColorNumber);
[COMPUTE] formname.gridname.ChangeColFcolor(ColumnNumber, ColorNumber);

where:

COMPUTE

Is an optional keyword. It is required if the preceding command can take an
optional semicolon terminator, but was coded without one. In all other situations
the COMPUTE keyword is unnecessary.

formname

Is the name of the Winform that contains the grid.

gridname

Is the name of the grid.

ColumnNumber

Is the column number in the grid.

ColorNumber

Is the number associated with the color you want in the grid column. Colors and
numbers are listed in the previous table.

• Visibility: general. You can display and hide a control by setting its VISIBLE
property to YES or NO respectively. The corresponding values retrieved by
WINFORM GET are 1 and 0.

For example, the following command hides the Salary entry field in the
EmployeeReview Winform:

WINFORM SET EmployeeReview.Salary.VISIBLE TO NO;

If you wish to dynamically hide an entry field’s prompt, you need to issue a separate
WINFORM SET command that includes the STATIC keyword. The syntax is

WINFORM SET formname.fieldnamesSTATIC.VISIBLE TO NO;

For example, the following command hides the Salary entry field’s prompt in the
EmployeeReview Winform:

WINFORM SET EmployeeReview.SalarySTATIC.VISIBLE TO NO;

Command Reference

7-116 Information Builders

• User control: general. You can protect and unprotect a control from being used by
setting PROTECTED to YES and NO respectively. The corresponding values
retrieved by WINFORM GET are 1 and 0.

When a control is protected, an application user cannot tab to it or use it. You cannot
unprotect control types that, by definition, cannot be tabbed to or manipulated, such
as text.

For example, the following command protects the CustomerNameList list box in the
CustomerForm Winform:

WINFORM SET CustomerForm.CustomerNameList.PROTECTED TO YES;

When a control is protected using the Protected property, it cannot be made available
for user control by setting PROTECTED to NO. If you protect a control by selecting
its Protected check box, the WINFORM SET PROTECTED TO NO command
cannot affect or eliminate the control’s protection.

• User control: adding grid columns. You can prevent a user from adding rows to a
grid using the SetStackMode function. The user is still able to scroll through the
stack and update and delete data in the stack’s existing rows. (If you also wish to
prevent users from changing existing data, you can protect the stack in the Winform
Painter.)

The syntax for calling this function is

[COMPUTE] formname.gridname.SetStackMode(ADDOFF);

where:

COMPUTE

Is an optional keyword. It is required if the preceding command can take an
optional semicolon terminator, but was coded without one. In all other situations
the COMPUTE keyword is unnecessary.

formname

Is the name of the Winform that contains the grid.

gridname

Is the name of the grid.

ADDOFF

Prevents the user from placing the cursor below the last line of the grid that
contains data.

 WINFORM

Maintaining Databases 7-117

• Input focus. You can specify which control is active—that is, which control is the
focus of user activity such as pressing a function key—by setting its FOCUS
property. The control to receive focus is always set to the value HERE. The
WINFORM GET command retrieves the name of the control that currently has focus.

For grids, the row indicated by the current value of FocIndex receives focus. You
cannot give focus to control types that you cannot tab to, such as text.

For example, the following command makes the NextButton push button in the
CustomerForm Winform the active control:

WINFORM SET CustomerForm.NextButton.FOCUS TO HERE;

The following command assigns the name of the control that is currently active (that
is, that currently has focus) to the variable ControlHasFocus:

WINFORM GET CustomerForm.FOCUS INTO ControlHasFocus;

• Bold font for a control’s text. You can make a control’s text bold, or not bold, by
setting its BOLD_FONT property to YES or NO respectively. The corresponding
values retrieved by WINFORM GET are 1 and 0.

For example, the following command bolds the text in the JobTitleList list box in the
EmployeeReview Winform:

WINFORM SET EmployeeReview.JobTitleList.BOLD_FONT TO YES;

• Underline font for a control’s text. You can make a control’s text underlined, or
not underlined, by setting its UNDERLINE_FONT property to YES or NO
respectively. The corresponding values retrieved by WINFORM GET are 1 and 0.

For example, the following command underlines the text in the SubmitButton button
in the EmployeeReview Winform:

WINFORM SET EmployeeReview.SubmitButton.UNDERLINE_FONT TO YES;

• Blinking font for a control’s text. You can make a control’s text blink, or not blink,
by setting its BLINK_FONT property to YES or NO respectively. The corresponding
values retrieved by WINFORM GET are 1 and 0.

For example, the following command makes the text in the HeadingText banner blink
at the top of the EmployeeReview Winform:

WINFORM SET EmployeeReview.HeadingText.BLINK_FONT TO YES;

Command Reference

7-118 Information Builders

• Current grid column and row. You can determine and set which grid column and
row are current (that is, active) using several variables defined for grids. These
enable you to refer to the current grid column and row either by counting from the
first column or row in the grid (that is, an absolute reference), or by counting from
the first column or row currently visible in a grid, which enables you to take into
account how the grid has been scrolled (that is, a relative reference relative to the
first currently visible column):

• CurStkRowNum. The CurStkRowNum variable always contains the value of the
current row number in the grid, and is set automatically by Maintain. This system
variable is helpful for determining the current row number. For example, the
following command assigns the current row number of Grid1 to the variable
RowNumber:

RowNumber = ContactListForm.Grid1.CurStkRowNum;

Maintain automatically sets the FocIndex system variable to the value of the
CurStkRowNum variable when the user leaves the grid and clicks on another control
on the Winform. The syntax for this variable is

formname.gridname.CurStkRowNum

where:

formname

Is the name of the Winform.

gridname

Is the name of the grid.

• CurStkColNum. The CurStkColNum variable always contains the value of the
current column number in the grid, and is set automatically by Maintain. This
variable is helpful for determining the current column number. For example, the
following command assigns Grid1’s current column number to the variable
ColNumber:

ColNumber = ContactListForm.Grid1.CurStkColNum;

The syntax for this variable is

formname.gridname.CurStkColNum

where:

formname

Is the name of the Winform.

gridname

Is the name of the grid.

 WINFORM

Maintaining Databases 7-119

• CurGrdRowNum. The CurGrdRowNum variable contains the number of the current
grid row, relative to the first row that is visible in the grid, and is set automatically by
Maintain. This variable is different from CurStkRowNum if you scroll the grid. For
example, if you scroll down a grid, your current row number may be 12, but the
relative row number may be 3.

The syntax for this variable is

formname.gridname.CurGrdRowNum

where:

formname

Is the name of the Winform.

gridname

Is the name of the grid.

• CurGrdColNum. The CurGrdColNum variable contains the number of the current
grid column, relative the first column that is visible in the grid, and is set
automatically by Maintain. This variable is different from CurStkColNum if you
scroll the grid left or right.

The syntax for this variable is

formname.gridname.CurGrdColNum

where:

formname

Is the name of the Winform.

gridname

Is the name of the grid.

Maintaining Databases 8-1

CHAPTER 8

Expressions Reference

Topics:

• Types of Expressions You Can Write

• Writing Numeric Expressions

• Writing Date Expressions

• Writing Alphanumeric Expressions

• Writing Logical Expressions

• Writing Conditional Expressions

• Handling Null Values in Expressions

An expression enables you to combine variables, constants,
operators, and functions in an operation that returns a single
value. Expressions are used in a wide variety of Maintain
commands. You can build increasingly complex expressions by
combining simpler ones.

Expressions in Maintain are similar to expressions in other
FOCUS facilities, but some behavior and rules differ, and some
functionality is enhanced.

For details on Maintain built-in functions that you can use in
expressions see Chapter 9, Built-in Functions Reference.

Expressions Reference

8-2 Information Builders

Types of Expressions You Can Write
This section describes the types of expressions you can write in Maintain:

• Numeric. Use a numeric expression to perform a calculation on numeric constants or
variables. For example, you can write an expression to compute the bonus for each
employee by multiplying the current salary by the desired percentage as follows:

COMPUTE Bonus = Curr_Sal * 0.05 ;

A numeric expression returns a numeric value. For details see Writing Numeric
Expressions on page 8-3.

• Date. Use a date expression to perform a numeric calculation that involves dates. For
example, you can write an expression to determine when a customer can expect to
receive an order by adding the number of days in transit to the date on which you
shipped the order as follows:

COMPUTE Delivery/MDY = ShipDate + 5 ;

A date expression returns a date or an integer that represents the number of days,
months, quarters, or years between two dates. For details see Writing Date
Expressions on page 8-8.

• Alphanumeric. Use an alphanumeric expression to manipulate alphanumeric
constants or variables. For example, you can write an expression to extract the first
initial from an alphanumeric field as follows:

COMPUTE First_Init/A1 = MASK (First_Name, '9$$$$$$$$$') ;

An alphanumeric expression returns an alphanumeric value. For details see Writing
Alphanumeric Expressions on page 8-14.

• Logical. Use a logical expression to determine whether a particular relationship
between two values is true. A logical expression returns TRUE or FALSE. For
details see Writing Logical Expressions on page 8-17.

• Conditional. Use a conditional expression to assign a value based on the result of a
logical expression. A conditional expression returns a numeric or alphanumeric
value. For details see Writing Conditional Expressions on page 8-20.

Reference Usage Notes for Expressions

• Expressions in Maintain cannot exceed 40 lines of text or use more than 16 IF
statements.

• Expressions are self-terminating: you do not use a semicolon to indicate the end of an
expression. Semicolons are used only to terminate commands.

 Writing Numeric Expressions

Maintaining Databases 8-3

Expressions and Variable Formats
When you use an expression to assign a value to a variable, make sure that you give the
variable a format that is consistent with the value returned by the expression. For
example, if you use an alphanumeric expression to concatenate a first name and last name
and assign it to the variable FULL_NAME, make sure you define the variable as
alphanumeric.

Writing Numeric Expressions
A numeric expression performs a calculation that uses numeric constants, variables,
operators, or functions to return a number. When you use a numeric expression to assign a
value to a variable, that variable must have a numeric format.

A numeric expression can consist of the following components:

• A numeric constant. For example:

COMPUTE COUNT/I2 = 1 ;

• Two numeric constants or variables joined by a numeric operator. For example:

COMPUTE BONUS = CURR_SAL * 0.05 ;

• A numeric function. For example:

COMPUTE LONGEST_SIDE = MAX (WIDTH, HEIGHT, DEPTH) ;

• Two or more numeric expressions joined by a numeric operator. For example:

COMPUTE PROFIT = (RETAIL_PRICE - UNIT_COST) * UNIT_SOLD ;

Reference Numeric Operators
The following list shows the numeric operators you can use in an expression:

+ Addition

- Subtraction

* Multiplication

/ Division

DIV Integer division

MOD Remainder division

** Exponentiation

Note: Multiplication, DIV, MOD and exponentiation are not supported for date
expressions of any type. To isolate part of a date, use a simple assignment command.

Expressions Reference

8-4 Information Builders

Syntax DIV: Integer Division
The DIV operator can be used in any valid expression to perform integer division. The
result is an integer value and the remainder is truncated.

The syntax is:

expression DIV expression

Example Using DIV to Perform Integer Division
In this example, the DIV operator is used to calculate the number of whole days that are
equivalent to a number of hours:

COMPUTE Days/I4 = Hours DIV 24;

Syntax MOD: Calculating the Remainder
The MOD operator can be used in any valid Maintain expression to calculate the
remainder when division is performed.

The syntax is:

expression MOD divisor

The MOD operator always returns an integer value, and all decimal places are truncated.

Example Using MOD to Calculate a Remainder
In the following example, the divisor is 10. The variables IntMod and DblMod contain
the result.

MAINTAIN file Car
FOR 4 NEXT Country MPG INTO StkCar
REPEAT StkCar.FocCount Cnt/I4=1;

COMPUTE IntMod/I4=StkCar(Cnt).MPG MOD 10;
DblMod/D4.1=StkCar(Cnt).MPG MOD 10;

TYPE "MPG=<<StkCar(Cnt).MPG"
"IntMod=<<IntMod DblMod=<<DblMod"

ENDREPEAT Cnt=Cnt+1;
END

The decimal place in the variable DblMod is truncated, even though the format is D4.1.

MPG= 16 INTMOD= 6 DBLMOD= 6.0
MPG= 9 INTMOD= 9 DBLMOD= 9.0
MPG= 11 INTMOD= 1 DBLMOD= 1.0
MPG= 25 INTMOD= 5 DBLMOD= 5.0

 Writing Numeric Expressions

Maintaining Databases 8-5

Order of Evaluation
Maintain performs numeric operations in the following order:

1. Exponentiation.

2. Division and multiplication.

3. Addition and subtraction.

When operators are at the same level, they are evaluated from left to right. Because
expressions in parentheses are evaluated before any other expression, you can use
parentheses to change this predefined order. For example, the following expressions yield
different results because of parentheses:

COMPUTE PROFIT = RETAIL_PRICE - UNIT_COST * UNIT_SOLD ;
COMPUTE PROFIT = (RETAIL_PRICE - UNIT_COST) * UNIT_SOLD ;

In the first expression, UNIT_SOLD is first multiplied by UNIT_COST, and the result is
subtracted from RETAIL_PRICE. In the second expression, UNIT_COST is first
subtracted from RETAIL_PRICE, and that result is multiplied by UNIT_SOLD.

Evaluating Numeric Expressions
Maintain follows a specific evaluation path for each numeric expression based on the
format of the operands and the operators. If the operands all have the same format, most
operations are carried out in that format. This is known as native-mode arithmetic. If the
operands have different formats, Maintain converts the operands to a common format in a
specific order of format precedence. Regardless of operand formats, some operators
require conversion to specific formats so that all operands are in the appropriate format.

Expressions Reference

8-6 Information Builders

Identical Operand Formats
If all operands of a numeric operator are of the same format, you can use the following
table to determine whether or not the operations are performed in that native format or if
the operands are converted before and after executing the operation. In each case
requiring conversion, operands are converted to the operational format and the
intermediate result is returned in the operational format. If the format of the result differs
from the format of the target variable, the result is converted to the format of the target
variable.

Operation Operator Operational Format

Addition + Native

Subtraction - Native

Multiplication * Native

Full Division / Accepts single or double-precision floating
point, converts all others to double-precision
floating point.

Integer Division DIV Native, except converts packed decimal to
double-precision floating point.

Remainder Division MOD Native, except converts packed decimal to
double-precision floating point.

Exponentiation ** Double-precision floating point

Example Identical Operand Formats
Because the following variables are defined as integers,

COMPUTE OperandOne/I4;
OperandTwo/I4;
Result/I4;

Maintain does the following multiplication in native-mode arithmetic (integer arithmetic):

COMPUTE Result = OperandOne * OperandTwo;

 Writing Numeric Expressions

Maintaining Databases 8-7

Different Operand Formats
If operands of a numeric operator have different formats, you can use the following table
to determine what the common format is after Maintain converts them. Maintain converts
the lower operand to the format of the higher operand before performing the operation.

Order Format

1 16-byte packed decimal

2 Double-precision floating point

3 8-byte packed-decimal

4 Single-precision floating point

5 Integer

6 Alphanumeric

For example, if a 16-byte packed-decimal operand is used in an expression, all other
operands are converted to 16-byte packed-decimal format for evaluation. On the other
hand, if an expression includes only integer and alphanumeric operands, all alphanumeric
operands are converted to integer format.

An alphanumeric value can be used in a computation if it is a numeric string. Maintain
attempts to convert the alphanumeric operand to the format of the other operand in the
expression. If both operands are alphanumeric, Maintain tries to convert them to
double-precision. If the conversion is not possible, Maintain generates an error.

When a date is compared to a number, the number is converted to integer and the
comparison is performed. However, if you are not using date format, but instead an
alphanumeric, integer, or packed-decimal format with date-edit options (sometimes
referred to in the Information Builders user community as “old dates”), the date is
converted to date format prior to the comparison.

When a decimal value is assigned to an integer, Maintain truncates the fractional value.

Continental Decimal Notation
When the Continental Decimal Notation feature is in effect (that is, when CDN has been
set to ON), if you specify a decimal constant in a command using a comma to indicate the
decimal position, you need to delimit the entire value using single or double quotation
marks. This is to be done in Maintain commands only, not in data entered in forms at
run-time. For details about the SET CDN command see the Developing Applications
manual.

Expressions Reference

8-8 Information Builders

Writing Date Expressions
A date expression performs numeric calculations that involve dates. A date expression
returns a date, a component of a date, or an integer that represents the number of days,
months, quarters, or years between two dates.

A date expression can consist of:

• A date constant. For example:

COMPUTE StartDate/MDY= 'FEB 28 93';

Note the use of single quotation marks around the date constant FEB 28 93.

• A calculation that uses numeric operators or date functions to return a date. For
example:

COMPUTE Delivery/MDY = ShipDate + 5;

• A calculation that uses date operators or functions to return an integer (not a date)
that represents the number of days, months, quarters, or years between two dates. For
example:

COMPUTE TurnAround/I4 = OrderDate - ShipDate;

• A variable in date format. For example, Date2 is a date expression:

COMPUTE Date1/YMD = Date2;

• A variable in alphanumeric, integer, or packed format with date edit options. For
example, in the second COMPUTE command, OldDate is a date expression:

COMPUTE OldDate/I6YMD = '980307';
COMPUTE NewDate/YMD DFC 19 YRT 10 = OldDate;

 Writing Date Expressions

Maintaining Databases 8-9

Formats for Date Values
Maintain enables you to work with dates in one of two ways:

• In date format, Maintain treats the value as a date for all calculations and displays.
Date format interprets cross-century dates correctly, regardless of whether they are
displayed with century digits. This is the preferred way of working with date values.

• In integer, packed, or alphanumeric format with date edit options, Maintain treats the
value as an integer, a packed decimal, or an alphanumeric string. When displaying
the value, Maintain formats it to resemble a date.

You can convert a date in one format to a date in another format simply be assigning one
to the other. For example, the following assignment statements take a date stored as an
alphanumeric variable formatted with date edit options and convert it to a date stored as a
date variable:

COMPUTE AlphaDate/A6MDY = '120599';
RealDate/MDY = AlphaDate;

The following table illustrates how the format affects storage and display:

Date Format
For example: MDY

Integer, Packed, or
Alphanumeric Format
For example: A6MDY

Value Stored Displayed Stored Displayed

October 31, 1992 33542 10/31/92 103192 10/31/92

November 01, 1992 33543 11/01/92 110192 11/01/92

A variable to which you assign a date value must have a date format; if it has a numeric
format, it will display the value as a number. With date formats, the order of the
components (MDY) in a variable’s format can be different from the order in a value
assigned to it.

Evaluating Date Expressions
The format of a variable determines how you can use it in a date expression. Calculations
on dates in date format can incorporate numeric operators as well as numeric functions. If
you need to perform calculations on dates in integer, packed, or alphanumeric format, we
recommend that you first convert them to dates in date format, and then perform the
calculations on the dates in date format.

Consider the following example, which calculates how many days it takes for your
shipping department to fill an order by subtracting the date on which an item is ordered,
OrderDate, from the date on which it is shipped, ShipDate:

COMPUTE TurnAround/I4 = ShipDate - OrderDate;

Expressions Reference

8-10 Information Builders

An item ordered on October 31, 1992 and shipped on November 1, 1992 should result in
a difference of 1 day. The following table shows how the format affects the result:

 Value in
Date Format

Value in
Integer Format

ShipDate = November 1, 1992 33543 110192

OrderDate = October 31, 1992 33542 103192

TurnAround 1 7000

If the date variables are in integer format, you can convert them to date format and then
calculate TurnAround:

COMPUTE NewShipDate/MDY = ShipDate;
NewOrderDate/MDY = OrderDate;
TurnAround/I4 = NewShipDate - NewOrderDate;

Selecting the Format of the Result Variable
A date expression always returns a number. That number may represent a date or the
number of days, months, quarters, or years between two dates. When you use a date
expression to assign a value to a variable, the format you give to the variable determines
how the result is displayed.

Consider the following commands. The first command calculates how many days it takes
for your shipping department to fill an order by subtracting the date on which an item is
ordered, ORDERDATE, from the date on which it is shipped, SHIPDATE. The second
calculates a delivery date by adding 5 days to the date on which the order is shipped,
SHIPDATE.

COMPUTE TURNAROUND/I4 = SHIPDATE - ORDERDATE ;
COMPUTE DELIVERY/MDY = SHIPDATE + 5 ;

In the first command, the date expression returns the number of days it takes to fill an
order; therefore, the associated variable, TURNAROUND, must have an integer format.
In the second command, the date expression returns the date on which the item will be
delivered; therefore, the associated variable, DELIVERY, must have a date format.

Manipulating Dates in Date Format
This section provides additional information on how to write expressions using values
represented in date format. It describes how to:

• Use a date constant in an expression.

• Extract a date component.

• Combine variables with different components in an expression.

 Writing Date Expressions

Maintaining Databases 8-11

Using a Date Constant in an Expression
When you use a date constant in a calculation with variables in date format, you must
enclose it in single quotation marks; otherwise, Maintain interprets it as the number of
days between the constant and the base date (December 31, 1900). The following
example shows how to initialize STARTDATE with the date constant 02/28/93:

COMPUTE STARTDATE/MDY = ’022893’ ;

The following example calculates the number of days elapsed since January 1, 1993:

COMPUTE YEARTODATE/I4 = CURR_DATE - ’JAN 1 1993’ ;

Extracting a Date Component
Date components include days, months, quarters, and years. You can write an expression
that extracts a component from a variable in date format. The following example shows
how you can extract a month from SHIPDATE, which has the format MDY:

COMPUTE SHIPMONTH/M = SHIPDATE ;

If SHIPDATE has the value November 23, 1992, the above expression returns the value
11 for SHIPMONTH. Note that calculations on date components automatically produce a
valid value for the desired component. For example, if the current value of SHIPMONTH
is 12, the following expression

COMPUTE ADDTHREE/M = SHIPMONTH + 3 ;

correctly returns the value 2, not 14.

You cannot write an expression that extracts days, months, or quarters from a date that
did not have these components. For example, you cannot extract a month from a date in
YY format, which represents only the number of years.

Expressions Reference

8-12 Information Builders

Combining Variables With Different Components in an Expression
When using variables in date format, you can combine variables with a different order of
components within the same expression. For example, consider the following two
variables: DATE_PAID has the format YYMD and DUE_DATE has the format MDY.
You can combine these two variables in an expression to calculate the number of days
that a payment is late as follows:

COMPUTE DAYS_LATE/I4 = DATE_PAID - DUE_DATE ;

In addition, you can assign the result of a date expression to a variable with a different
order of components from the variables in the expression. For example, consider the
variable DATE_SOLD, which contains the date on which an item is sold, in YYMD
format. You can write an expression that adds 7 days to DATE_SOLD to determine the
last date on which the item can be returned, and then assign the result to a variable with
DMY format, as in the following COMPUTE command:

COMPUTE RETURN_BY/DMY = DATE_SOLD + 7 ;

Different Operand Date Formats
In an expression in a procedure, all date formats are valid. If you have an expression that
operates on date variables with different formats (for example, QY and MDY), Maintain
converts one variable to the format of the other variable in order to perform the operation.

However, there are a few types of date variables that you cannot use in a mixed-format
date expression. These variables, which are formatted as single components such as a day
of the week, or a year (formats D, W, Y, and YY) cannot be meaningfully converted to a
more complete date (such as a year with a month). Of course, you can use these date
variables in same-type date expressions.

If a date with format M is compared to a date with format Q (or vice versa), the operand
on the right is converted to the format of the operand on the left, then the comparison is
performed.

For all other date to date comparisons, the date with the lesser format is promoted to the
format of the higher date, where possible. If conversion is not possible, an error is
generated.

 Writing Date Expressions

Maintaining Databases 8-13

The following conversion hierarchy applies to date formats:

Order Date Format

1 Dates with three components (for example, MDY, YYMD, Julian dates).

2 Dates with two components, one of which is a month (for example, MYY or
YM).

3 Dates with two components, one of which is a quarter (for example, YQ).

4 Single component M or Q.

5 All other formats.

Dates in the fifth category do not generally get promoted.

When you have dates of two different types, dates in the lower category are promoted to
the higher type.

Using Addition and Subtraction in a Date Expression
When addition is performed:

• A date plus a number yields a date.

• A number plus a date yields a date.

It is up to the user to make sure the expression yields a meaningful result.

When subtraction is performed:

• A date cannot be subtracted from a number.

• A date minus a number results in a value with the same format as the date.

• When subtracting a Q format date from an M format date, or vice versa, the operand
on the right is converted to the same format as the operand on the left, and the result
is an integer.

• When a date with format M or Q is subtracted from a higher type of date, the operand
on the right is converted to the format of the operand on the left. The result is an
integer where the difference is the number of units between the two types.

• When a two-component date is subtracted from a three-component date, or vice
versa, the variable with the lesser format is promoted to the type of the variable with
the higher format. The calculation is performed, and the result is an integer which is
the number of units of the higher type separating the two.

Expressions Reference

8-14 Information Builders

Example Using Addition and Subtraction in a Date Expression
Given the following variable definitions

Days/D = 23;
OldYear/YY = 1960;
NewYear/YY = 1994;
YearsApart/YY;
OldYearMonth/YM = 9012;
NewYearMonth/YM;
FullDate/YMD = 870615;

the following COMPUTE commands are valid:

COMPUTE
YearsApart = NewYear - OldYear;
NewYear = OldYear + 2;
NewYearMonth = OldYearMonth - FullDate;

However, the next series of COMPUTE commands are invalid, because they include date
variables formatted as just a day (Days) or just a year (OldYear) in a mixed-format date
expression:

COMPUTE
NewYear = FullDate - OldYear;
FullDate = OldYearMonth + Days;

Writing Alphanumeric Expressions
An alphanumeric expression manipulates alphanumeric constants, variables,
concatenation operators, or functions to return an alphanumeric value.

An alphanumeric expression can consist of:

• An alphanumeric constant—that is, a character string enclosed in single or double
quotation marks. For example:

COMPUTE STATE = 'NY' ;

• An alphanumeric variable.

• A function returning an alphanumeric result. For example:

COMPUTE INITIAL/A1= MASK(FIRSTNAME,'9$$$$$$$$$$');

• Two or more alphanumeric expressions combined into a single expression using the
concatenation operator. For example:

COMPUTE TITLE/A19= 'DR. ' || LAST_NAME;

 Writing Alphanumeric Expressions

Maintaining Databases 8-15

Concatenating Character Strings
You can write an expression to concatenate several alphanumeric values into a single
character string. The concatenation operator takes one of two forms, as shown in the
following table:

Symbol Represents Function

| Weak concatenation. Preservers trailing blanks.

|| Strong concatenation. Suppresses trailing blanks.

Evaluating Alphanumeric Expressions
Any non-alphanumeric expression that is embedded in an alphanumeric expression is
automatically converted to an alphanumeric string.

A constant must be enclosed in single or double quotation marks. Whichever delimiter
you choose, you must use the same one to begin and end the string. The ability to use
either single or double quotation marks provides the added flexibility of being able to use
one kind of quotation mark to enclose the string, and the other kind as data within the
string itself.

The backslash (\) is the alphanumeric escape character. You can use it to:

• Include a string’s delimiter (for example, a single quotation mark) within the string
itself, as part of the value. Simply precede the quotation mark with a backslash (\'),
and Maintain will interpret the character as data, not as the end-of-string delimiter.

• Include a backslash within the string itself, as part of the value. Simply precede the
backslash with a second backslash (\\).

• Generate a line feed (for example, when writing a message to a file or device using
the SAY command). Simply follow the backslash by the letter n (\n).

When the backslash is used as an escape character, it is not included in the length of the
string.

Expressions Reference

8-16 Information Builders

Example Evaluating Alphanumeric Expressions
Because you can define a character string using single or double quotation marks, you can
use one kind of quotation mark to define the string and the other kind within the string:

COMPUTE LastName = "O'HARA";
COMPUTE Msg = 'This is a "Message"';

You can include a backslash (the escape character) within the string as part of the value
by preceding it with a second backslash. For example, the following source code

COMPUTE Line/A30 = 'The characters \\\' are interpreted as \'';
.
.
.
TYPE "Escape info: <Line"

displays:

Escape info: The characters \' are interpreted as '

When the backslash is used as an escape character, it is not included in the length of the
string. For example, a string of five characters and one escape character fits into a
five-character variable:

COMPUTE Word/A5 = 'Can\'t'

The following example shows how to use the MASK function to extract the first initial
from a first name, and then use both strong and weak concatenation to produce the last
name, followed by a comma, followed by the first initial, followed by a period:

COMPUTE FILE EMPLOYEE
FIRST_INIT/A1 = MASK (FIRST_NAME, '9$$$$$$$$$');
NAME/A19 = LAST_NAME || (', ' | FIRST_INIT | '.');
END

Suppose that FIRST_NAME has the value Chris and LAST_NAME has the value
Edwards. The above request evaluates the expressions as follows:

1. The MASK function extracts the initial C from FIRST_NAME.

2. The expression in parentheses is evaluated. It returns the value

, C.

3. LAST_NAME is concatenated to the string derived in step 2 to produce

Edwards, C.

Note that while LAST_NAME has the format A15, strong concatenation suppresses
the trailing blanks.

 Writing Logical Expressions

Maintaining Databases 8-17

Writing Logical Expressions
A logical expression determines whether a particular condition is true. There are two
kinds of logical expressions, relational and Boolean. The entities you wish to compare
determine the kind of expression.

A relational expression returns TRUE or FALSE based on comparison of two individual
values (either variables or constants). A Boolean expression returns TRUE or FALSE
based on the outcome of two or more relational expressions.

You can use a logical expression to assign a value to a numeric variable. If the expression
is true, the variable receives the value 1; if false, the variable receives the value 0.

Relational Expressions
A relational expression returns TRUE or FALSE based on the comparison of two
individual values (either variables or constants). The following syntax lists the operators
you can use in a relational expression:

alphanumeric_expression alpha_operator alphanumeric_constant

numeric_expression numeric_operator numeric_constant

where:

alpha_operator

Can be any of the following: EQ, NE, OMITS, CONTAINS.

numeric_operator

Can be any of the following: EQ, NE, LE, LT, GE, GT.

If an alphanumeric constant has embedded blanks, you must enclose it in single quotation
marks.

Boolean Expressions
Boolean expressions return a value of true (1) or false (0) based on the outcome of two or
more relational expressions. Boolean expressions are often used in conditional
expressions, which are described in Writing Conditional Expressions on page 8-20. You
can also assign the result of a Boolean expression to a numeric or alphanumeric variable,
which will be set to 1 (if the expression is true) or 0 (if t is false). They are constructed
using variables and constants connected by operators.

Expressions Reference

8-18 Information Builders

Syntax Boolean Expressions
The syntax of a Boolean expression is:

(relational_expression) {AND|OR} (relational_expression) NOT
(logical_expression)

Boolean expressions can themselves be used as building blocks for more complex
expressions. Use AND or OR to connect the expressions and enclose each expression in
parentheses.

Evaluating Logical Expressions
If you assign a Boolean expression to an alphanumeric variable, it may have the values
TRUE, FALSE, 1, or 0; TRUE and 1 are equivalent, as are FALSE and 0. A numeric
variable may have the values 1 or 0.

Alphanumeric constants with embedded blanks used in the expression must be enclosed in
single quotation marks. An example is:

IF NAME EQ 'JOHN DOE'

OR cannot be used between constants in a relational expression. For example, the
following expression is not valid

IF COUNTRY EQ 'US' OR 'BRAZIL' OR 'GERMANY'

and should instead be coded as a sequence of relational expressions:

IF (COUNTRY EQ 'US') OR (COUNTRY EQ 'BRAZIL') OR (COUNTRY EQ 'GERMANY')

 Writing Logical Expressions

Maintaining Databases 8-19

Reference Logical Operators
The following list shows the logical operators you can use in an expression:

EQ Equality

NE Inequality

LT Less than

GT Greater than

LE Less than or equal to

GE Greater than or equal to

CONTAINS Tests for and selects values that include a character string matching a
test value

OMITS Tests for and selects values that do not include a character string
matching a test value

NOT Inequality

AND Compound expression

OR Equality

Boolean operators are evaluated after numeric operators from left to right in the following
order of priority:

Order Operators

1 EQ NE LE LT GE GT NOT CONTAINS OMITS

2 AND

3 OR

Expressions Reference

8-20 Information Builders

Writing Conditional Expressions
A conditional expression assigns a value based on the result of a logical expression. The
assigned value can be numeric or alphanumeric.

Syntax Conditional Expressions
The syntax of a conditional expression is

IF boolean THEN {expression1} [ELSE {expression2}]

where:

boolean

Is a Boolean expression. Boolean expressions are described in Boolean Expressions
on page 8-17.

expression

Is an arithmetic, alphanumeric, date, or conditional expression.

When the Boolean expression is true, the conditional expression returns the THEN
expression. Otherwise, it returns the ELSE expression if one is provided.

The THEN and ELSE expressions can themselves be conditional expressions. If the
expression following THEN is conditional, it must be enclosed in parentheses. A
conditional expression can have up to 16 IF statements.

The variable to which you assign the conditional expression must have a format
compatible with the formats of the THEN and ELSE expressions.

 Handling Null Values in Expressions

Maintaining Databases 8-21

Handling Null Values in Expressions
When data does not exist for a variable, Maintain assigns the following default value,
depending on how the variable’s format has been defined:

Data Type Default value without the
MISSING attribute

Default value with the
MISSING attribute

Numeric zero null

Date space null

Alphanumeric space null

A null value (sometimes known as missing data) displays as a period (.) by default. You
can change the character representation of the null value by issuing the SET NODATA
command. For details see the Developing Applications manual.

Null values affect the results of expressions that perform aggregating calculations such as
averaging and summing. See the Describing Data manual for information about the
MISSING attribute in Master Files and the effect of null values in calculations.

Assigning Null Values: The MISSING Constant
You can assign the MISSING constant—that is, the null value—to a variable that was
defined with the MISSING attribute in its Master File or, for user-defined variables, in its
COMPUTE command.

When you create a user-defined variable with the MISSING attribute and don’t explicitly
assign a value, it is created with the null value. For example, in the following command,
Name is created with a null value:

COMPUTE Name/A15 MISSING ON = ;

Syntax Assigning Null Values: The MISSING Constant
The syntax for assigning a null value to an existing variable is:

COMPUTE target_variable = MISSING;

Example Assigning Null Values
Suppose that the variable AcctBalance had been defined with the MISSING attribute. The
command below assigns the null value to AcctBalance:

COMPUTE AcctBalance = MISSING;

Expressions Reference

8-22 Information Builders

Conversion in Mixed-Format Null Expressions
When a variable with a null value is assigned to a variable that is not defined with the
MISSING attribute, the null value is converted to a zero or a space. For example, when
the variable Q is assigned to R, the null value from Q is converted to a zero, because zero
is the default value for numeric variables without the MISSING attribute.

Q/I4 MISSING ON = MISSING;
R/I4 = Q;

The same conversion occurs before any mathematical operations are applied if the
variables are used as operands in arithmetic expressions.

Testing Null Values
You may test for the null value using comparison operators EQ or NE in an expression.
You can test any variable that has been declared with the MISSING attribute. The null
value is represented by the MISSING constant.

Syntax Testing Null Values
The syntax for testing if a value is null is:

target_variable {EQ|NE} MISSING

Example Testing Null Values
In this example, an IF command executes a BEGIN block if the variable Returns is null:

IF Returns EQ MISSING THEN BEGIN
.
.
.

ENDBEGIN

Maintaining Databases 9-1

CHAPTER 9

Built-in Functions Reference

Topics:

• Types of Functions

• Accessing Built-in Functions

• Specifying Arguments for Built-in
Functions

• Alphabetical List of Built-in Functions

Maintain offers a rich set of built-in functions that operate on
one or more arguments and return a single value as a result.
These built-in functions provide a convenient way to perform
certain calculations and manipulations. You can incorporate
built-in functions in expressions—for example, by computing
them into variables. For related information see Chapter 8,
Expressions Reference.

Built-in Functions Reference

9-2 Information Builders

Types of Functions
You can access any of the following types of functions:

Character
Enable you to manipulate alphanumeric fields or character strings.

Date and Time
Enable you to manipulate dates and times.

Decoding
Enable you to assign values.

Grid
Enable you to manipulate grids dynamically.

Numeric
Enable you to perform numeric calculations on numeric constants and fields.

Character Built-in Functions
The following built-in functions enable you to manipulate alphanumeric fields or
character strings. For more information on these functions, see the Alphabetical List of
Built-in Functions starting on page 9-8.

LCWORD and LCWORD2 functions
Convert a string to mixed case.

LENGTH function
Returns the length of its argument, including trailing blanks.

LJUST function
Left-justifies a character string within a field.

LOWER function
Converts a character string to lowercase.

MASK function
Extracts characters or adds characters to an alphanumeric string (with mask).

OVRLAY function
Overlays a substring into a larger character string at a position you specify.

POSIT function
Finds the starting position of a substring within a larger character string.

 Types of Functions

Maintaining Databases 9-3

RJUST function
Right-justifies a character string within a field.

SOUNDEX function
Converts character strings to phonetic codes, enabling you to compare strings
phonetically.

STRAN function
Substitutes one substring for another in a larger character string.

STRCMP function
Compares two alphanumeric strings using the ASCII or EBCDIC collating sequence.

STRCIMP function
Compares two alphanumeric strings using the ASCII or EBCDIC collating sequence,
but ignoring case differences.

STRNCMP function
Compares the first n characters of two alphanumeric strings using the ASCII or
EBCDIC collating sequence, where n is a number you specify.

SUBSTR function
Extracts a substring from a string.

TRIM function
Returns a character string stripped of trailing blanks.

TRIMLEN function
Returns the length of a character string, excluding trailing blanks.

UPCASE function
Converts a character string to uppercase.

Built-in Functions Reference

9-4 Information Builders

Date and Time Built-in Functions
The following built-in functions enable you to manipulate dates and times. For more
information on these functions, see the Alphabetical List of Built-in Functions starting on
page 9-8.

Initial_HHMMSS function

Returns the time that the Maintain module was started.

Initial_TODAY function

Returns the date that the Maintain module was started.

HHMMSS function

Retrieves the current time from the system.

TODAY, TODAY2 functions

Retrieve the current date from the system.

Decoding Built-in Functions
Decoding functions enable you to assign values. For more information on these functions,
see the Alphabetical List of Built-in Functions starting on page 9-8.

DECODE function

Assigns values based on the value of an input field.

SELECTS function

Enables you to decode a value from a stack.

Grid Built-in Functions
The following functions enable you to manipulate grids dynamically. For more
information on these functions, see the Alphabetical List of Built-in Functions starting on
page 9-8.

ChangeColBcolor and ChangeColFcolor functions

Set the colors of a grid column.

CurGrdColNum and CurGrdRowNum functions

Determine the current column and row number, relative to the first visible column or
row.

CurStkColNum and CurStkRowNum functions

Determine the current column and row number.

SetStackMode function

Prevents end users from adding rows to a grid.

 Types of Functions

Maintaining Databases 9-5

Numeric Built-in Functions
The following functions enable you to perform numeric calculations on numeric
constants or fields. For more information on these functions, see the Alphabetical List of
Built-in Functions starting on page 9-8.

ABS function
Returns the absolute value of its argument.

INT function
Returns the integer part of its argument.

LOG function
Returns the logarithm of its argument.

MAX and MIN functions
Return the maximum or minimum value from a list of arguments.

SQRT function
Returns the square root of its argument.

Built-in Functions Reference

9-6 Information Builders

Accessing Built-in Functions
Unless otherwise noted, built-in functions are always available (and their names are
reserved words).

However, some of the built-in functions are available only if you import the function
library MNTUWS into your procedure. This syntax is:

MODULE IMPORT (MNTUWS);

Place this command on the line immediately following the MAINTAIN command.

The following functions are available through the MNTUWS module:

• HHMMSS

• Initial_HHMMSS

• Initial_TODAY

• LCWORD

• LCWORD2

• LJUST

• LOWER

• OVRLAY

• POSIT

• SOUNDEX

• STRAN

• STRTOKEN

• TODAY

• TODAY2

• UPCASE

Note: If you import this module to use any of these functions, then the names of all of
these functions become reserved words as well.

If you are using mainframe Maintain, you can also use the functions and subroutines
available to FOCUS users. For more information on these functions and subroutines, see
the Using Functions manual.

 Accessing Built-in Functions

Maintaining Databases 9-7

The search order for finding functions and subroutines is as follows:

1. When you specify a function, Maintain first looks in the list of Maintain functions
(the ones that are always available, that is, not in the MNTUWS functions library).

2. If you have imported the MNTUWS function library, Maintain checks here next.

3. Finally, it checks the FOCUS built-in functions and subroutines.

Several of the Maintain built-in functions have the same name as FOCUS functions or
subroutines, but not necessarily the same arguments. If you use one of these functions,
Maintain must determine which one to use. It does this first using the search order, and
then checking the argument list.

For example, TODAY is both a Maintain built-in function and a FOCUS subroutine. The
Maintain version requires no arguments; while the FOCUS version requires one
argument. If you use TODAY, Maintain will first check your list of arguments against the
Maintain version (assuming you imported the MNTUWS function library). If the list of
arguments does not work, Maintain will then check against the FOCUS version.

The following built-in functions have corresponding FOCUS versions:

• HHMMSS

• LCWORD

• LJUST

• OVRLAY

• POSIT

• RJUST

• SOUNDEX

• SUBSTR

• TODAY

• UPCASE

Built-in Functions Reference

9-8 Information Builders

Specifying Arguments for Built-in Functions
When specifying an argument for a function, you can supply the actual value, the name
of a variable that contains the value, or an expression that returns the value. For more on
writing expressions, see Chapter 8, Expressions Reference.

Alphabetical List of Built-in Functions
The following topics describe the functions in alphabetical order.

ABS: Calculating Absolute Value
The ABS function returns the absolute value of its argument.

Syntax How to Calculate Absolute Value
The syntax is:

ABS(number)

Example Calculating Absolute Value
The following example calculates the absolute value of DIFF:

ABS(DIFF)

The following table shows sample values for DIFF and the corresponding values for ABS
(DIFF):

DIFF ABS(DIFF)

0 0
20 20
15 15
-2 2
10 10
-5 5
-10 10

 Alphabetical List of Built-in Functions

Maintaining Databases 9-9

ChangeColBcolor and ChangeColFcolor: Setting the Colors of a
Grid Column

The ChangeColBcolor and ChangeColFcolor built-in functions set the background and
foreground colors of a grid column.

Related built-in functions:

• CurStkRowNum, CurStkColNum, CurGrdRowNum, and CurGrdColNum determine
the current row or column number in a grid.

• SetStackMode prevents end users from adding rows to a grid.

Syntax How to Set the Colors of a Grid Column
The syntax is

formname.gridname.{ChangeColBcolor|ChangeColFcolor}(ColumnNumber,
ColorNumber)

where:

formname

Is the name of the form that contains the grid.

gridname

Is the name of the grid.

ChangeColBcolor

Sets the background color of the grid column.

ChangeColFcolor

Sets the foreground color of the grid column.

ColorNumber

Is one of the following:

1 is BLACK.

2 is BLUE.

3 is GREEN.

4 is TURQ.

5 is RED.

6 is PINK.

7 is YELLOW.

8 is WHITE.

Built-in Functions Reference

9-10 Information Builders

CurStkRowNum, CurStkColNum, CurGrdRowNum, CurGrdColNum:
Determining the Current Row or Column Number in a Grid

The CurStkRowNum and CurStkColNum built-in functions enable you to determine the
current row or column number in a grid.

The CurGrdRowNum and CurGrdColNum built-in functions enable you to determine the
current row or column number in a grid, relative to the first row that is visible in the grid.
CurGrdRowNum and CurGrdColNum will generate different values from
CurStkRowNum and CurStkColNum if you scroll the grid. For example, if you scroll
down the grid, you current row number may be 12, but the relative row number may be 3.

Related built-in functions:

• ChangeColBcolor and ChangeColFcolor set the colors of a grid column.

• SetStackMode prevents end users from adding rows to a grid.

Syntax How to Determine the Row or Column Number in a Grid
The syntax is:

formname.gridname.function

where:

formname

Is the name of the form.

gridname

Is the object name of the grid.

function

Is one of the following:

CurStkRowNum determines the current row in a grid.

CurStkColNum determines the current column in a grid.

CurGrdRowNum determines the current row number, relative to the first row that is
visible in the grid.

CurGrdColNum determines the current column number, relative to the first column
that is visible in the grid.

 Alphabetical List of Built-in Functions

Maintaining Databases 9-11

DECODE: Changing Coded Values to Associated Values
The DECODE built-in function assigns values based on the value of an input field.

Many times the value of a field is a coded value. For example, the field SEX may have
code F for female employees and code M for male employees. This enables the value to
be stored more efficiently (in this case, one character instead of six for females, or four
for males), greatly reducing the storage requirement for the file.

One method for decoding (expanding) these values is to provide a series of nested
IF … THEN … ELSE statements (for example, IF SEX IS M THEN ‘MALE’ ELSE
‘FEMALE’), but this can become very cumbersome and inefficient if there are numerous
codes. The DECODE function is provided to facilitate the handling of large numbers of
codes.

Related built-in functions: SELECTS enables you to decode a value from a stack.

Syntax How to Decode Values
The syntax is

DECODE fieldname (code1 result1 code2 result2...[ELSE default])

where:

fieldname

Is the field containing the code values. This field can be alphanumeric or numeric.

code

Is a value that can be found in the field; once DECODE has found the specified
value, it will assign the corresponding result. If the value has embedded blanks or
commas, enclose it in single quotation marks.

result

Is the value to be assigned when the field name has the corresponding code. If the
value has embedded blanks or commas, enclose it in single quotation marks.

default

Is the value to be assigned if the code is not found among the list of codes. If this
default is omitted, DECODE will assign a blank or zero for non-matching codes.

Built-in Functions Reference

9-12 Information Builders

Note:

• Up to 40 lines can be used to define the code and result pairs for any given DECODE
expression, or 39 if you also use an ELSE statement.

• You can use either commas or blanks to separate the code from the result, or one pair
from another.

• DECODE may give numeric results.

• Enclose negative numbers in single quotation marks.

• Enclose values with a comma or a blank with single quotation marks.

HHMMSS: Returning the Current Time
The HHMMSS built-in function retrieves the current time from the operating system. It
returns the time as an eight-character string with embedded colons separating the hours,
minutes, and seconds.

Note: To use this function, you must import the function library MNTUWS.

Related built-in functions:

• Initial_HHMMSS returns the time that the Maintain module was started.

• Initial_TODAY returns the date that the Maintain module was started.

• TODAY returns the current date.

Syntax How to Retrieve the Current Time
The syntax is:

HHMMSS()

Note: To use this function, you must import the function library MNTUWS by placing
the following statement directly after the MAINTAIN command at the top of your
procedure:

MODULE IMPORT (MNTUWS);

 Alphabetical List of Built-in Functions

Maintaining Databases 9-13

Initial_HHMMSS: Returning the Time the Application Was Started
The Initial_HHMMSS built-in function returns the time when the Maintain application
was started. It returns the time as an eight-character string with embedded colons
separating the hours, minutes, and seconds.

Note: To use this function, you must import the function library MNTUWS.

Related built-in functions:

• HHMMSS returns the current time.

• Initial_TODAY returns the date that the Maintain module was started.

• TODAY returns the current date.

Syntax How to Retrieve the Initial Time
The syntax is:

Initial_HHMMSS()

Note: To use this function, you must import the function library MNTUWS by placing
the following statement directly after the MAINTAIN command at the top of your
procedure:

MODULE IMPORT (MNTUWS);

Initial_TODAY: Returning the Date the Application Was Started
The Initial_TODAY built-in function returns the date when the Maintain application was
started. It returns the time as an eight-character string with embedded colons separating
the hours, minutes, and seconds.

Note: To use this function, you must import the function library MNTUWS.

Related built-in functions:

• HHMMSS returns the current time.

• Initial_HHMMSS returns the time that the Maintain module was started.

• TODAY returns the current date.

Built-in Functions Reference

9-14 Information Builders

Syntax How to Retrieve the Initial Date
The syntax is:

Initial_TODAY()

Note: To use this function, you must import the function library MNTUWS by placing
the following statement directly after the MAINTAIN command at the top of your
procedure:

MODULE IMPORT (MNTUWS);

INT: Finding the Greatest Integer
The INT function returns the integer part of its argument.

Syntax How to Calculate the Greatest Integer
The syntax is:

INT(number)

Example Calculating the Greatest Integer in RETAIL_PRICE
The following examples calculates the greatest integer in the RETAIL_PRICE field:

INT(RETAIL_PRICE)

The following table shows sample values for RETAIL_PRICE and the corresponding
values for INT(RETAIL_PRICE):

RETAIL_PRICE INT(RETAIL_PRICE)

$.95 .00
$.89 .00
$1.29 1.00

 Alphabetical List of Built-in Functions

Maintaining Databases 9-15

LCWORD, LCWORD2: Converting a String to Mixed Case
The LCWORD and LCWORD2 built-in functions convert the letters in a given string to
mixed case.

LCWORD converts to lowercase every alphanumeric character except:

• The first letter of each new word.

• The first letter after a single or double quotation mark. For example, O’CONNOR is
converted to O’Connor and JACK’S to Jack’S (not Jack’s).

The rest of the word is converted to lowercase. The result is a word with an initial
uppercase character followed by lowercase characters.

If LCWORD encounters a number in the string, it treats it as an uppercase character and
continues to convert the following alphabetic characters to lowercase.

LCWORD2 does the same, except that it attempts not to change the first character after a
lone single quotation mark. For example, ‘SMITH’ would be changed to ‘Smith,’ but
JACK’S would be changed to Jack’s.

Note: To use either of these functions, you must import the function library MNTUWS.

Related built-in functions:

• LOWER converts strings to lowercase.

• UPCASE converts strings to uppercase.

Syntax How to Convert Letters to Mixed Case
The syntax is

{LCWORD|LCWORD2}(string)

where:

{LCWORD|LCWORD2}

Determines which conversion algorithm is used (how characters after a single
quotation mark are treated).

string

Is the string you are converting to mixed case.

Note: To use this function, you must import the function library MNTUWS by placing
the following statement directly after the MAINTAIN command at the top of your
procedure:

MODULE IMPORT (MNTUWS);

Built-in Functions Reference

9-16 Information Builders

LENGTH: Determining the Length of a String
The LENGTH built-in function determines the length of an alphanumeric string,
including trailing blanks.

Related built-in functions: TRIMLEN determines the length of an alphanumeric string,
excluding trailing blanks.

Syntax How to Determine the Length of a String
The syntax is:

LENGTH(string)

LJUST: Left-justifying a String
The LJUST built-in function left-justifies a character string within a field. All leading
spaces are removed. LJUST is helpful in left-justifying character strings previously
right-justified.

Note: To use this function, you must import the function library MNTUWS.

Related built-in functions: RJUST right-justifies character strings.

Syntax How to Left-justify a String
The syntax is:

LJUST(string)

Note: To use this function, you must import the function library MNTUWS by placing
the following statement directly after the MAINTAIN command at the top of your
procedure:

MODULE IMPORT (MNTUWS);

 Alphabetical List of Built-in Functions

Maintaining Databases 9-17

LOG: Calculating the Natural Logarithm
The LOG function returns the natural logarithm of its argument.

If you enter an argument less than or equal to 0, LOG returns 0.

Syntax How to Calculate the Natural Logarithm
The syntax is

LOG(number)

where:

number

Should be greater than 0.

Example Calculating Natural Logarithm of Gross Sales
In the following example, LOG takes gross sales (GROSS) and calculates the log of the
gross sales:

LOG(GROSS)

The following tables contains sample values for GROSS and the corresponding values for
LOG(GROSS):

PROD_CODE UNIT_SOLD RETAIL_PRICE GROSS LOG_GROSS

B10 30 $.85 $25.50 3.24
B17 20 $1.89 $37.80 3.63
B20 15 $1.99 $29.85 3.40
C17 12 $2.09 $25.08 3.22
D12 20 $2.09 $41.80 3.73

Built-in Functions Reference

9-18 Information Builders

LOWER: Converting Text to Lowercase
The LOWER built-in function converts a string to lowercase.

Note: To use this function, you must import the function library MNTUWS.

Related built-in functions:

• LCWORD and LCWORD2 convert strings to mixed case.

• UPCASE converts strings to uppercase.

Syntax How to Convert Text to Lowercase
The syntax is:

LOWER(string)

Note: To use this function, you must import the function library MNTUWS by placing
the following statement directly after the MAINTAIN statement at the top of your
procedure:

MODULE IMPORT (MNTUWS);

MASK: Extracting or Adding Characters
The MASK built-in function extracts characters from or adds characters to an
alphanumeric string. MASK enables you to overlay values.

Another way to extract characters is with the SUBSTR built-in function. The differences
are:

• MASK can extract a substring from different parts of the parent string. For example,
it can extract the first two characters and the last two characters of a string to form a
single substring. Also, it can insert characters into a substring.

• SUBSTR can vary the position of the substring depending on the values of other
fields.

MASK replaces the masking functionality of the EDIT function that is available in other
Information Builders tools.

Related built-in functions: SUBSTR extracts a substring from a character string.

 Alphabetical List of Built-in Functions

Maintaining Databases 9-19

Syntax How to Extract or Add Characters
The syntax is

MASK(source_field, 'mask')

where:

source_field

Is the name of the field (real or derived) to be masked.

mask

Is a character string that is matched against the source_field.

MASK compares the characters in the mask to the characters in the source field. When it
encounters a 9 in the mask, MASK copies the corresponding character from the source
field to the new field. When it encounters a $ (dollar sign) in the mask, MASK ignores
the corresponding character in the source field. When it encounters any other character in
the mask, MASK copies that character to the corresponding position in the new field.

Example Extracting First Initial
In this example, MASK extracts the first character of FIRST_NAME:

MASK(FIRST_NAME, '9$$$$$$$$$')

The following table shows sample values for FIRST_NAME and the corresponding
values for the result of the MASK function:

FIRST_NAME MASK(FIRST_NAME, '9$$$$$$$$$')

MARY M
DIANE D
JOHN J
ROSEMARIE R
MARY M
BARBARA B

Built-in Functions Reference

9-20 Information Builders

Example Adding Dashes to EMP_ID
In this example, MASK adds dashes to EMP_ID:

MASK(EMP_ID, '999-99-9999')

The following table shows sample values for EMP_ID and the corresponding values for
the result of the MASK function:

EMP_ID MASK(EMP_ID, '999-99-9999')

112847612 112-84-7612
117593129 117-59-3129
219984371 219-98-4371
326179357 326-17-9357
543729165 543-72-9165
818692173 818-69-2173

MAX and MIN: Finding the Maximum or Minimum Value
The MAX and MIN functions return either the maximum or minimum value
(respectively) from two arguments.

Syntax How to Find the Maximum or Minimum Value
The syntax for MAX is:

MAX(number1, number2)

and the syntax for MIN is:

MIN(number1, number2)

Example Finding the Maximum Value
The following example shows how to determine the longest dimension of a room:

MAX(WIDTH, DEPTH)

The following table contains sample values for WIDTH DEPTH, and the corresponding
value for MAX(WIDTH, DEPTH):

WIDTH DEPTH MAX(WIDTH, DEPTH)

10 9 10
10 10 10
27 27 27

 Alphabetical List of Built-in Functions

Maintaining Databases 9-21

OVRLAY: Overlaying a Substring Within a String
The OVRLAY built-in function overlays a substring on another character string at a
position you specify. OVRLAY enables you to edit a part of an alphanumeric string
without replacing the field entirely.

Note: To use this function, you must import the function library MNTUWS.

Related built-in functions:

• POSIT returns the position of a substring within a string.

• STRAN substitutes one string for another within a string.

Syntax How to Overlay a Substring
The syntax is

OVRLAY(string1, string2, position)

where:

string1

Is the string into which you want to overlay characters.

string2

Is the string you want to overlay into string1.

position

Is the position in string1 at which you want to place string2.

Note: To use this function, you must import the function library MNTUWS by placing
the following statement directly after the MAINTAIN command at the top of your
procedure:

MODULE IMPORT (MNTUWS);

Built-in Functions Reference

9-22 Information Builders

POSIT: Finding Substring Position
The POSIT built-in function finds the starting positions of substrings within larger
strings. For example, the position of the substring DUCT in the character string
PRODUCTION is position 4.

If the substring is not in the parent string, POSIT returns the value 0.

Note: To use this function, you must import the function library MNTUWS.

Related built-in functions:

• OVRLAY overlays a substring on another character string at a position you specify.

• STRAN substitutes one string for another within a string.

Syntax How to Find a Substring Position
The syntax is

POSIT(string1, string2)

where:

string1

Is the string in which you want to find string2.

string2

Is the string you want to find.

Note: To use this function, you must import the function library MNTUWS by placing
the following statement directly after the MAINTAIN command at the top of your
procedure:

MODULE IMPORT (MNTUWS);

 Alphabetical List of Built-in Functions

Maintaining Databases 9-23

RJUST: Right-justifying a String
The RJUST built-in function right-justifies a character string within a field by adding
enough characters in front of a string to make it the required length. This character is
determined by you.

Related built-in functions: LJUST left-justifies a character string.

Syntax How to Right-justify a String
The syntax is

RJUST (in_field, output_width, pad_char)

where:

in_field

Is an alphanumeric expression.

output_width

Is the number of characters you wish the resulting field to have. If output_width is
less than the length of in_field, RJUST trims in_field from right to left. If
output_width is zero, RJUST returns a variable length string of length zero.

pad_char

Is the character you want to pad the string with to make the input string
right-justified. RJUST uses pad_char only when output_width is greater than the
length of in_field.

Built-in Functions Reference

9-24 Information Builders

SELECTS: Decoding a Value From a Stack
The SELECTS built-in function enables you to decode a value from a stack.

Related built-in functions: DECODE assigns values based on the value of an input
field.

Syntax How to Decode a Value From a Stack
The syntax is

target SELECTS (code result, code result, ... [ELSE default])

where:

target

Is any valid expression. It can be either a field name or a variable that resolves to a
single stack cell.

code

Is the value SELECTS searches for. Once the value is found, the input expression is
assigned the corresponding result. The comma between the code and result is
optional.

result

Is the value assigned when the input expression has the corresponding code.

default

Is the value to be assigned if the code is not found among the list of codes. If the
default is omitted, a space or zero is assigned to non-matching codes.

Example Decoding a Value From a Stack
The following computes a user-defined field based on the values in a stack:

COMPUTE Square = Stk(Cnt).Number SELECTS (1 1, 2 4, 3 9);

Because SELECTS is a binary operator, it can also be used in an expression:

COMPUTE Square_Plus = Stk(Cnt).Number SELECTS (1 1, 2 4, 3 9) +1;

 Alphabetical List of Built-in Functions

Maintaining Databases 9-25

Example Assigning Job Categories Based on CURR_JOBCODE
The following example uses MASK to extract the first character of the field
CURR_JOBCODE in the EMPLOYEE file. It then uses SELECTS to create a value for
the field JOB_CATEGORY:
MAINTAIN FILE Employee

Case Top
FOR ALL NEXT EMPINFO.EMP_ID INTO EmpStack;
COMPUTE
DEPX_CODE/A1 = MASK(EmpStack().CURR_JOBCODE,'9$$');
JOB_CATEGORY/A15 = DEPX_CODE SELECTS (A 'ADMINISTRATIVE'

B 'DATA PROCESSING')
;
EndCase

END

The following table shows sample values for CURR_JOBCODE and the corresponding
values for JOB_CATEGORY:

CURR_JOBCODE JOB_CATEGORY

A01 ADMINISTRATIVE
A07 ADMINISTRATIVE
A15 ADMINISTRATIVE
A17 ADMINISTRATIVE
B02 DATA PROCESSING
B03 DATA PROCESSING
B04 DATA PROCESSING
B14 DATA PROCESSING

SetStackMode: Preventing End Users From Adding Rows to Grids
The SetStackMode built-in function prevents the end user from adding rows to a grid.

Related built-in functions:

• ChangeColBcolor and ChangeColFcolor set the background and foreground colors
of a grid column.

• CurStkRowNum, CurStkColNum, CurGrdRowNum, and CurGrdColNum determine
the current row or column number in a grid.

Built-in Functions Reference

9-26 Information Builders

Syntax How to Prevent End Users From Adding Rows to Grids
The syntax is

formname.gridname.SetStackMode(ADDOFF)

where:

formname

Is the name of the form that contains the grid.

gridname

Is the name of the grid.

SOUNDEX: Comparing Strings Phonetically
The SOUNDEX built-in function enables you to search for character strings phonetically
without knowing how they are spelled.

SOUNDEX converts character strings to four-character codes. The first character must be
the first character in the string. The last three characters represent the next three
significant sounds in the string.

Note: To use this function, you must import the function library MNTUWS.

Procedure How to Conduct a Phonetic Search
1. Use SOUNDEX to translate data values from the field you are searching for to their

phonetic codes.

2. Use SOUNDEX to translate your best guess target string to a phonetic code.
Remember that the spelling of your target string need be only approximate; however,
the first letter must be correct.

3. Use a WHERE or IF statement to compare the two values created in step 1 and step
2.

Syntax How to Convert Strings to Phonetic Codes
The syntax is:

SOUNDEX(string)

Note: To use this function, you must import the function library MNTUWS by placing
the following statement directly after the MAINTAIN command at the top of your
procedure:

MODULE IMPORT (MNTUWS);

 Alphabetical List of Built-in Functions

Maintaining Databases 9-27

SQRT: Calculating the Square Root
The SQRT function calculates the square root of its argument.

Syntax How to Calculate the Square Root
The syntax is:

SQRT(number)

Example Calculating Square Root
The following example calculates the square root of AREA:
SQRT(AREA)

The following table contains sample values for AREA and the corresponding value for
SQRT(AREA):

AREA SQRT(AREA)

11,088 105.30
11,088 105.30
13,455 116.00
13,455 116.00
12,730 112.83
12,730 112.83

STRAN: Substituting One Substring for Another
The STRAN built-in function substitutes a substring for another in a character string.
STRAN enables you to edit part of an alphanumeric string without replacing the field
entirely.

Note: To use this function, you must import the function library MNTUWS.

Related built-in functions:

• OVRLAY overlays a substring on another character string at a position you specify.

• POSIT returns the position of a substring within a string.

Built-in Functions Reference

9-28 Information Builders

Syntax How to Substitute a Substring
The syntax is

STRAN(string1, string2, string3)

where:

string1

Is the string into which you want to substitute characters.

string2

Is the string you want to replace in string1.

string3

Is the string you want to insert into string1 in place of string2.

Note: To use this function, you must import the function library MNTUWS by placing
the following statement directly after the MAINTAIN command at the top of your
procedure:

MODULE IMPORT (MNTUWS);

STRCMP: Comparing Strings Using the EBCDIC or ASCII Collating
Sequence

The STRCMP built-in function compares two alphanumeric strings using the EBCDIC or
ASCII collating sequence (depending on your platform).

• If the first string is less than the second string, STRCMP returns a negative value.

• If the first string is greater than the second string, STRCMP returns a positive value.

• If the first string is equal to the second string, STRCMP returns zero.

Related built-in functions:

• STRICMP compares two alphanumeric strings, but ignores case differences.

• STRNCMP compares the first n characters of two alphanumeric strings, where n is a
number you specify.

Syntax How to Compare Strings Using the EBCDIC or ASCII Collating
Sequence
The syntax is:

STRCMP(string1,string2)

 Alphabetical List of Built-in Functions

Maintaining Databases 9-29

STRICMP: Comparing Strings Using the EBCDIC or ASCII Collating
Sequence, But Ignoring Case Differences

The STRICMP built-in function compares two alphanumeric strings using the EBCDIC
or ASCII collating sequence (depending on your platform), but ignores case differences.

• If the first string is less than the second string, STRICMP returns a negative value.

• If the first string is greater than the second string, STRICMP returns a positive value.

• If the first string is equal to the second string, STRICMP returns zero.

Related built-in functions:

• STRCMP compares two alphanumeric strings, but takes into account case
differences.

• STRNCMP compares the first n characters of two alphanumeric strings, where n is a
number you specify.

Syntax How to Compare Strings Using the EBCDIC or ASCII Collating
Sequence, But Ignoring Case Differences
The syntax is:

STRICMP(string1,string2)

STRNCMP: Comparing Substrings Using the EBCDIC or ASCII
Collating Sequence

The STRINCMP built-in function compares the first n characters of two alphanumeric
strings using the EBCDIC or ASCII collating sequence (depending on your platform),
where n is a number you specify.

• If the first string is less than the second string, STRNICMP returns a negative value.

• If the first string is greater than the second string, STRNCMP returns a positive
value.

• If the first string is equal to the second string, STRNCMP returns zero.

Related built-in functions:

• STRCMP compares two alphanumeric strings, but takes into account case
differences.

• STRICMP compares two alphanumeric strings, but ignores case differences.

Built-in Functions Reference

9-30 Information Builders

Syntax How to Compare Substrings Using the EBCDIC or ASCII
Collating Sequence
The syntax is

STRNCMP(string1,string2,number)

where:

number

Represents the number of characters in string1 and string2 you want to compare.

STRTOKEN: Returning Substrings Based on Delimiters
The STRTOKEN built-in function returns a substring of the input field based on a list of
delimiters. For example, STRTOKEN (“abc; def; ghi”,”.; ,*”) will return “abc” because
abc is the first substring that reached a delimiter.

Note: To use this function, you must import the function library MNTUWS.

Syntax How to Return Substrings Based on Delimiters
The syntax is:

STRTOKEN(string, list of delimiters)

Note: To use this function, you must import the function library MNTUWS by placing
the following statement directly after the MAINTAIN command at the top of your
procedure:

MODULE IMPORT (MNTUWS);

SUBSTR: Extracting a Substring
The SUBSTR built-in function extracts a substring based on where it begins and its
length in the parent string.

Another way to extract substrings is to use the MASK built-in function. The differences
are:

• MASK can extract a substring from different parts of the parent string. For example,
it can extract the first two characters and the last two characters of a string to form a
single substring. Also, it can insert characters into a substring.

• SUBSTR can vary the position of the substring depending on the values of other
fields.

Related built-in functions:

• MASK extracts characters from and adds characters to an alphanumeric string.

• TRIM returns an alphanumeric field trimmed of trailing blanks.

 Alphabetical List of Built-in Functions

Maintaining Databases 9-31

Syntax How to Extract a Substring
The syntax is

SUBSTR (string, start_index, length)

where:

string

Is the alphanumeric string from which you want to extract the substring.

start_index

Is the location of the character where you want to start extracting your substring.

length

Is the length of the substring you want to extract.

Example Extracting the First Character of a String
The following example calculates a user ID for fan club members by concatenating the
first letter of their first name to their last name.

MAINTAIN FILE FANNAMES
Case Top
INFER SSN INTO AddStack
COMPUTE UID/A9 = substr(AddStack().FIRSTNAME,1,1) ||

AddStack().LASTNAME;
EndCase
END

The following table shows sample values for FIRSTNAME and LASTNAME, and the
corresponding values for UID:

FIRSTNAME LASTNAME UID

JOE SMITH JSMITH
SAM JONES SJONES
TERRI WHITE TWHITE

TODAY and TODAY2: Returning the Current Date
The TODAY and TODAY2 built-in functions retrieve the current date from the operating
system in the format YY/MM/DD or YYYY/MM/DD.

Note: To use this function, you must import the function library MNTUWS.

Related built-in functions:

• HHMMSS returns the current time.

• Initial_HHMMSS returns the time that the Maintain module was started.

• Initial_TODAY returns the date that the Maintain module was started.

Built-in Functions Reference

9-32 Information Builders

Syntax How to Retrieve the Current Date
The syntax is:

TODAY()

or

TODAY2()

Note: To use this function, you must import the function library MNTUWS by placing
the following statement directly after the MAINTAIN command at the top of your
procedure:

MODULE IMPORT (MNTUWS);

TRIM: Trimming Trailing Blanks
The TRIM built-in function returns the argument string trimmed of trailing blanks.

Related built-in functions: SUBSTR extracts a substring.

Syntax How to Trim Trailing Blanks
The syntax is:

TRIM(string)

TRIMLEN: Determining the Length of a String Excluding Trailing
Blanks

The TRIMLEN built-in function returns the length of the argument string excluding
trailing blanks.

Related built-in functions: LENGTH determines the length of an alphanumeric string,
including trailing blanks.

Syntax How to Determine the Length of a String Excluding Trailing
Blanks
The syntax is:

TRIMLEN(string)

 Alphabetical List of Built-in Functions

Maintaining Databases 9-33

UPCASE: Converting Text to Uppercase
The UPCASE built-in function converts a string of characters to uppercase.

One reason you might use UPCASE is when you are sorting on a field that contains both
mixed case and uppercase values. In these cases, sorting uses the ASCII or EBCDIC
sorting order, which may cause unpredictable results. To obtain consistent results, define
a new field with all of the values in uppercase, and sort on that.

Note: To use this function, you must import the function library MNTUWS.

Related built-in functions:

• LCWORD and LCWORD2 convert strings to mixed case.

• LOWER converts strings to lowercase.

Syntax How to Convert Text to Uppercase
The syntax is:

UPCASE(string)

Note: To use this function, you must import the function library MNTUWS by placing
the following statement directly after the MAINTAIN command at the top of your
procedure:

MODULE IMPORT (MNTUWS);

Maintaining Databases 10-1

CHAPTER 10

Modifying Data Sources With MODIFY

Topics:

• Introduction

• Additional MODIFY Facilities

• Describing Incoming Data

• Modifying Data: MATCH and NEXT

• Computations: COMPUTE and
VALIDATE

• Messages: TYPE, LOG, and
HELPMESSAGE

• Case Logic

• Multiple Record Processing

• Advanced Facilities

• MODIFY Syntax Summary

This chapter describes how to maintain FOCUS-supported data
sources using the FOCUS MODIFY facility. MODIFY requests
can add, update, and delete data from FOCUS data sources,
including HOLD files converted to FOCUS format (see the
Creating Reports manual).

The MODIFY facility is also used to maintain data in relational
structures, Adabas data sources, and VSAM data sources. See
the documentation for the specific data adapter for details about
using MODIFY in those environments.

Modifying Data Sources With MODIFY

10-2 Information Builders

Introduction
A MODIFY request processes a transaction in three steps:

1. It reads a transaction for incoming data values. Transactions can come from external
data sources, may be supplied by the user in screens or in response to prompts, or can
be included as part of the request itself.

2. It selects a segment instance for changing or deleting, or confirms that a segment
instance does not exist yet in the data source.

3. It changes or deletes the segment instance it selected, or adds a new segment
instance.

This is shown graphically in the following diagram:

Terminal
MODIFY
Facility

FOCUS
Database

Transaction File
The request first reads a transaction (that is, a related collection of incoming data values).
Describing Incoming Data on page 10-19 describes the FIXFORM, FREEFORM,
PROMPT, and CRTFORM statements that describe transactions read by the request.

After it reads a transaction, the request selects a segment instance in the data source to
modify. It does this in either of two ways:

• It searches the data source for segment instances containing the same values as the
transaction. This is done with a MATCH statement.

• It selects the next segment instance after the current position. This is done with a
NEXT statement.

The MATCH and NEXT statements are discussed in Modifying Data: MATCH and
NEXT on page 10-58.

The request then either adds, updates, or deletes data source values using the incoming
values, or it rejects the transaction. The following examples show how this is done.

 Introduction

Maintaining Databases 10-3

Examples of MODIFY Processing
This section provides examples of MODIFY processing that add, update and delete data
from a data source.

Adding Data to a Data Source
The following sample MODIFY request adds new employee data to the EMPLOYEE
data source. When you execute the request, it prompts you for an employee ID number,
last name, and first name. After you enter these three values, the request adds the
information to the data source and prompts you for three more values for the same fields.
When you are finished entering data, end execution by entering the word END to any
prompt.

The request is as follows:

1. MODIFY FILE EMPLOYEE
2. PROMPT EMP_ID LAST_NAME FIRST_NAME
3. MATCH EMP_ID
4. ON MATCH REJECT
5. ON NOMATCH INCLUDE
6. DATA

The parts of the request are as follows:

1. The MODIFY FILE EMPLOYEE statement indicates that the request modifies the
EMPLOYEE data source.

2. The PROMPT statement indicates that the request will prompt you for the
employee’s ID (EMP_ID), last name, and first name on the terminal.

3. The MATCH EMP_ID statement searches the data source for the employee ID that
you entered.

4. If the ID is already in the data source (that is, an ID in the data source matches the ID
you entered), the MATCH statement rejects your transaction.

5. If the ID is not yet in the data source, the MATCH statement adds your transaction to
the data source.

6. The DATA statement begins prompting for data.

Modifying Data Sources With MODIFY

10-4 Information Builders

Updating Data in a Data Source
MODIFY requests can update data in a data source, replacing data source values with
transaction (incoming data) values. The following sample request updates employee
department assignments and salaries. When you execute the request, it reads the data from
a separate data source called EMPDEPT. Each record in the data source consists of three
fields:

• The EMP_ID field contains the employee ID number. It is the first nine characters on
the record.

• The DEPARTMENT field contains the new department assignment and is the next
ten characters.

• The CURR_SAL field contains the new salary and is the last eight characters.

This is the EMPDEPT data source:

* * * TOP OF FILE * * *
071382660PRODUCTION27500.00
112847612SALES 24800.75
451123478MARKETING 26950.00
* * * END OF FILE * * *

The request is as follows:

MODIFY FILE EMPLOYEE
1. FIXFORM EMP_ID/9 DEPARTMENT/10 CURR_SAL/8

�MATCH EMP_ID
2. � ON NOMATCH REJECT

� ON MATCH UPDATE DEPARTMENT CURR_SAL
3. DATA ON EMPDEPT
4. END

The parts of the request are as follows:

1. The FIXFORM statement indicates that the transaction records are in fixed positions
in the EMPDEPT data source and describes the positions of the fields in each record.

2. The MATCH EMP_ID statement searches the data source for the employee ID in
each record. If the ID is not in the data source, the request rejects the record. If the
ID is in the data source, the request replaces the DEPARTMENT and CURR_SAL
values in the data source with the values on the record.

3. The DATA statement indicates that the data is contained in the data source
EMPDEPT. EMPDEPT is the ddname to which the data file is allocated to and can
be different from the system file name.

4. The END statement completes the request and initiates processing.

 Introduction

Maintaining Databases 10-5

Deleting Data From a Data Source
This sample request deletes information on employees from the data source. When you
execute the request, it prompts you for an employee ID. When you enter the ID, it deletes
all information relating to that employee from the data source.

MODIFY FILE EMPLOYEE
1. PROMPT EMP_ID
2. MATCH EMP_ID

ON MATCH DELETE
ON NOMATCH REJECT

3. DATA

The parts of the request are as follows:

1. The PROMPT statement indicates that the request will prompt you for the
employee’s ID.

2. The MATCH statement searches for the employee ID in the data source. If the ID is
in the data source, the request deletes all information relating to the employee from
the data source.

3. The DATA statement begins prompting for data.

The above examples show how to add, update, and delete data from a data source. Each
request indicates the data source it is modifying, the method of reading data, the
transaction values it searches for in the data source, and the actions it takes depending on
whether the values are in the data source or not. If it is reading a transaction data source,
the request must indicate the name of the data source.

Modifying Data Sources With MODIFY

10-6 Information Builders

Additional MODIFY Facilities
You can also instruct the request to perform other tasks:

• Test transaction values to determine if they are acceptable. You do this using the
VALIDATE statement, described in Computations: COMPUTE and VALIDATE on
page 10-90.

• Perform calculations and store the results in either transaction or temporary fields.
You do this using the COMPUTE statement, described in Computations: COMPUTE
and VALIDATE on page 10-90.

• Display messages which contain values from transaction fields, temporary fields, or
data source fields. You do this using the TYPE statement, discussed in Messages:
TYPE, LOG, and HELPMESSAGE on page 10-114.

• Record transactions processed by the request using the TYPE and LOG statements
described in Messages: TYPE, LOG, and HELPMESSAGE on page 10-114. These
statements can sort accepted transactions from rejected transactions and can sort
rejected transactions by reason for rejection.

You can design MODIFY requests using Case Logic, a method which divides requests
into sections called “cases.” The request can branch to the beginning of a case during
execution. Case Logic, discussed in Case Logic on page 10-129, makes it possible for
requests to offer the terminal operator selections and to process transactions in different
ways.

You can design MODIFY requests that process multiple segment instances at one time.
Multiple Record Processing is described in Multiple Record Processing on page 10-153,
including the modification of several segment instances on one FIDEL screen.

Reference Notes on Using JOIN Syntax With MODIFY
For software that supports the MODIFY facility, note the following:

• The JOIN command allows you to read (but not to modify) data in a second FOCUS
data source using the MODIFY LOOKUP function. To modify multiple FOCUS data
sources in one request, use the COMBINE command.

• The LOOKUP function in MODIFY requests cannot be used on a DEFINE-based
JOIN; DEFINE is not evaluated during a MODIFY procedure.

• The MODIFY LOOKUP function cannot retrieve data in a cross-referenced segment
using concatenated fields (a multi-field join).

 Additional MODIFY Facilities

Maintaining Databases 10-7

FOCUS offers a variety of other advanced features that facilitate use of the MODIFY
command in more complex applications. These features are listed below and described in
Advanced Facilities on page 10-187:

• The COMBINE command for modifying multiple FOCUS data sources in one
MODIFY request.

• The COMPILE command for translating MODIFY requests into compiled code
ready for execution.

• The ACTIVATE and DEACTIVATE statements for activating and deactivating
fields.

• The Checkpoint and Absolute File Integrity facilities and the COMMIT and
ROLLBACK Subcommands for protecting FOCUS data sources from system
failures.

• The ECHO facility for displaying the logical structure of MODIFY requests.

• Dialogue Manager system variables that record execution statistics every time a
MODIFY request is run.

• FOCUS query commands that display statistical information on MODIFY request
executions and FOCUS data sources.

The rest of this introduction contains:

• The basic syntax of MODIFY requests.

• Instructions for executing MODIFY requests.

• A summary of facilities other than MODIFY that can be used to maintain FOCUS
data sources.

• A short description of the parts of the EMPLOYEE data source most used in the
examples.

Modifying Data Sources With MODIFY

10-8 Information Builders

Multiple User Access
Suppose you need to update a particular data source, but three other users have been
assigned to work on the data source at the same time. How can you be sure that one user’s
changes will not override or overwrite another user’s changes? MODIFY, used in
conjunction with the Simultaneous Usage (SU) facility, ensures data integrity under those
circumstances.

To enter SU mode, you initiate a background job process called a FOCUS Database
Server. The userids running FOCUS or Host Language Interface programs are called
source machines. The users (via their source machines) send requests and transactions to
the FOCUS Database Server, which processes the transactions and transmits the retrieved
data or messages back to the source machine. The following diagram illustrates the
process:

User 1

User 2

User 3

Communication
Facility

Source Machine
2

Source Machine
1

Source Machine
3

FOCUS
Database

Server
(sink machine)

Central
Database

Private
Database

Under SU, when you execute a MODIFY request

1. The request identifies the instance to be changed with MATCH or NEXT commands.

2. The source machine forwards the transaction values to the FOCUS Database Server,
which uses the values to retrieve the correct instance.

3. The FOCUS Database Server retrieves the original data source instance, holds one
copy, and sends another to the source (userid) that requested the data.

 Additional MODIFY Facilities

Maintaining Databases 10-9

4. The source machine updates its copy of the instance with the new field values or
marks the copy for deletion and sends the updated copy back to the FOCUS Database
Server. The FOCUS Database Server compares the copy of the instance that it saved
with the instance stored in the data source to check whether the data source instance
has since been updated by another user.

At this point, two courses of action are possible:

• If the copy and the current instance in the data source are the same, FOCUS
changes the instance using the copy from the source machine.

• If the original and the current instance in the data source are different, SU signals
a conflict and rejects the source machine copy.

Notice that a source machine may work on separate, locally controlled data sources.

SU Features
With SU you can display a list of the active source machine userids and the fileids of the
FOCUS Database Server data sources from your source machine, and record all user
actions in a sequential data source called HLIPRINT. The HLIPRINT data source records
each user action, the data source on which the action took place, the segment read or
modified by the action, and the userid that issued the action. It can also include the:

• Date and time of the action.

• CPU time it took to execute the action.

• Number of I/O operations required to execute the action.

• Name of the FOCUS stored procedure executing the action, and the name of the case
executing the action (for MODIFY requests using Case Logic).

Modifying Data Sources With MODIFY

10-10 Information Builders

Another SU feature is the FOCURRENT variable that alerts users to transaction conflicts.
When you submit a MODIFY transaction in SU, FOCUS stores a value in a variable
called FOCURRENT to indicate what happened to the transaction. You can design your
MODIFY requests to test FOCURRENT and take different actions, depending on whether
the transaction was accepted or rejected. The following request tests the FOCURRENT
variable:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID
GOTO NEWSAL
CASE NEWSAL
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH PROMPT CURR_SAL
ON MATCH UPDATE CURR_SAL
ON MATCH IF FOCURRENT EQ 0 GOTO TOP;
ON MATCH TYPE
"VALUE CHANGED. NEW VALUE <D.CURR_SAL>"

ENDCASE
DATA

The request prompts for an employee ID and then branches to the case NEWSAL. If the
ID is in the data source, you are prompted for the current salary of the employee; the
current salary is updated on the source machine copy. The transaction is submitted.

Next, the request tests the values of the variable FOCURRENT:

• If FOCURRENT is 0, the transaction is accepted and the request prompts you for the
next EMP_ID.

• If FOCURRENT is not 0, the transaction is rejected. The request branches back to
the top of the procedure. If the instance is found, FOCUS prompts for the current
salary and resubmits the transaction. If the instance was deleted, the request reports
back a NOMATCH condition and prompts you for the next transaction.

By testing the FOCURRENT variable, MODIFY requests can process transactions after
they have been rejected because of conflicts.

 Additional MODIFY Facilities

Maintaining Databases 10-11

Managing Your Data: Advanced Features
In addition to the basic operations of the MODIFY facility, many other features are
available to help you refine your MODIFY requests. This section describes them briefly.

Feature Description

Absolute File Integrity Causes FOCUS to write changes to the data source to
another section of the disk rather than overwriting the
data source. If the request executes normally, the new
section of the disk becomes part of the data source. If
the system fails, the original data source is preserved.

ACTIVATE Activates an inactive transaction field. It declares a
transaction field to be present so the transaction field
can be used for matching, including, and updating. The
MOVE option equates the transaction value of the
transaction field to the corresponding data source field.
The RETAIN option does not move the data source
value to the transaction field.

DEACTIVATE (RETAIN) Deactivates a transaction field. The DEACTIVATE
command changes a transaction value to blank if
alphanumeric, to zero if numeric, or to the MISSING
transaction value for transaction fields described by the
MISSING=ON attribute. It also deactivates the
corresponding data source field. The RETAIN option
deactivates the field without changing its value.

CHECK Limits the number of transactions lost if the system fails
when you are modifying a data source by identifying a
checkpoint. CHECK activates the Checkpoint facility
that enables FOCUS to write more frequently to the
data source. (The point at which the transactions are
written is called the “checkpoint.”) The Checkpoint
Facility is useful in cases when a system failure occurs
while MODIFY requests are executing.

COMBINE Enables you to modify multiple FOCUS data sources in
one MODIFY request.

Modifying Data Sources With MODIFY

10-12 Information Builders

Feature Description

COMMIT and ROLLBACK Control the changes made to data sources and protect
the data sources from system failures. COMMIT and
ROLLBACK improve SU performance; here the ability
to group individual transactions as one logical
transaction reduces the number of individual
transactions and the amount of communication needed
between the FOCUS Database Server and source
userids. COMMIT and ROLLBACK are used in lieu of
CHECK

COMPILE Translates MODIFY requests into compiled code ready
for execution.

COMPUTE Enables you to modify incoming data field values and
to define temporary fields.

DECODE Enables you to compare transaction values against a list
of acceptable and unacceptable values.

LOOKUP Tests for the existence of non-indexed values in
cross-referenced FOCUS data sources and makes these
values available for other computations.

ECHO Displays the logical structure of MODIFY requests.
This feature is a good debugging tool for analyzing a
MODIFY request, especially if the logic is complex
and MATCH and NEXT defaults are used.

FIND Searches another FOCUS data source for the presence
of the transaction value.

LOG Enables you to record transactions and error messages
in separate files automatically, and to control the
display of rejection messages at the terminal.

 Additional MODIFY Facilities

Maintaining Databases 10-13

Feature Description

MULTIPLE RECORD
PROCESSING
COMMANDS

Enable you to process multiple segment instances at
one time and are often used with CRTFORM. A few of
the important commands used in multiple record
processing are GETHOLD and REPEAT. GETHOLD
retrieves transaction records from memory and uses
them to modify a data source; GETHOLD collects and
retrieves segment instances. REPEAT does re-iterative
processing.

TYPE Displays or stores messages in a separate file that you
prepare.

VALIDATE Enables you to reject transactions that contain
unacceptable values.

MODIFY Command Syntax
The general syntax of the MODIFY command is

MODIFY FILE filename [ECHO|TRACE]
.
.

statements
.
.

DATA [ON ddname|VIA program]
.

incoming data
.
.

[END]

where:

MODIFY FILE

Begins the request.

filename

Is the name of the FOCUS data source you are modifying. This name must be the
same as the Master File of the data source.

ECHO

Invokes the ECHO facility which displays the request logic (see Displaying MODIFY
Request Logic: The ECHO Facility on page 10-207).

Modifying Data Sources With MODIFY

10-14 Information Builders

TRACE

Invokes the TRACE facility which displays the name of each case that is entered
during the execution of the request if the request uses Case Logic (see Tracing Case
Logic: The TRACE Facility on page 10-155).

statements

Are the MODIFY statements in the request. Each statement must begin on a separate
line.

DATA

Specifies the source of incoming data. Note that nothing should come between this
statement and the END statement, unless you are supplying the incoming data in the
request itself. In that case, place the data after the DATA statement.

ON ddname

Is a DATA statement parameter. See Specifying the Source of Data: The DATA
Statement on page 10-56.

VIA program

Is a DATA statement parameter.

incoming data

Is the data you are using to modify the data source if you are supplying the data in the
request itself.

END

Concludes the request. Do not add this statement if the request contains PROMPT
statements (PROMPT statements are discussed in Prompting for Data One Field at a
Time: The PROMPT Statement on page 10-41).

Executing MODIFY Requests
You can enter and run a MODIFY request either by entering it at the terminal or by
running it as a stored procedure (stored procedures are discussed in the Developing
Applications manual). When you start execution of the request, FOCUS executes the
request for each transaction until:

• There is no more data to be read in the incoming transaction data source (the file
containing the incoming data).

• The user signals a halt (if the request is prompting the user for data).

• The STOP statement signals a halt to the processing of transactions in an incoming
data source (see Reading Selected Portions of Transaction Data Sources: The
START and STOP Statements on page 10-56).

• The request encounters a GOTO EXIT statement.

 Additional MODIFY Facilities

Maintaining Databases 10-15

Executing a Request as a Stored Procedure
To enter a MODIFY request as a stored procedure, type the request in a procedure file
(procedures are discussed in the Developing Applications manual). If you are including
the incoming data in the request (which you might do for testing purposes), place the data
after the DATA statement in the stored procedure. End the request with the END
statement unless the request contains PROMPT statements.

After saving the file, enter at the FOCUS prompt

EX focexec

where focexec is the name of the stored procedure.

FOCUS responds with an echo of the file name, date, and time as follows:

filename ON date AT time

The request then either begins prompting you for data or starts reading the stored
transactions.

When the request finishes execution, it displays the following statistics

TRANSACTIONS: TOTAL = n ACCEPTED = n REJECTED = n
SEGMENTS: INPUT = n UPDATED = n DELETED = n

where:

n

Is an integer.

TRANSACTIONS

Are the transactions processed by the request.

TOTAL

Is the total number of transactions processed.

ACCEPTED

Is the number of transactions accepted by the request and used to maintain the data
source.

REJECTED

Is the number of transactions rejected by the request.

SEGMENTS

Is the number of segment instances modified by the request.

INPUT

Is the number of new segment instances.

UPDATED

Is the number of instances updated.

DELETED

Is the number of instances deleted.

Modifying Data Sources With MODIFY

10-16 Information Builders

To suppress this message, include the following command in the procedure before the
MODIFY request:

SET MESSAGE = OFF

Executing MODIFY Requests Online
To execute a MODIFY request online, enter

MODIFY FILE filename

where filename is the FOCUS name of the data source you are modifying.

FOCUS responds with an echo of the data source name, date, and time as follows:

filename ON date AT time
ENTER SUBCOMMANDS:

Enter each MODIFY statement in the request (such as FIXFORM, MATCH, COMPUTE,
TYPE) followed by a DATA statement and the incoming data (if the data is not coming
from another data source or from the terminal). Then enter the END statement (unless the
request contains PROMPT statements).

The request can then start prompting you for data, read from an external data source, or
accept transaction records from the terminal (if the request contains FIXFORM or
FREEFORM statements but does not specify the ddname of an external data source).

If it accepts transaction records from the terminal, the request displays:

START:

Start entering the data, one record at a time. Every time you enter a record, the request
processes it and displays a message if it rejects the record. After you have entered the
data, enter the END statement. This ends execution.

If you are entering a MODIFY request online and you want to cancel the request and start
over, enter QUIT. This returns you to the FOCUS prompt.

If you enter a statement online that FOCUS considers an error, it will prompt you for a
correction. This error-correction facility is described in the Creating Reports manual.

You should not enter MODIFY requests online unless the requests are short. If you enter
a statement you want to change, you must quit the request and start over.

 Additional MODIFY Facilities

Maintaining Databases 10-17

The example below shows a sample MODIFY request being entered online:

>
modify file employee

EMPLOYEEFOCUS A1 ON 08/15/85 AT 16.36.05
ENTER SUBCOMMANDS:
freeform emp_id curr_sal
match emp_id
on nomatch reject
on match update curr_sal
data
START:
emp_id=071382660, curr_sal=21400.50, $
emp_id=112847612, curr_sal=20350.00, $
emp_id=117593129, curr_sal=22600.34, $
end

Notice that when the request finishes execution, it displays the following statistics:

TRANSACTIONS: TOTAL= 3 ACCEPTED= 3 REJECTED= 0
SEGMENTS: INPUT= 0 UPDATED= 3 DELETED= 0

These statistics are explained in the preceding section.

Modifying Data Sources With MODIFY

10-18 Information Builders

Other Ways of Maintaining FOCUS Data Sources
Although the MODIFY command is one of the primary methods of maintaining FOCUS
data sources, there are four other facilities for changing data in FOCUS data sources:

• The Maintain facility allows you to maintain data sources (including FOCUS, DB2,
SQL/DS, Oracle, Teradata, and VSAM data sources) using even-driven and set-based
processing in with a Graphical User Interface. The Maintain facility is described in
Chapter 1, Introduction to Maintain, through Chapter 9, Built-in Functions
Reference.

• The FSCAN and SCAN facility allows you to interactively edit FOCUS data sources
on a field-by-field basis. You enter a subcommand to make each change. The facility
can update key fields. The FSCAN facility is the subject of Chapter 14, Directly
Editing FOCUS Databases With FSCAN. SCAN is the subject of Chapter 13,
Directly Editing FOCUS Databases With SCAN.

• The Host Language Interface (HLI) allows you to maintain FOCUS data sources
from computer programs written in BAL, FORTRAN, COBOL, and PL/1. HLI is
covered in the Host Language Interface Users Manual.

Unlike the FSCAN facility mentioned above, the MODIFY command allows you to make
many changes with one execution. It can run in both interactive and batch modes. It will
prompt you for the values it needs to make the changes, or it may read the values from a
transaction data source. However, it cannot update key fields.

Note that although the FOCUS Report Writer can write reports from many kinds of
non-FOCUS data sources (such as ISAM, VSAM, and IMS data sources), the MODIFY
command maintains only FOCUS data sources, and with the proper interface, VSAM data
sources, and SQL and Teradata tables.

You can only MODIFY one partition of a partitioned FOCUS data source at one time.
You must explicitly allocate the partition to be modified. Alternatively, you can create
separate Master Files for each partition for use in MODIFY procedures. For more
information about partitioned FOCUS data sources, see the Describing Data manual.

 Describing Incoming Data

Maintaining Databases 10-19

The EMPLOYEE Data Source
The examples in this chapter use the EMPLOYEE data source, a data source used to
record employee information for a company. The Master File and the diagram of the
entire data source structure are shown in Appendix A, Master Files and Diagrams. Most
of the examples use three segments in the EMPLOYEE data source:

• The EMPINFO segment contains information directly relating to employees in a
company: employee ID, last name, first name, hire date, department assignment,
current salary, job code, and classroom hours.

• The SALINFO segment contains information relating to employees’ monthly pay: the
pay date and the amount of pay.

• The DEDUCT segment contains information about the deductions taken off each
monthly pay check: the type of deduction and the amount of the deduction.

Describing Incoming Data
This section describes the statements that read and describe transactions. These are the
FIXFORM, FREEFORM, PROMPT, and CRTFORM statements. The last part of the
section discusses the DATA, START, and STOP statements.

To modify a data source, the MODIFY request first reads incoming data. It then uses this
data to select the segment instances that must be changed or deleted, or to confirm that the
instances have not been entered yet and to add them. The data may be in fixed or
comma-delimited format, it may be stored in sequential data sources or within the request
itself, and it may be entered directly by users on terminals.

There are four MODIFY statements that read and describe incoming data. Some read data
from sequential data sources and the request itself; some prompt users on terminals for
data. They are:

FIXFORM Reads data in fixed format. That is, the fields occupy fixed positions
in each record.

FREEFORM Reads data in comma-delimited format. That is, the fields in each
record are separated by a comma (,). Each record is terminated by a
comma and a dollar sign (,$).

PROMPT Prompts users on terminals for data values one field at a time. This
statement works on all terminals.

CRTFORM Displays formatted screens (called CRTFORMs) on terminals and
allows users to enter multiple data values at one time.

Note: PROMPT, FREEFORM, FIXFORM, and CRTFORM statements accept data that
includes numbers expressed in scientific notation. For more information on the use of
scientific notation in expressions, refer to the Creating Reports manual.

Modifying Data Sources With MODIFY

10-20 Information Builders

If a request does not have one of these statements, it defaults to FREEFORM and reads
data from a comma-delimited list.

These statements can be placed in requests in two ways:

• The statements can stand by themselves. These statements read data every time the
request repeats.

• The statements can be phrases in MATCH or NEXT statements (discussed in
Modifying Data: MATCH and NEXT on page 10-58). These phrases only read data
when the MATCH or NEXT statement is executed.

A request may have an unlimited number of statements of one type (for example, 10
PROMPT statements), except for CRTFORM where up to 255 such statements are
allowed. You may also mix the following statements in one request:

• FREEFORM statements and PROMPT statements.

• One FIXFORM statement with up to 255 CRTFORMs.

If you are reading data from a data source or user program, you must allocate the source
of the data to a ddname.

Note: Do not begin any field used in a CRTFORM or FIXFORM statement with Xn,
where n is any numeric value. This applies to fields in the Master File and computed
fields.

FOCUS allows the use of up to 3,072 fields in each MODIFY request. This total includes
both data source fields and temporary fields.

The last part of the section discusses several other features related to reading transactions.
They are:

• The DATA statement that marks the end of the executable portion of the request and
specifies the source of the transactions (the request itself, a data source, the terminal,
or a user program).

• The START and STOP statements that limit the request to reading a portion of the
transaction data source.

Reading Fixed-Format Data: The FIXFORM Statement
The FIXFORM statement reads data in fixed format. That is, each field has a fixed
position in each record. The FIXFORM statement can read data from sequential data
sources, including HOLD, SAVE, and SAVB files generated by TABLE requests.

The FIXFORM statement reads in one logical record at a time starting from column one
and divides the record into transaction fields. Subsequent FIXFORM statements may
redefine the record, dividing it into different sets of fields.

Note: Multiple FIXFORM statements in a request can function as a single statement.

 Describing Incoming Data

Maintaining Databases 10-21

For example, you are adding the names of five new employees to the EMPLOYEE data
source. The data is stored in a sequential data source called NEWEMP.

This is how the data source appears on a text editor such as TED:

|....+....1....+....2....+....3....+....4
* * * TOP OF FILE * * *
222333444BLACK SUSAN 27500.00
456456456NEWMAN JERRY 24800.75
999888777HUNTINGTON LAWRENCE 26950.00
246246246LINDQUIST DEBRA 19300.40
666888222MCINTYRE GEORGE 31900.60
* * * END OF FILE * * *

Each record in the data source consists of four fields, each field in a fixed position on the
record:

• The EMP_ID field (employee ID numbers) occupies the first nine bytes of each
record (columns 1 through 9).

• The LAST_NAME field occupies the next ten bytes (columns 10 through 19).

• The FIRST_NAME field occupies the next ten bytes (columns 20 through 29).

• The CURR_SAL field (current salaries) occupies the last eight bytes in each record
(columns 30 through 37).

You can describe the record format with this FIXFORM statement:

FIXFORM EMP_ID/9 LAST_NAME/10 FIRST_NAME/10 CURR_SAL/8

To add the records to the FOCUS data source, include the preceding statement in this
MODIFY request:

MODIFY FILE EMPLOYEE
FIXFORM EMP_ID/9 LAST_NAME/10 FIRST_NAME/10 CURR_SAL/8

MATCH EMP_ID
ON MATCH REJECT
ON NOMATCH INCLUDE

DATA ON NEWEMP
END

Modifying Data Sources With MODIFY

10-22 Information Builders

FIXFORM Statement Syntax
The syntax of the FIXFORM statement is

FIXFORM [ON ddname] fld-1/form-1 ... fld-n/form-n

or

FIXFORM FROM master [ALIAS]

where:

fld-1 ...

Are the names of the incoming data fields that the FIXFORM statement is reading or
redefining. If the name has an embedded blank, enclose it within single quotation
marks.
Any field being read by the FIXFORM statement which does not appear in the
Master File of the data source being modified must be predefined in a COMPUTE
field/format=; statement. This COMPUTE must appear in the MODIFY before the
FIXFORM.
The list of fields must fit on one line. If the list is too long to fit on one line, use a
FIXFORM statement for each line. For example:

FIXFORM EMP_ID/9 LAST_NAME/15
FIXFORM CURR_SAL/8 ED_HRS/4

The two FIXFORM statements act as one statement and read one record into the
buffer.

form-1 ...

Are the formats of the incoming data fields, as described in FIXFORM Transaction
Field Formats on page 10-26. The formats specify the format type (alphanumeric,
integer, floating point, etc.) and the length of the field in bytes.
Note: No length is specified for the text field format which is variable in length. A
FIXFORM statement can describe up to 12,288 bytes exclusive of repeating values.
To specify an alphanumeric format, just type the length of the field in bytes. For
example, a record contains two alphanumeric fields:
The EMP_ID field, nine bytes long.
The DEPARTMENT field, ten bytes long.
The FIXFORM statement that describes this record is:

FIXFORM EMP_ID/9 DEPARTMENT/10

Note that alphanumeric transaction fields can modify any data source field regardless
of internal format. Specifying the formats of binary, packed, and zoned transaction
fields is discussed in FIXFORM Transaction Field Formats on page 10-26.
Remember that a transaction field can contain numbers and still be alphanumeric. If
you display a transaction data source on a system editor, alphanumeric data appears
normally; numeric data appears as unprintable hexadecimal characters.

 Describing Incoming Data

Maintaining Databases 10-23

ON ddname

Is an option that specifies the ddname of the transaction data source containing the
incoming data. You use this option most often when the request is reading data from
two different sources: one source is specified by the DATA statement, the other by
the ON ddname option.
Note that if there is more than one FIXFORM statement without the ON ddname
option, the request keeps track of the last column of the physical record read by the
last FIXFORM statement. If the last column is in the middle of the record, the next
FIXFORM statement begins to read from the next column. If the last column is at the
end of the record, the next FIXFORM statement begins to read from column 1 of the
next record.
To break a FIXFORM statement having the ON ddname option into smaller
statements, specify the ON ddname option only in the first statement. All the
statements must be together in one block. For example:

FIXFORM ON EMPFILE EMP_ID/9 LAST_NAME/15
FIXFORM FIRST_NAME/10 DEPARTMENT/10
FIXFORM CURR_SAL/8 ED_HRS/4

FROM master

Indicates that the incoming data fields have the same names and formats as the
Master File (named master). If you use this option, do not specify the field names and
formats in the FIXFORM statement itself. Use this option only if the Master File
specifies a single segment SUFFIX=FIX data source. All the fields in the Master File
specified by the FROM phrase must also appear in the Master File specified by the
MODIFY command, or an error will result.
You use this option most often to load data from a HOLD file. For example:

TABLE FILE EMPLOYEE
PRINT CURR_SAL BY EMP_ID
ON TABLE HOLD
END
MODIFY FILE SALARY
FIXFORM FROM HOLD
DATA ON HOLD
END

The TABLE request stores employee IDs and salaries in a HOLD file. The MODIFY
request loads the IDs and salaries into a new FOCUS data source called SALARY.
Note that all the fields in the HOLD Master File must also appear in the SALARY
Master File.
Text fields are supported with FIXFORM from HOLD; only one text field can be
read from a HOLD file and it must be the last field on the HOLD FIXFORM. The
representation of missing text depends on whether MISSING=ON in the Master File
or the FIXFORM format is C for conditional, or a combination of the two.
When duplicate field names exist in a HOLD file, a MODIFY request that includes
FIXFORM FROM HOLD should specify an AS name.

Modifying Data Sources With MODIFY

10-24 Information Builders

ALIAS

Indicates that the alias names from the Master File are to be used to build the
FIXFORM statements.

Skipping Columns in the Record
Often, an incoming transaction contains filler or data you do not need. To skip over
characters or information in the incoming record, type

Xn

where:

n

Is the number of columns you want to skip.

This does not cause the statement to ignore the skipped columns. The statement reads the
entire record; it just does not place the skipped data in any transaction field. Later in the
request, you can place this data into transaction fields by adding a second FIXFORM
statement (see the following section, Moving Backward Through a Record).

For example, a transaction record consists of two fields: EMP_ID and CURR_SAL. Two
“A”s separate the fields:

071382660AA23540.35

You describe this record with this FIXFORM statement:

FIXFORM EMP_ID/9 X2 CURR_SAL/8

The X2 notation prevents the two “A”s from being placed in the transaction fields.

Note: Do not begin any field used in a CRTFORM or FIXFORM statement with Xn,
where n is any numeric value. This applies to fields in the Master File and computed
fields.

Moving Backward Through a Record
After a FIXFORM statement reads a record into the buffer, it places the data into
transaction fields, starting from the beginning of the record and moving toward the end.
You can specify that FIXFORM back up a number of columns to process the data more
than once. This enables you to place the same data into two fields simultaneously. To do
this, use the notation

X-n

where n is the number of columns that the statement is to move backward. For example,
the first three digits of employee IDs are a special code which you wish to use later in the
request. Each employee ID is nine digits long. You type this FIXFORM statement:

FIXFORM EMP_ID/9 X-9 EMP_CODE/3 X6 CURR_SAL/8

 Describing Incoming Data

Maintaining Databases 10-25

A record in the transaction data source is:

07138266023500.35

The statement interprets the record this way:

EMP_ID/9 Reads the first nine bytes as the employee ID (071382660).

X-9 Goes back nine bytes to the beginning of the record.

EMP_CODE/3 Reads the first three bytes as the employee code (071).

X6 Moves forward six bytes.

CURR_SAL/8 Reads the next eight bytes as the employee salary (23500.35).

This defines three incoming fields, all of which you can use later in the request.

Note: Since the EMP_CODE field is not defined in the Master File, you must define the
field with the COMPUTE statement before the FIXFORM statement (see Computing
Values: The COMPUTE Statement on page 10-90).

You may replace any FIXFORM statement with two smaller statements so that the second
statement redefines all or part of the record read by the first statement. For example, you
may replace this FIXFORM statement

FIXFORM EMP_ID/9 X-9 EMP_CODE/3 X6 CURR_SAL/8

with these two smaller FIXFORM statements:

FIXFORM EMP_ID/9 CURR_SAL/8
FIXFORM X-17 EMP_CODE/3 X14

The first FIXFORM statement reads one record and divides the record into the EMP_ID
field (nine bytes) and the CURR_SAL field (eight bytes).

The second FIXFORM statement moves 17 bytes back to the beginning of the record and
declares the first three bytes to be the EMP_CODE field. It then skips over the last 14
bytes.

Note that you cannot place the X-n notation at the end of a FIXFORM statement. The
following statement is an error:

FIXFORM EMP_ID/9 CURR_SAL/8 X-17

FIXFORM statements that redefine records in the buffer are especially useful in Case
Logic requests (see Case Logic Applications on page 10-145).

Modifying Data Sources With MODIFY

10-26 Information Builders

FIXFORM Transaction Field Formats
This section lists the data formats that may be specified in FIXFORM statements. In
addition to alphanumeric format, there are date (DATE), text field (TX), and conditional
text field (CTX) formats, and numeric formats of fields in HOLD and SAVB files and of
fields generated by user-written programs. The formats are

[A]n[YQMD] In[YQMD] F4 D8 Pn[.m][YQMD] DATE /TX /CTX Zn[.m]

where:

[A]n[YQMD]

Specifies an alphanumeric character string n bytes long, where n is an integer. Date
component options (YY, Y, Q, M, D) are included as necessary if it is a date field.

In[YQMD]

Specifies a binary integer n bytes long, where n is 1, 2, or 4. Date component options
(YY, Y, Q, M, D) are included as necessary if it is a date field.

F4

Specifies a 4-byte binary floating point number.

D8

Specifies an 8-byte binary double precision number.

Pn[.m][YQMD]

Specifies a packed number n bytes long with m digits after an implied decimal point.
n is an integer between 1 and 16 and m is an integer between 0 and 33. Date
component options (YY, Y, Q, M, D) are included as necessary if it is a date field.

DATE

Specifies a date field in 4-byte integer format, to be copied to the data source without
date translation or validation. Date format fields can also be read without these
restrictions by specifying alphanumeric, integer, or packed format, as described later
in this section.

 Describing Incoming Data

Maintaining Databases 10-27

/TX|/CX

Specifies a text field format for transaction and conditional transaction fields. Each
FIXFORM statement can include one of these fields which must appear as the last
field in the statement. Note that you do not specify the length when using FIXFORM
to read text fields; the length is for display purposes only (see the Describing Data
manual).
See Entering Text Data via TED on page 10-52 for general rules.

Note:

• If more than one text field exists in the Master File, you must read each one
using a separate FIXFORM statement. The text field must be the last field listed
in the FIXFORM statement.

• If the word END appears on a line by itself, FOCUS interprets it as a quit action,
stops the procedure, and discards everything entered up to that point for a
particular record.

• To end a transaction and exit MODIFY, first enter the end-of-text character (%$)
on a line by itself, then enter END on the next line.

• If data is read from an external data source, the record format must be fixed.

• If the text field is not mentioned in the FIXFORM statement, but it is present in
the Master File, the value of the text field is determined based on the setting of
the MISSING attribute. That is, if MISSING=ON, the text will be entered as a
dot (.). If MISSING=OFF, the text will be entered as a blank.

Zn[.m]

Specifies a zoned decimal number n bytes long with m digits after an implied decimal
point. n is an integer between 1 and 16 and m is an integer between 0 and 9.

For example, this FIXFORM statement

FIXFORM EMP_ID/9 HIRE_DATE/I4 CURR_SAL/D8 ED_HRS/P4.2

defines each record as the following:

• The first nine bytes as the character string EMP_ID.

• The next four bytes as the binary integer HIRE_DATE.

• The next eight bytes as the binary double precision number CURR_SAL.

• The next four bytes as the packed number ED_HRS. The last two digits of the
number follow an implied decimal point.

Modifying Data Sources With MODIFY

10-28 Information Builders

The FIXFORM statement specifies the field formats of transaction data sources, not the
data source being updated. A transaction field can modify a data source field if the
transaction field has one of the following format types (the format type is the type of field,
such as alphanumeric or floating point):

• The same format type as the data source field.

• Alphanumeric format.

• Zoned format (if the data source field is packed).

If you specify any other format type for the transaction field (for example, an integer
transaction field to modify a floating point data source field), the request may terminate
and generate an error message. To read such a transaction value into a data source field,
do the following:

1. Before the FIXFORM statement, use the COMPUTE statement to define a name for
the incoming data field that is different from the data source field (the COMPUTE
statement is discussed in Computations: COMPUTE and VALIDATE on page 10-90).
The statement also specifies the field format, showing the format type and the
number of digits in the field.

2. In the FIXFORM statement, read the incoming data field using the name you defined
in the COMPUTE statement. The field format in the FIXFORM statement shows the
field length in bytes in the transaction data source.

3. After the FIXFORM statement, use the COMPUTE statement to set a field with the
same name as the data source field equal to the value of the field you defined in step
1.

Note: If the incoming field is numeric and the data source field is alphanumeric, use
the EDIT function to do this. The EDIT function is described in the Creating Reports
manual.

The following request reads a floating point field called FLOATSAL into the data source
double-precision field CURR_SAL:

MODIFY FILE EMPLOYEE
COMPUTE FLOATSAL/F8=;
FIXFORM EMP_ID/12 FLOATSAL/F4
COMPUTE CURR_SAL = FLOATSAL;
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH UPDATE CURR_SAL

DATA ON FLOAFILE
END

Notice that the FLOATSAL field is defined with a format of F8 in the first COMPUTE
statement and a format of F4 in the FIXFORM statement. FLOATSAL is an eight-digit
field that takes up four bytes in the transaction data source.

 Describing Incoming Data

Maintaining Databases 10-29

Describing Date Fields
This section discusses using date format fields in FIXFORM statements. Alphanumeric
and integer format fields with date edit options are not discussed here; they are treated by
FIXFORM like standard alphanumeric and integer fields.

When you use a FIXFORM statement to modify a data source date field, the
corresponding data in the transaction data source can be one of the following three types:

• A numeric date literal. For example, August 17 1989 can be represented in the
transaction data source as 081789. The transaction field format can be An, In, or Pn.

• A natural date literal. For example, August 17 1989 can be represented in the
transaction data source as AUG 17 1989. The transaction field format must be An.

Note that all names of days and months in the transaction data source must be in
uppercase, even if the translation option is t or tr. All abbreviated names of days and
months in the transaction data source must consist of the first three letters of the
name. Commas cannot be included in the date.

• A date in internal FOCUS date format. This format is used for date fields in SAVB
and unformatted HOLD files. The date is stored as a 4-byte integer representing the
elapsed time since the standard FOCUS base date, as described in the Describing
Data manual. The transaction field format must be DATE.

For example, assume that you have changed the format of the HIRE_DATE field in
the EMPLOYEE Master File from I6YMD to YMDT. You then write a request that
creates a new EMPLOYEE data source. The request begins with this FIXFORM
statement:

FIXFORM EMP_ID/11 FIRST_NAME/10 LAST_NAME/10 HIRE_DATE/9

Both of these records are valid input:

444555666 DOROTHY TAILOR 860613
444555666 DOROTHY TAILOR 86 JUN 13

Modifying Data Sources With MODIFY

10-30 Information Builders

To describe date fields in FIXFORM statements, you can use the following transaction
field formats.

• DATE. This specifies a transaction field stored in FOCUS internal date format,
which is a 4-byte integer representing the time elapsed from the standard FOCUS
base date, as described in the Describing Data manual. The transaction field will be
copied directly to the data source without date validation.

For example:

FIXFORM SALEDATE/DATE

• An, In, Pn. These specify a date field stored in alphanumeric, integer, or packed
decimal format respectively. Numeric date literals and natural date literals are
translated as necessary to suit the data source field’s USAGE specification and edit
options.

For example, if a data source contains the date field NEWSDATE, and
USAGE=MDYY, the following FIXFORM statements can be used to update
NEWSDATE:

FIXFORM NEWSDATE/A8YYMD
FIXFORM NEWSDATE/A6DMY
FIXFORM NEWSDATE/I4MDY
FIXFORM NEWSDATE/I2YMD
FIXFORM NEWSDATE/P3DMY
FIXFORM NEWSDATE/A8

Note that the last FIXFORM statement does not specify any date components.
Because it is alphanumeric and has the same length specified by the data source
field’s USAGE attribute, it defaults to the USAGE format (which in this case is
MDYY).

For all date transaction field formats, the date components (year, quarter, month, day) do
not need to be in the order specified in the USAGE attribute in the Master File; they can
be in any order.

Note, however, that you cannot extract date components from a date field (for example,
you cannot write a YMD transaction field to a YM data source field), and you cannot
convert one component to another (for example, you cannot convert a YM transaction
field to a YQ data source field). The only exceptions are the YY and Y date components,
which can be substituted for each other.

 Describing Incoming Data

Maintaining Databases 10-31

Describing Repeating Groups
You may use a fixed-format transaction record to modify multiple segment instances. The
set of transaction fields that modify the instances is called a repeating group because the
fields repeat for each instance. Instead of explicitly specifying each field, you specify the
repeating group once with a multiplying factor in front.

The syntax is

FIXFORM factor (group)

where:

factor

Is the number of times that the group repeats.

group

Is the repeating group consisting of a list of fields and formats.

For example, assume you design a request which records the last 12 months of
employees’ monthly pay in the EMPLOYEE data source. Each transaction record
contains the employee’s ID and 12 pairs of fields: the first field in each pair is the pay
date, the second is the monthly pay (GROSS). The request is:

MODIFY FILE EMPLOYEE
FIXFORM EMP_ID/9 X1 12 (PAY_DATE/6 GROSS/7)
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH CONTINUE

MATCH PAY_DATE
ON MATCH REJECT
ON NOMATCH INCLUDE

DATA ON EMPGROSS
END

Each incoming record that the request reads contains one EMP_ID field and 12 groups of
fields, each group consisting of a pay date field and a monthly pay field. The request
reads a record, then splits the record into 12 smaller logical records, each consisting of
the employee ID of the original record and one group. FOCUS then executes the request
for each logical record, processing each group separately.

You may specify more than one group in a FIXFORM statement, but they cannot be
nested.

Note: To process repeating groups in a Case Logic request, place each repeating group in
a FIXFORM statement in a separate case. The case should include the following:

• A counter that counts the group being processed.

• An IF statement that branches out of the case after all the groups are processed.

• GOTO phrases that branch back to the beginning of the case after each group is
processed.

Modifying Data Sources With MODIFY

10-32 Information Builders

The following request adds and updates information on employees’ monthly pay. Note the
ON INVALID phrase that branches back to the beginning of the case if a monthly pay
entry is greater than $2500. The request is:

MODIFY FILE EMPLOYEE
COMPUTE

COUNTER/I3 = 0;
FIXFORM EMP_ID/9
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH GOTO NEWPAY

GOTO NEWPAY

CASE NEWPAY
COMPUTE

COUNTER/I1 = COUNTER + 1;
IF COUNTER GT 3 GOTO TOP;
FIXFORM 3 (PAY_DATE/6 GROSS/7)
VALIDATE

PAYTEST = IF GROSS GT 2500 THEN 0 ELSE 1;
ON INVALID GOTO NEWPAY

MATCH PAY_DATE
ON NOMATCH INCLUDE
ON NOMATCH GOTO NEWPAY
ON MATCH UPDATE GROSS
ON MATCH GOTO NEWPAY

ENDCASE
DATA ON PAYFILE
END

Conditional Fields
MODIFY requests can process records in which alphanumeric field values may be present
in one input record but absent in another. Such fields are called conditional fields. When
the value of a conditional field is blank, the request does not use the field to modify the
data source and the field remains inactive (active and inactive fields are discussed in
Active and Inactive Fields on page 10-198).

To indicate to FOCUS that a field is conditional, precede the field format with the letter
C. For example:

FIXFORM FIRST_NAME/C10 LAST_NAME/C15

Another example: You design a MODIFY request that updates employees’ departments
and job codes. If an employee’s department or job code has not changed, the
corresponding field in the transaction data source is blank.

 Describing Incoming Data

Maintaining Databases 10-33

The request is:

MODIFY FILE EMPLOYEE
FIXFORM EMP_ID/9 X1 DEPARTMENT/C10 X1 CURR_JOBCODE/C3
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH UPDATE DEPARTMENT CURR_JOBCODE

DATA
071382660 SALES B13
112847612 A08
117593129 MARKETING
END

The request contains three incoming records after the DATA statement:

• The first incoming record contains all three fields. The request updates both the
DEPARTMENT and CURR_JOBCODE fields.

• The next record has the EMP_ID and CURR_JOBCODE fields but no
DEPARTMENT field. The request updates the employee’s CURR_JOBCODE value
in the data source, but leaves the DEPARTMENT value the same.

• The last record has the EMP_ID and DEPARTMENT fields but no
CURR_JOBCODE field. The request updates the employee’s DEPARTMENT value
in the data source, but leaves the CURR_JOBCODE value the same.

If you did not describe the DEPARTMENT and CURR_JOBCODE fields as conditional,
the request would change an employee’s department or job code to blank whenever these
fields in the incoming records were blank.

If you are adding segment instances, and several fields are conditional, values that are
blank go into the new instances as:

• Blank, if the instance fields are alphanumeric.

• Zero, if the instance fields are numeric.

• The MISSING symbol, if the fields are described with the MISSING=ON attribute in
the Master File (see the Describing Data manual).

Modifying Data Sources With MODIFY

10-34 Information Builders

FIXFORM Phrases in MATCH and NEXT Statements
You may use FIXFORM statements as phrases in MATCH and NEXT statements. These
phrases are useful if you want to selectively read records only if a particular segment
instance exists in the data source (or confirmed not to be in the data source).

For example, you design a MODIFY request that adds records of employees’ monthly pay
to the data source:

MODIFY FILE EMPLOYEE
FIXFORM EMP_ID/9 X1 PAY_DATE/6
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH CONTINUE

MATCH PAY_DATE
ON MATCH REJECT
ON NOMATCH FIXFORM ON MONTHPAY GROSS/7
ON NOMATCH INCLUDE

DATA ON EMPPAY
END

The data is kept in two transaction data sources: EMPPAY and MONTHPAY. The
EMPPAY data source contains the employee IDs and the date each employee was paid.
The MONTHPAY data source contains the amount each employee was paid (GROSS).
The request must confirm for every EMPPAY transaction that:

• The employee ID is recorded in the data source. This is confirmed by the MATCH
EMP_ID statement.

• The date the employee was paid has not yet been recorded in the data source. This is
confirmed by the MATCH PAY_DATE statement.

Once the request has confirmed this, it can read the monthly pay from the MONTHPAY
data source

ON NOMATCH FIXFORM ON MONTHPAY GROSS/7

and record it in the data source:

ON NOMATCH INCLUDE

 Describing Incoming Data

Maintaining Databases 10-35

Reading in Comma-delimited Data: The FREEFORM Statement
The FREEFORM statement reads comma-delimited data—where field values in each
record are separated by commas and records are terminated by comma-dollar signs (,$).
The data may be stored in the request itself or in separate sequential data sources.

If the MODIFY request does not provide a statement reading transactions (FIXFORM,
FREEFORM, PROMPT, or CRTFORM), FREEFORM is the default.

The following request updates employee salaries by reading employee IDs and new
salaries from comma-delimited records. The records follow the DATA statement:

MODIFY FILE EMPLOYEE
FREEFORM EMP_ID CURR_SAL
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH UPDATE CURR_SAL

DATA
EMP_ID=071382660, CURR_SAL=21400.50, $
EMP_ID=112847612, CURR_SAL=20350.00, $
EMP_ID=117593129, CURR_SAL=22600.34, $
END

FREEFORM Statement Syntax
The syntax of the FREEFORM statement is

FREEFORM [ON ddname] [field-1 field-2 ... field-n]

where:

ON ddname

Is an option that specifies the ddname of the transaction data source containing the
incoming data. Use this option only when the DATA statement does not specify a
ddname or specifies a ddname of a different data source.

field-1 ...

Are the names of the fields in the order that they appear in the record.
Note: FREEFORM follows the same rules as FIXFORM when dealing with TEXT
fields. For more information see Reading Fixed-Format Data: The FIXFORM
Statement on page 10-20.

If the order of fields is specified in the data, you do not need it in the syntax and if the
order of fields is specified in the syntax, you do not need it in the data.

Modifying Data Sources With MODIFY

10-36 Information Builders

The list of fields must fit on one line. If the list is too long for a single line, use a
FREEFORM statement for each line. For example:

FREEFORM EMP_ID LAST_NAME FIRST_NAME
FREEFORM DEPARTMENT CURR_SAL

These two FREEFORM statements act as one statement and read one record into the
buffer.

Each time a FREEFORM statement is executed, it reads one record up to the
comma-dollar sign (,$). It does not read beyond that. If the FREEFORM command is
used with incoming data having embedded commas, the data must be enclosed in single
quotation marks in the input data source.

If a MODIFY request has a FREEFORM statement, the statement must specify all the
fields in the transaction data source. If the transaction data source has fields not specified
in the FREEFORM statement, the request terminates and generates an error message.

If you do not include a transaction statement in your MODIFY request, the request
assumes the default FREEFORM and expects to read comma-delimited data. The request
reads one record every time it executes the first statement in the request. Nevertheless, it
is recommended that you include a FREEFORM statement to make clear that the request
is reading comma-delimited data, to show when the request reads the data, and to allow
greater flexibility in entering data into comma-delimited data sources.

If the Master File lists a date format with a translation option (see the Describing Data
manual), you can type the date values in the transaction data source as they appear in
reports generated by TABLE requests (but do not type the commas in the dates). Note the
following conditions:

• The date format must have had the translation option before the FOCUS data source
was created.

• All names of months must be in uppercase, even if the translation option is t or tr.

For example, assume you change the format of the HIRE_DATE field in the EMPLOYEE
Master File from I6YMD to YMDT. You then write a request that creates a new
EMPLOYEE data source. The request begins with this FREEFORM statement:

FREEFORM EMP_ID FIRST_NAME LAST_NAME HIRE_DATE/9

Both these records are valid input:

444555666, DOROTHY, TAILOR, 860613, $
444555666, DOROTHY, TAILOR, 86 JUN 13, $

 Describing Incoming Data

Maintaining Databases 10-37

Identifying Values in a Comma-delimited Data Source
This section discusses how MODIFY requests identify the values in comma-delimited
data sources and determine what fields they belong to. (For more information on
comma-delimited data sources, see the Describing Data manual.) There are two types of
values in comma-delimited data sources:

• Identified values are identified explicitly in the data source.

• Positional values exist by themselves without any identification.

Identified values have the form

identifier = value

where identifier identifies the field to which the value belongs.

Identifiers can be one of three types:

• Field names or unique truncations of field names. For example:

DEPARTMENT=SALES, CURR_SAL=25000, $

• Aliases. For example:

DPT=SALES, CSAL=25000, $

If the request has a FREEFORM statement, the statement must specify all identified
fields. However, the request identifies the values by their identifiers, not by the order of
field names in the FREEFORM list.

Positional values exist by themselves without any identification in the data source. For
example:

SALES, 25000, $

The MODIFY request identifies positional values by the order of field names specified in
the FREEFORM statement list. If a record consists only of positional values, the request
assigns the first field name in the list to the first value, the second field name in the list to
the second value, and so on. For example, if a request has the statement:

FREEFORM EMP_ID DEPARTMENT CURR_SAL

Then the record

071382660, SALES, 25000, $

is interpreted this way:

EMP_ID: 071382660
DEPARTMENT: SALES
CURR_SAL: 25000

Modifying Data Sources With MODIFY

10-38 Information Builders

If a record has both identified and positional values, the MODIFY request identifies the
positional values in the following way: it notes the last explicitly identified value to
precede the positional values in the record. It then identifies the positional values by the
order of field names that follow the name of the explicitly identified field in the
FREEFORM list.

For example, a MODIFY request has this FREEFORM statement:

FREEFORM EMP_ID FIRST_NAME LAST_NAME CURR_SAL

The transaction data source contains this record:

FIRST_NAME=DAVID, MCHENRY, 21300.45, $

The first value, DAVID, is explicitly identified as the FIRST_NAME field. The request
identifies the next value, MCHENRY, as the LAST_NAME field because LAST_NAME
follows FIRST_NAME on the FREEFORM list. Similarly, the request identifies
21300.45 as the CURR_SAL field. The EMP_ID field retains the value it was last given.

If the MODIFY request has no FREEFORM statement, it identifies positional values by
the order of field names declared in the Master File. If a record consists of only positional
values, the request assigns the first field name in the Master File to the first value, the
second field name to the second value, and so on. For example, a transaction data source
contains this record:

071382660, MCHENRY, DAVID, $

The request identifies the first value, 071382660, as the EMP_ID field because EMP_ID
is the first field in the Master File. The next value, MCHENRY, is the LAST_NAME
field (the second field in the Master File). DAVID becomes the FIRST_NAME field, the
third field in the Master File (the EMPLOYEE Master File is shown in Appendix A,
Master Files and Diagrams).

If a record has both identified values and positional values, the MODIFY request
identifies the positional values the following way: it notes the last explicitly identified
value to precede the positional values in the record. It then identifies the positional values
by the order of field names that follow the name of the explicitly identified field in the
Master File. For example, the transaction data source contains this record:

FIRST_NAME=DAVID, 820406, PRODUCTION, $

The first value, DAVID, is explicitly identified as the FIRST_NAME field. The request
identifies the next value, 820406, as the HIRE_DATE field because HIRE_DATE
follows FIRST_NAME in the Master File. Similarly, the request identifies
PRODUCTION as the DEPARTMENT field.

 Describing Incoming Data

Maintaining Databases 10-39

Missing Values in Comma-delimited Data Sources
If a field value is missing for a particular record, you must explicitly identify the name of
the next field in the record. For instance, a FREEFORM statement specifies the
following:

FREEFORM EMP_ID CURR_SAL DEPARTMENT

One record lacks a CURR_SAL value. Type the record this way

071382660, DEPARTMENT=PRODUCTION, $

where 071382660 is an EMP_ID value. The CURR_SAL field remains inactive and will
not change any CURR_SAL values in the data source.

If you are adding segment instances to the data source, the instance fields not receiving a
value become:

• Blank, if the instance fields are alphanumeric.

• Zero, if the instance fields are numeric.

• The MISSING symbol, if the fields are described with the MISSING=ON attribute in
the Master File (see the Describing Data manual).

An important exception: If you omit fields from the beginning of a record, the fields
retain the values last assigned to them from a previous record. For example, a transaction
data source contains these two records:

EMP_ID=071382660, PAY_DATE=820831, GROSS=1045.60, $
PAY_DATE=820831, GROSS=1047.20, $

The second record is lacking an EMP_ID value. Nevertheless, since EMP_ID is at the
beginning of the record, it retains its value of 071382660 for the second record and
remains active.

If you use double commas to mark an absent value, the value becomes a blank character
string if alphanumeric and zero if numeric. Note that the request can use this value to
modify the data source. For example, in the record

071382660,, PRODUCTION, $

the two commas mark the position of the absent CURR_SAL field. The CURR_SAL field
becomes active and can change an employee salary to $0.00.

Modifying Data Sources With MODIFY

10-40 Information Builders

FREEFORM Phrases in MATCH and NEXT Statements
You may use FREEFORM statements as phrases in MATCH and NEXT statements.
These phrases are useful if you want to selectively read records if a particular segment
instance exists in the data source (or is confirmed not to be in the data source).

For example, the following MODIFY request adds records of employees’ monthly pay to
the data source:

MODIFY FILE EMPLOYEE
FREEFORM EMP_ID PAY_DATE
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH CONTINUE

MATCH PAY_DATE
ON MATCH REJECT
ON NOMATCH FREEFORM ON MONTHPAY GROSS
ON NOMATCH INCLUDE

DATA ON EMPPAY
END

The data is kept in two transaction data sources: EMPPAY and MONTHPAY. The
EMPPAY data source contains the employee IDs and the date each employee was paid.
The MONTHPAY data source contains the amount each employee was paid (GROSS).
The request must confirm for every EMPPAY transaction that:

• The employee ID is recorded in the data source. This is confirmed by the MATCH
EMP_ID statement.

• The date the employee was paid has not yet been recorded in the data source. This is
confirmed by the MATCH PAY_DATE statement.

Once the request has confirmed this, it can read the monthly pay from the MONTHPAY
data source

ON NOMATCH FREEFORM ON MONTHPAY GROSS

and record it in the data source:

ON NOMATCH INCLUDE

 Describing Incoming Data

Maintaining Databases 10-41

Prompting for Data One Field at a Time: The PROMPT Statement
The PROMPT statement prompts the user on a terminal for incoming data one field at a
time. Use this statement for requests that may be run on line terminals or by users having
no access to the FIDEL facility. If the requests will be run exclusively by users on
full-screen terminals with access to FIDEL, use the CRTFORM statement instead. The
FIDEL facility and the CRTFORM statement are the subjects of Chapter 11, Designing
Screens With FIDEL.

Syntax PROMPT Statement
The syntax of the PROMPT statement is

PROMPT {field-1[.text.] field-2[.text.] ... field-n[.text.]|*}

where:

field-1 ...

Are the names of the fields you are prompting for. An asterisk * instead of field
names prompts for all fields described in the Master File in the order that they are
declared.
The list of fields must fit on one line. If the list is too long to fit on one line, use a
PROMPT statement for each line. For example:

PROMPT EMP_ID LAST_NAME FIRST_NAME
PROMPT DEPARTMENT CURR_SAL

Each field in the Master File with a text field format must appear in a separate
PROMPT statement as the last field in the statement. When prompted for text, note
that the length of the text entry is limited only by the amount of virtual storage space.
The last line of text data that you enter must be followed by the end-of-text mark
(%$) on a line by itself. For additional guidelines regarding fields with a text field
format, see Entering Text Data via TED on page 10-52.

text

Is optional prompting text, up to 38 characters per field.

Do not place an END statement at the end of the request. Conclude the request with the
DATA statement.

The following request updates information about employees’ department assignments,
salaries, and job codes:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID DEPARTMENT CURR_SAL CURR_JOBCODE
MATCH EMP_ID

ON MATCH UPDATE DEPARTMENT CURR_SAL CURR_JOBCODE
ON NOMATCH REJECT

DATA

Modifying Data Sources With MODIFY

10-42 Information Builders

When you execute the command, the following appears on your screen

> EMPLOYEE ON 06/19/98 AT 14.38.27
DATA FOR TRANSACTION 1

EMP_ID= >

where:

EMPLOYEE

Is the system name of the data source (in this case, the TSO name).

ON 06/19/98 AT 14.38.27

Is the date and time that FOCUS opened the data source: June 19, 1998 at 2:38:27
p.m.

DATA FOR TRANSACTION 1

Notifies the user that the request is prompting for the first transaction. Each cycle of
prompts constitutes one transaction. When the next transaction begins, the request
prompts again for the first field in the cycle. In this request, the EMP_ID,
DEPARTMENT, CURR_SAL, and CURR_JOBCODE prompts constitute one
transaction. When the next transaction begins, the request prompts for the EMP_ID
field again.

EMP_ID = >

Is the default prompt for the EMP_ID field (the field name).

As each prompt appears, enter the value for the field requested. When you finish entering
values, end execution by entering End or Quit at any prompt. The following is a sample
execution of the request shown above (user input is shown in lowercase; computer
responses are in uppercase):

> EMPLOYEE ON 06/19/98 AT 14.38.27
DATA FOR TRANSACTION 1

EMP_ID = > 071382660
DEPARTMENT = > mis
CURR_SAL = > 22500.35
CURR_JOBCODE = > b12
DATA FOR TRANSACTION 2

EMP_ID = > end
TRANSACTIONS: TOTAL= 1 ACCEPTED= 1 REJECTED= 0
SEGMENTS: INPUT= 0 UPDATED= 1 DELETED= 0

 Describing Incoming Data

Maintaining Databases 10-43

When you design a request that prompts for fields and validates them, we recommend that
you validate the field values after every prompt. This saves extra typing if one of the field
values proves invalid. Validation tests are discussed in Validating Transaction Values:
The VALIDATE Statement on page 10-97.

If the Master File lists a date format with a translation option (see the Describing Data
manual), you may type the date as it appears in reports generated by TABLE requests (but
do not type the commas in the dates). Note that the date format must have had the
translation option before the FOCUS data source was created.

For example, assume you change the format of the HIRE_DATE field in the EMPLOYEE
Master File from I6YMD to YMDT. You then write a request that creates a new
EMPLOYEE data source. The request begins with this FIXFORM statement:

PROMPT EMP_ID FIRST_NAME LAST_NAME HIRE_DATE

When you execute the request, a sample transaction might appear like this:

DATA FOR TRANSACTION 2

EMP_ID = > 444555666
FIRST_NAME = > dorothy
LAST_NAME = > tailor
HIRE_DATE (YMDT) = > 98 jun 13

Note that you can also respond to the HIRE_DATE prompt with the value 980613.

Prompting for Repeating Groups
You may prompt for the same group of fields repeatedly. This is convenient when you
want to modify a child segment chain. You prompt once for the key field of the parent
instance and prompt repeatedly for the values of the child instances. Without repeating
groups, you must prompt for the key field of the parent instance each time you prompt for
a child instance.

For example, a MODIFY request updates employees’ monthly pay. It first prompts for an
employee ID, then for 12 pairs of fields: the first field in each pair is a pay date, the
second field is the updated pay. The pay date and updated pay fields are a repeating
group.

To specify a repeating group, use the following syntax

PROMPT factor (group)

where:

factor

Is the number of times the group repeats.

group

Is the repeating group of fields.

Modifying Data Sources With MODIFY

10-44 Information Builders

Note that the transaction counter that appears during prompting counts each repeating
group cycle of prompts as one transaction.

For example, the following request adds three instances of monthly pay (GROSS) for
each employee:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID 3 (PAY_DATE GROSS)
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH CONTINUE

MATCH PAY_DATE
ON MATCH REJECT
ON NOMATCH INCLUDE

DATA

This request prompts you for an employee ID, then a pay date, a monthly pay, a pay date,
a monthly pay, and so on until it prompts you for three pay dates and three monthly pays.
It then prompts you for the next employee ID.

The following is a sample execution of the previous request:

> EMPLOYEE ON 09/19/98 AT 15.01.38
DATA FOR TRANSACTION 1

EMP_ID = > 071382660
PAY_DATE = > 860131
GROSS = > 1360.50
DATA FOR TRANSACTION 2

PAY_DATE = > 860228
GROSS = > 1360.85
DATA FOR TRANSACTION 3

PAY_DATE = > 860331
GROSS = > 1360.50
DATA FOR TRANSACTION 4

EMP_ID = >

You can place multiple repeating groups in the same statement. This PROMPT statement
contains two repeating groups:

PROMPT EMP_ID 3 (PAY_DATE GROSS) 2 (DAT_INC SALARY)

The statement prompts for:

1. An employee ID.

2. A pay date and a monthly pay, three times.

3. A salary raise date (DAT_INC) and a new salary, two times.

4. The next employee ID.

 Describing Incoming Data

Maintaining Databases 10-45

You can nest repeating groups. For example, this prompt statement

PROMPT EMP_ID 6 (PAY_DATE 7 (DED_CODE DED_AMT))

prompts for:

1. An employee ID.

2. A pay date.

3. A deduction code and deduction amount, seven times.

4. Steps 2 and 3 repeat for a total of six times.

5. The next employee ID.

Prompting Text
When you execute a request containing PROMPT statements, the request prompts you for
each field by displaying the field name and an equal sign (=). However, you may specify
your own prompt. The syntax is

PROMPT fieldname.text.

where:

fieldname

Is the name of the field you are prompting for.

text

Is the text you want to appear as the prompt, up to 38 characters. Text must be
enclosed within periods.

Note the following rules regarding prompt text:

• The text must be delimited by a period (.) on either side, with no space between the
field name and the first period.

• The text cannot contain apostrophes or single quotation marks (').

• The text must be typed on one line.

• A single MODIFY request can contain up to 4000 characters of prompt text.

Modifying Data Sources With MODIFY

10-46 Information Builders

This request adds new employees to the EMPLOYEE data source:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID.ENTER THE EMPLOYEE ID NUMBER:.
PROMPT FIRST_NAME.ENTER FIRST NAME:.
PROMPT LAST_NAME.ENTER LAST NAME:.
PROMPT HIRE_DATE.WHAT DATE WAS EMPLOYEE HIRED?.
PROMPT CURR_SAL.WHAT IS THE STARTING SALARY?.

MATCH EMP_ID
ON MATCH REJECT
ON NOMATCH INCLUDE

DATA

Special Responses
This section discusses special responses to prompts. It covers:

• Canceling a transaction.

• Ending execution.

• Correcting a field value.

• Typing ahead.

• Repeating the last response.

• Entering no data.

• Breaking out of repeating groups.

Canceling a Transaction
To cancel a transaction, enter a dollar sign $ after any prompt. The request displays the
following message

(FOC309) TRANSACTION INCOMPLETE:

and will prompt you for the next transaction. Canceling a transaction clears the buffer of
data and causes the PROMPT statement to re-prompt you for the fields, allowing you to
clear a bad transaction and start over.

Ending Execution
To end execution of the request, enter either Quit or End after any prompt. The request
displays the execution statistics and returns you to the FOCUS command level. The data
source will be updated to the last completed transaction.

 Describing Incoming Data

Maintaining Databases 10-47

Correcting Field Values
If you entered an incorrect field value, you can correct it at the next prompt. Type the
value for the next prompt, but do not press Enter. Instead, type a comma and then type

fieldname = corrected-value

where fieldname is the field name of the corrected value. Then press Enter. Note that
fieldname must be separated from the previous value by a comma.

The example below shows a user correcting a DEPARTMENT value after the
CURR_JOBCODE prompt.

> DATA FOR TRANSACTION 1

EMP_ID = > 071382660
DEPARTMENT = > production
CURR_SAL = > 19350.67
CURR_JOBCODE = > a03, department=sales
DATA FOR TRANSACTION 2

EMP_ID = >

Note: If you enter an incorrect field value at the last prompt of a transaction, you cannot
correct the value in that transaction.

Typing Ahead
You can enter several values at one prompt by typing ahead. Enter

value-1, value-2, ... value-n

where:

value-1

Is the value of the field being prompted for.

value-2 ...

Are the values of fields not yet prompted for by the PROMPT statement. The values
must be in the order of fields specified by the PROMPT statement, from the field
being prompted for onwards. Separate the values with commas.

For example, a MODIFY request has this PROMPT statement:

PROMPT EMP_ID DEPARTMENT CURR_SAL CURR_JOBCODE

When you execute the request, you enter an employee ID, a department, salary, and job
code at the EMP_ID prompt, as shown below.

> DATA FOR TRANSACTION 1

EMP_ID = > 071382660, sales, 23800, b04
DATA FOR TRANSACTION 2

EMP_ID = >

Modifying Data Sources With MODIFY

10-48 Information Builders

Repeating a Previous Response
If you are going to respond to a prompt with the same value as the previous prompt, you
may enter a double quotation mark (“) instead to save typing.

Entering No Data
If you execute a request which prompts you for a field that should not contain data, enter
a period (.) after the prompt. The field becomes inactive and does not change any values
in the data source.

If you are adding segments to the data source, the field in the new instance becomes:

• Blank, if the instance field is alphanumeric.

• Zero, if the instance field is numeric.

• The MISSING symbol, if the field is described with the MISSING=ON attribute in
the Master File (see the Describing Data manual).

Breaking Out of Repeating Groups
To break out of a repeating group, enter an exclamation point (!) after any prompt. The
request will immediately prompt you for the first field outside the repeating group.

For example, you execute this request:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID 3 (PAY_DATE GROSS)

MATCH EMP_ID
ON NOMATCH REJECT
ON MATCH CONTINUE

MATCH PAY_DATE
ON MATCH REJECT
ON NOMATCH INCLUDE

DATA

Every time you enter an employee ID, the request prompts you for a pay date and a
monthly pay (GROSS) three times. If you enter an exclamation point at one of these
prompts, the request prompts you for the next employee ID.

Each cycle of prompts within a repeating group counts as one transaction. The repeating
group data you entered before the transaction where you broke out remains active and
modifies the data source.

If you break out of one repeating group nested in another repeating group, the request
next prompts you for the fields of the outer group. For example, a request contains this
PROMPT statement:

PROMPT EMP_ID 6 (PAY_DATE 7 (DED_CODE DED_AMT))

 Describing Incoming Data

Maintaining Databases 10-49

You execute the request. If you enter an exclamation point at a DED_CODE or
DED_AMT prompt, the request next prompts you for the next PAY_DATE value.

PROMPT Phrases in MATCH and NEXT Statements
You can use PROMPT statements as phrases in MATCH or NEXT statements. By doing
so, you avoid prompting the user for data that will be rejected anyway. The following
examples illustrate the differences.

Consider the following request:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID CURR_SAL

MATCH EMP_ID
ON MATCH UPDATE CURR_SAL
ON NOMATCH REJECT

DATA

This request prompts the user for the EMP_ID and CURR_SAL fields. The MATCH
statement searches the data source for the EMP_ID value the user enters (MATCH
EMP_ID). If it finds the value, it updates the CURR_SAL value; otherwise it rejects the
transaction. The user must enter both an EMP_ID and a CURR_SAL value every
transaction, whether the transaction is accepted or not.

However, when the request prompts for the CURR_SAL value in the MATCH statement,
the user enters a CURR_SAL value only if the corresponding EMP_ID value is in the
data source. This request shows how this is done:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID

MATCH EMP_ID
ON MATCH PROMPT CURR_SAL
ON MATCH UPDATE CURR_SAL
ON NOMATCH REJECT

DATA

The request prompts you for an EMP_ID value. It then searches the data source for the ID
you entered. If it does not find it, it rejects the ID and prompts you for another ID. Only if
it finds the ID in the data source does it prompt you for a CURR_SAL value.

Modifying Data Sources With MODIFY

10-50 Information Builders

Using PROMPT and FREEFORM Statements in One Request
You may use PROMPT and FREEFORM statements together in one request. This feature
is useful when key field values are difficult to read and type, such as large numbers or
complex codes. For example, a request might read employee ID numbers from a
comma-delimited data source, use those IDs to locate segment instances, and then prompt
the user for the data to update the employee information.

To use FREEFORM and PROMPT together, follow these rules:

• Place all FREEFORM statements before the PROMPT statements.

• Place the data in a separate data source. Specify the data source with the ON ddname
option.

• Do not end the comma-delimited records with dollar signs ($).

Note that when you use FREEFORM together with PROMPT, the transaction counter
does not appear before the prompts.

This request updates employee salaries:

MODIFY FILE EMPLOYEE
FREEFORM ON EMPNO EMP_ID

MATCH EMP_ID
ON NOMATCH REJECT
ON MATCH TYPE "ENTER SALARY FOR EMPLOYEE #<EMP_ID"
ON MATCH PROMPT CURR_SAL
ON MATCH UPDATE CURR_SAL

DATA

Note the TYPE phrase in the MATCH statement that informs the user what employee ID
the request is processing. The TYPE statement is described in Displaying Specific
Messages: The TYPE Statement on page 10-115.

 Describing Incoming Data

Maintaining Databases 10-51

Invoking the FIDEL Facility: The CRTFORM Statement
This section is a brief description of the CRTFORM statement, which is discussed fully in
Chapter 11, Designing Screens With FIDEL.

The CRTFORM statement invokes the FIDEL facility, which generates a formatted
screen. You type the transaction values in the designated areas of the screen and press
Enter.

To use the FIDEL facility, you must be on a full-screen terminal running FOCUS in
interactive mode, not batch. Note that FIDEL is separate from the MODIFY facility, so
your installation may have MODIFY but not FIDEL. Consult your systems manager or
database administrator.

Beneath the CRTFORM statement, you specify the layout of the screen. Enclose each line
of the screen in double quotation marks. On each line, you can type free text instructing
the user and designate data entry areas where the user enters data for specific fields.

You may also display messages to the user in the TYPE area of the CRTFORM using the
HELPMESSAGE attribute (see Displaying Messages: Setting PF Keys to HELP on page
10-130 and in the Describing Data manual).

The following request updates employees’ department assignments, salaries, job codes,
and classroom hours:

MODIFY FILE EMPLOYEE
CRTFORM
" ***** EMPLOYEE INFORMATION UPDATE *****"
" "
"ENTER EMPLOYEE'S ID: <EMP_ID"
"ENTER EMPLOYEE'S DEPARTMENT: <DEPARTMENT"
"ENTER CURRENT SALARY: <CURR_SAL"
"ENTER JOB CODE: <CURR_JOBCODE"
"ENTER CLASS HOURS: <ED_HRS"

MATCH EMP_ID
ON NOMATCH REJECT
ON MATCH UPDATE DEPARTMENT CURR_SAL
ON MATCH UPDATE CURR_JOBCODE ED_HRS

DATA VIA FI3270
END

A request may have up to 255 CRTFORM statements and may also have one FIXFORM
statement preceding the CRTFORM statements. You may place CRTFORM phrases in
MATCH and NEXT statements.

Modifying Data Sources With MODIFY

10-52 Information Builders

The FIDEL facility has several features that enhance its usability:

• Turnaround fields display field values as they exist in the data source, which you can
then change.

• Display fields display field values which you cannot change. You can use these fields
to design CRTFORM screens for data source inquiry.

• Screen attributes display different parts of the screen in different colors, highlighted,
underlined, or flashing.

• Multiple-record processing allows you to modify several segment instances on one
screen.

Please refer to Chapter 11, Designing Screens With FIDEL, to learn how to use FIDEL.

Entering Text Data via TED
While in MODIFY, TED can be used to enter text field data. When TED is used to enter
text, a new temporary file is opened in memory for data input; this file is never written to
disk permanently. The name of this file is the same as the name of the text field. The file
type in CMS and the ddname in TSO for the text field will be TXTFLD. For example

DESCRPT TXTFLD

is the file name and file type of the file opened for the text field DESCRIPT.

All TED rules and functions apply, including the ability to edit other files. The RUN
function in TED is ignored for text fields and is treated as the FILE command instead.

There are six ways to use the syntax for entering text format data via TED:

TED textfield
ON MATCH TED textfield
ON NOMATCH TED textfield
ON MATCH/NOMATCH TED textfield
ON NEXT TED textfield
ON NONEXT TED textfield

For example:

MODIFY FILE COURSES
PROMPT COURSE_CODE
MATCH COURSE_CODE

ON NOMATCH TED DESCRIPTION
ON NOMATCH INCLUDE
ON MATCH TED DESCRIPTION
ON MATCH UPDATE DESCRIPTION

DATA

TED will always edit the most recent version of the text field. The first time, this will be
the current data source text field value; the next time that TED is used on the same text
field, data from the previous text transaction will be available for editing.

 Describing Incoming Data

Maintaining Databases 10-53

As a rule, TED will always look for text data in the transaction area first. If no text exists
there, TED looks for text present as a result of MATCH. If there is no data there, TED
assumes that the field is new and brings up a new (empty) file.

After one transaction involving TED is complete, data areas are blanked out before
proceeding with the next transactions (as when DEACTIVATE is used). This means that
all text instances will be newly created. (For example, one course description will not
carry over and accidentally be used for the next course number.)

Text fields must always end with the end-of-text mark (%$). Although you may enter this
mark directly in the TED file as the first two characters on the last line, TED will test for
the presence of the end-of-text mark; if it is missing, TED automatically inserts it.

Note: You must supply the end-of-text mark when using PROMPT or FIXFORM.

If you wish to use TED to input data for more than one text field, specify a separate action
for each field:

ON MATCH TED TXFIELD1
ON MATCH TED TXFIELD2

The size of the file is limited only by the amount of available storage space.

Entering Text Field Data
The following rules apply to text field data entry using TED, FIXFORM, FREEFORM, or
PROMPT:

• You can begin entering text data at any position on a line.

• Leading blanks on a line are preserved.

A line will be treated as the start of a new paragraph if it starts with three or more
blanks. To prevent the concatenation of lines when a text field is displayed, insert at
least three blanks at the beginning of each line.

• Blank lines are permitted.

Modifying Data Sources With MODIFY

10-54 Information Builders

Preserving Compatibility of Text Fields via TED
You can use the SET TEXTFIELD command to preserve downward compatibility of text
fields with prior FOCUS releases. The syntax is

SET TEXTFIELD = {OLD|NEW}

where:

OLD

Allows you to use text field data in prior releases of FOCUS when that data has been
created or modified in Release 7.0. OLD is the default.

NEW

Disables the ability to use text field data in prior FOCUS releases when that data has
been created or modified in Release 7.0.

In addition, FOCUS can preserve text fields exactly as entered into the data source via
ON MATCH/NOMATCH TED.

Defining a Text Field
The syntax for defining a text field in a Master File is:

FIELD=fieldname, ALIAS=aliasname, FORMAT=TXnn,$

or

FIELD=fieldname, ALIAS=aliasname,FORMAT=TXnnF,$

where:

fieldname

Is the name you assign the text field.

aliasname

Is an alternate name for the field name.

nn

Is the output display length in TABLE for the text field.

F

Is used to format the text field for redisplay when TED is called via ON MATCH or
ON NOMATCH. When F is specified, the text field is formatted as TX80 and is
displayed. When F is not specified, the field is redisplayed exactly as entered.

 Describing Incoming Data

Maintaining Databases 10-55

Displaying Text Fields
FOCUS includes a format option in the text field of the Master File. Use of this
determines whether text will display in the format in which it was entered.

For example, below is a Master File and the sample data that was entered into the field
TXTFLD via TED.

FILE=TEXT,SUFFIX=FOC
SEGNAME=SEGA,SEGTYPE=S1
FIELD=KEYFLD,,A1,$
FIELD=TXTFLD,,TX20,$

Sample data entered:

THIS IS A TEST OF THE NEW TED OPTION 'F'. REMEMBER THAT TED DISPLAYS 80
CHARACTERS ON THE SCREEN. THREE LEADING BLANKS ARE USED TO INDICATE A NEW
PARAGRAPH. TEXT FIELD DATA IS ALWAYS STORED EXACTLY AS ENTERED. WHEN F IS
INCLUDED IN THE FORMAT AND THE TEXT FIELD IS REDISPLAYED, BLANKS ARE
OMITTED AND THE FIELD IS CONDENSED.
WHEN F IS NOT INCLUDED, THE FIELD IS REDISPLAYED AS ENTERED.

Since the text field in the Master File does not include the F option, the data will be
redisplayed exactly as entered via TED (ON MATCH TED TXTFLD).

For the next example, the text field includes the F option:

FILE=TEXT,SUFFIX=FOC
SEGNAME=SEGA,SEGTYPE=S1
FIELD=KEYFLD,,A1,$
FIELD=TXTFLD,,TX20F,$

Note: The same data is entered as in the previous example.

In this case, since the text field does include the F option, when the field is redisplayed,
blanks will be omitted and the field will be condensed as shown below:

THIS IS A TEST OF THE NEW TED OPTION 'F'. REMEMBER THAT TED DISPLAYS 80
CHARACTERS ON THE SCREEN. THREE LEADING BLANKS ARE USED TO INDICATE A NEW
PARAGRAPH. TEXT FIELD DATA IS ALWAYS STORED EXACTLY AS ENTERED. WHEN F IS
INCLUDED IN THE FORMAT AND THE TEXT FIELD IS REDISPLAYED, BLANKS ARE
OMITTED AND THE FIELD IS CONDENSED. WHEN F IS NOT INCLUDED, THE FIELD IS
REDISPLAYED AS ENTERED.

Modifying Data Sources With MODIFY

10-56 Information Builders

Specifying the Source of Data: The DATA Statement
The DATA statement marks the end of the executable statements in a request. It also
specifies the source of the data.

The syntax of the DATA statement is

DATA [ON ddname|VIA program]

where:

ON ddname

Indicates that the data is in a data source allocated to ddname.

VIA program

Indicates that the data is supplied directly from another computer program.

Type the DATA statement without parameters if:

• The data comes from the request itself.

• The request contains only PROMPT statements to read data.

• The request does not read any data (this occurs when you use a request to browse
through a data source using the NEXT statement).

Reading Selected Portions of Transaction Data Sources: The START
and STOP Statements

MODIFY requests read and process transaction data sources from the first record to the
last. The START statement signals requests to read starting from a particular record in the
data source. The STOP statement signals requests to stop reading at a particular record in
the data source. You may use START and STOP statements to process transaction data
sources in sections, to resume processing a transaction data source after a system crash,
and to test a new request on a limited number of transactions.

The syntax for the START statement is

START n

where n is the number of the first physical record to be processed by the request.

The syntax for the STOP statement is

STOP n

where n is the number of the last physical record to be processed by the request.

The START and STOP statements may appear anywhere in the request.

 Describing Incoming Data

Maintaining Databases 10-57

For example, the following request reads 300 records from a transaction data source
(ddname SALDATE) starting from the 201st record until the 500th.

MODIFY FILE EMPLOYEE
START 201
STOP 500

FIXFORM EMP_ID/9 CURR_SAL/8
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH UPDATE CURR_SAL

DATA ON FIXSAL
END

Note that the numbers are that of physical records, not logical records, and that a request
reads four physical records as one logical record. Assume each input record consists of
four physical records. For example, if you want the request to read the data source starting
from after the first ten transactions, type the START statement as

START 41

because 10 transactions are made up of 40 physical records.

If you are processing a large transaction data source, you may divide the processing into
steps using the START and STOP statements. At the completion of each step, make a
backup copy of the data source. If a step is aborted for any reason, you can use the last
backup to restore the data source.

These two requests are the same. The first processes transactions 1 to 100,000. The
second processes transactions 100,001 to 200,000:

MODIFY FILE EMPLOYEE
START 1
STOP 100000
FIXFORM EMP_ID/9 CURR_SAL/8
MATCH EMP_ID

ON MATCH UPDATE CURR_SAL
ON NOMATCH REJECT

DATA ON FIXSAL
END

MODIFY FILE EMPLOYEE
START 100001
STOP 200000
FIXFORM EMP_ID/9 CURR_SAL/8
MATCH EMP_ID

ON MATCH UPDATE CURR_SAL
ON NOMATCH REJECT

DATA ON FIXSAL
END

Modifying Data Sources With MODIFY

10-58 Information Builders

Modifying Data: MATCH and NEXT
The MATCH and NEXT statements are the core of MODIFY requests; they are the
statements that determine which data source records are added, changed, or deleted. They
work by selecting a particular segment instance, then updating or deleting it. They may
also add new segment instances.

The MATCH statement selects specific segment instances based on their values. The
NEXT statement selects the next segment instance after the current position.

The MATCH Statement
The MATCH statement selects specific segment instances based on their values. It
compares one or more field values in the instances with corresponding incoming data
values. The action it performs depends on whether there is a segment instance with
matching field values.

For example, suppose a MODIFY request was processing this incoming data record in
comma-delimited format

EMP_ID = 123456789, CURR_SAL = 20000, $

and that the request contained this MATCH statement:

MATCH EMP_ID
ON MATCH UPDATE CURR_SAL
ON NOMATCH INCLUDE

This MATCH statement compares the EMP_ID value of an incoming data record to the
EMP_ID values in segment instances:

• If a segment instance has EMP_ID value 123456789, the MATCH statement replaces
the CURR_SAL value in the instance with the incoming CURR_SAL value of 20000.

• If there is no instance with the EMP_ID value of 123456789, the MATCH statement
creates a new segment instance with the EMP_ID value of 123456789 and a
CURR_SAL value of 20000.

Notice that the MATCH statement used each of the two incoming data fields differently.
It used the EMP_ID field (specified after the word MATCH) to locate the segment
instance (or to prove that it did not exist); it never altered the EMP_ID value in the
segment. If it did locate the instance, it replaced the CURR_SAL value in the instance
with the value in the incoming data field.

To identify the correct segment instance, the field values that the MATCH statement is
searching for must be unique to the instance within its segment chain. For the most
common types of segments, types S1 and SH1, the key field value is unique to each
instance within its segment chain. This is the value you will usually be searching for.

 Modifying Data: MATCH and NEXT

Maintaining Databases 10-59

Note that the MODIFY command cannot update key fields. To update key fields, use the
FSCAN facility as described in Chapter 14, Directly Editing FOCUS Databases With
FSCAN.

Remember from the introduction that FOCUS executes a MODIFY request for every
transaction.

MATCH Statement Syntax
The syntax of the MATCH statement is

MATCH {* [KEYS] [SEG n]|field1 [field2 field3 ... field-n]}
ON MATCH action-1
ON NOMATCH action-2
[ON MATCH/NOMATCH action-3]

where:

field1 ...

Are the names of incoming data fields to be compared with similarly named data
source fields. The names may be full field names, aliases, or truncations. If a field
value is missing, the value is treated as zeros for numeric fields and blanks for
alphanumeric fields.
These fields are segment key fields unless the MATCH statement is modifying a
segment of type S0 or blank. If the segment is type Sn or SHn and you do not specify
the segment keys, the request adds the keys to the list automatically and displays a
warning message.
If the list of fields is too long to fit on one line, begin each line with the word
MATCH. For example:

MATCH EMP_ID DAT_INC TYPE
MATCH PAY_DATE DED_CODE

To compare the values of all fields in the data source with incoming values, enter:

MATCH *

To compare the values of all key fields in the data source with incoming values,
enter:

MATCH * KEYS

To compare the values of all key fields in a particular segment, type

MATCH * KEYS SEG n

where n is either the segment name or number as determined by the ? FDT query
(described in the Developing Applications manual).

action-1

If the MATCH statement locates a segment instance with a data value matching the
incoming data value (ON MATCH), it performs this action.

Modifying Data Sources With MODIFY

10-60 Information Builders

action-2

If the MATCH statement cannot locate a segment instance with a value matching the
incoming data value (ON NOMATCH), it performs this action.

action-3

Whether or not the MATCH statement locates a segment instance with a value
matching the incoming data value (ON MATCH/NOMATCH), it performs this
action.

Note that you may include many ON MATCH and ON NOMATCH phrases in one
MATCH statement. MATCH phrases can precede or follow NOMATCH phrases. The
actions you may use in MATCH statements are listed in the section below. They fall into
seven groups:

• Actions that modify segments.

• Actions that control MATCH processing.

• Actions that read incoming data fields.

• Actions that perform computations and validations or type messages to the terminal.

• Actions that control Case Logic.

• Actions that control multiple-record processing.

• Actions that activate and deactivate fields.

Please note the following rules regarding the MATCH statement:

• Each phrase of the MATCH statement must start on a separate line.

• The ON MATCH and ON NOMATCH phrases may be reversed.

• If an action has a list of fields, but the list of fields is too long to fit on one line, you
may break the list into two or more lines. Begin each line with the ON MATCH or
ON NOMATCH phrase, followed by the action. For example:

MATCH EMP_ID
ON NOMATCH REJECT
ON MATCH UPDATE DEPARTMENT CURR_SAL
ON MATCH UPDATE CURR_JOBCODE ED_HRS

 Modifying Data: MATCH and NEXT

Maintaining Databases 10-61

The ON MATCH/NOMATCH Phrase
The MATCH statement has an ON MATCH/NOMATCH phrase which specifies an
action to be taken whether or not the field value that the MATCH statement is searching
for exists in the data source. This phrase is especially useful when you are using
CRTFORMs with display or turnaround fields (see Chapter 11, Designing Screens With
FIDEL). For example:

MODIFY FILE EMPLOYEE
CRTFORM
"ENTER EMPLOYEE'S ID: <EMP_ID"
MATCH EMP_ID

ON MATCH/NOMATCH CRTFORM LINE 3
"ENTER DEPARTMENT: <T.DEPARTMENT"
"ENTER NEW SALARY: <T.CURR_SAL"

ON MATCH UPDATE DEPARTMENT CURR_SAL
ON NOMATCH INCLUDE

DATA VIA FI3270
END

This request prompts you for an employee’s ID. It then searches for the ID in the data
source. It prompts you for the employee’s new department and salary, whether the ID is in
the data source or not. If the ID is in the data source, it updates the employee’s
department and salary; otherwise, it adds a new segment instance with the information.

You could not have placed the CRTFORM statement before the MATCH statement,
because the CRTFORM statement contains turnaround fields.

You can specify the following actions in an ON MATCH/NOMATCH phrase:

• PROMPT

• TED

• CRTFORM

• GOTO

• IF

• ACTIVATE

• DEACTIVATE

• REPEAT

• HOLD

Note: TED in MODIFY can be used only with fields that have a text (TX) format (see
Entering Text Data via TED on page 10-52 for entering and editing text fields with TED).

Modifying Data Sources With MODIFY

10-62 Information Builders

MATCH Statement Defaults
The following are defaults affecting the MATCH statement:

• If a MODIFY request has neither MATCH nor NEXT statements, it defaults to:

MATCH *
ON NOMATCH INCLUDE

It adds the instance even if another instance has the same key values. Since key
values uniquely identify segments, you should avoid doing this unless you are
loading data into a newly created data source, the incoming data is in a data source,
and you know that there are no duplicate key values in the data.

The following request reads in data from a fixed-format data source, ddname
EMPDATA, to load in data into the segments EMPINFO and SALINFO in the
EMPLOYEE data source:

MODIFY FILE EMPLOYEE
FIXFORM EMP_ID/9 LAST_NAME/15 FIRST_NAME/10
FIXFORM PAY_DATE/I6 GROSS/D12.2
DATA ON EMPDATA
END

• If a MATCH statement has neither an ON MATCH nor an ON NOMATCH phrase,
the MATCH statement defaults to:

ON MATCH CONTINUE
ON NOMATCH INCLUDE

• If a MATCH statement has an ON NOMATCH phrase but no ON MATCH phrase,
the ON MATCH phrase defaults to:

ON MATCH CONTINUE

• If a MATCH statement has a MATCH phrase but no NOMATCH phrase, the ON
NOMATCH phrase defaults to:

ON NOMATCH REJECT

Note: If a MATCH statement has the phrase

ON NOMATCH TYPE

and no other ON NOMATCH phrases, the request automatically adds the phrase:

ON NOMATCH REJECT

 Modifying Data: MATCH and NEXT

Maintaining Databases 10-63

Adding, Updating, and Deleting Segment Instances
The most important function of the MATCH statement is the adding, updating, and
deleting of segment instances. The MATCH statement does this by first searching a
particular segment chain within a segment for specific instances (segment chains are
groups of segment instances associated with an instance in the parent segment). The root
segment contains just one segment chain; descendant segments are composed of many
segment chains. How the MATCH statement selects segment chains in descendant
segments is explained in Modifying Data: MATCH and NEXT on page 10-58.

The process can be summarized as follows:

1. The MODIFY request reads a transaction. The transaction contains values that
identify a particular segment instance. Usually, these are key field values.

2. The MATCH statement searches the segment for an instance containing the key field
values:

If it is adding a new instance, it must confirm that the instance is not yet in the
segment. Otherwise, it would be adding a duplicate instance.

If it is updating or deleting an instance, it must first find the instance in the segment.

3. The MATCH statement takes action depending on whether it found the instance or
not. These actions are as follows:

ON NOMATCH INCLUDE The instance is not yet in the segment. Therefore, the
request creates a new instance using values in the
transaction.

ON MATCH REJECT The new instance already exists in the segment. Therefore,
the request does not add the instance to the data source.
Rather, it rejects the transaction.

ON MATCH UPDATE list The instance exists in the segment. Therefore, the request
changes the values of the data source fields named in list
to the values in the transaction.

ON MATCH DELETE The instance exists in the segment. Therefore, the request
deletes the instance, all its descendants, and any
references to the deleted instances in the indexes.

ON NOMATCH REJECT The instance cannot be found in the segment. Therefore, it
cannot be changed or deleted. The request rejects the
transaction.

The following sections show how to construct MATCH statements that perform these
functions.

Modifying Data Sources With MODIFY

10-64 Information Builders

Adding Segment Instances
The syntax of a MATCH statement that adds segment instances is:

MATCH keyfield
ON MATCH REJECT
ON NOMATCH INCLUDE

When you include a new instance, the request fills the instance with the transaction field
values. If some segment fields are absent in the transaction, they become blank or zeros in
the instance, or the MISSING symbol if the field is described with the MISSING=ON
attribute (discussed in the Describing Data manual).

FOCUS determines the placing of the instance within a segment chain based on the
current position. The current position is the position of the instance you last added to the
chain.

When FOCUS adds the next instance to a keyed segment, it determines whether the
instance goes before or after the current position based on the sort order of the segment. If
the instance goes after the current position, FOCUS matches field values from the current
position forward until it finds the proper place for the new instance. If the instance goes
before the current position, FOCUS matches field values from the beginning of the chain
forward until it finds the place for the new instance.

To increase efficiency, submit your transactions in the same sorted order as the segment
(ascending order for Sn segments, descending order for SHn segments). This causes
FOCUS to move through the chain in one direction only.

If you do not submit the transactions in sorted order, you may get this message:

WARNING..TRANSACTIONS ARE NOT IN SAME SORT ORDER AS FOCUS FILE
PROCESSING EFFICIENCY MAY BE DEGRADED

This condition indicates that data will not be loaded in an optimal manner.

The following request adds new instances to the root segment of the EMPLOYEE data
source. The fields EMP_ID (the key field), LAST_NAME, and FIRST_NAME in the
new instances are filled with incoming data values; the other fields are left zero or blank:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID LAST_NAME FIRST_NAME
MATCH EMP_ID

ON MATCH REJECT
ON NOMATCH INCLUDE

DATA

 Modifying Data: MATCH and NEXT

Maintaining Databases 10-65

A sample execution might go as follows:

1. The request prompts you for an employee’s ID, last name, and first name.

2. You enter ID 071382660, last name SMITH, and first name HENRY.

3. The request checks if ID 071382660 is in the segment. It is, so the request rejects the
transaction, displaying a message telling you so.

4. The request prompts you again for an employee’s ID, last name, and first name.

5. You enter ID 123456789, last name SMITH, and first name HENRY.

6. The request checks if ID 123456789 is in the segment. It is not, so the request adds a
new segment instance, with 123456789 as the key value, SMITH in the
LAST_NAME field, and HENRY in the FIRST_NAME field. All other fields in the
instance are blanks and zeros.

Updating Segment Instances
The syntax of a MATCH statement to update segment instances is

MATCH keyfield
ON MATCH UPDATE list
ON NOMATCH REJECT

where list is a list of data source fields to be updated using the values in the transaction. If
the list of fields is too large to fit on one line, begin each line with the ON MATCH
UPDATE phrase. For example:

ON MATCH UPDATE EMP_ID LN FN
ON MATCH UPDATE HDT DPT CSAL
ON MATCH UPDATE CJC OJT

To update all fields in a matched segment (except the key fields), type:

ON MATCH UPDATE * [SEG n]

Note: You cannot update key fields. To change key fields, use the FSCAN facility as
described in Chapter 14, Directly Editing FOCUS Databases With FSCAN.

Modifying Data Sources With MODIFY

10-66 Information Builders

The following request updates the salary (CURR_SAL field) for employees you specify:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID CURR_SAL
MATCH EMP_ID

ON MATCH UPDATE CURR_SAL
ON NOMATCH REJECT

DATA

A sample execution might go as follows:

1. The request prompts you for an employee’s ID and a new salary.

2. You enter ID 123123123 and a salary of $20,000.

3. The request searches the segment for ID 123123123 but cannot find the value. It
rejects the transaction.

4. The request prompts you again for an employee ID and new salary.

5. You enter ID 071382660 and a salary of $20,000.

6. The request finds ID 071382662 in the segment and changes the employee’s salary to
$20,000.

You can combine adding and updating operations in one MATCH statement:

MATCH keyfield
ON MATCH UPDATE field-1 field-2 ... field-n
ON NOMATCH INCLUDE

This statement searches for a segment instance with a key field value the same as the
similarly named incoming field value. If it finds the instance, it updates the instance. If it
cannot find the instance, it adds a new instance. For example:

MATCH EMP_ID
ON MATCH UPDATE CURR_SAL
ON NOMATCH INCLUDE

 Modifying Data: MATCH and NEXT

Maintaining Databases 10-67

Deleting Segment Instances
The syntax of the MATCH statement for deleting a segment instance is:

MATCH keyfield
ON MATCH DELETE
ON NOMATCH REJECT

Note that the UPDATE action only updates fields when the transaction fields have values
present.

This request deletes records of employees who have left the company:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID
MATCH EMP_ID

ON MATCH DELETE
ON NOMATCH REJECT

DATA

A sample execution might go as follows:

1. The request prompts you for an employee ID.

2. You enter ID 987654321.

3. The request cannot find ID 987654321 in the segment, so it rejects the transaction,
displaying a message telling you so.

4. The request prompts you for another employee ID.

5. You enter ID 119329144.

6. The request finds ID 119329144 and deletes all record of the employee from the data
source. This includes the employee’s instance in the root segment and all descendant
instances (such as pay dates, addresses, etc.).

Modifying Data Sources With MODIFY

10-68 Information Builders

Performing Other Tasks Using MATCH
You may specify actions in MATCH statements that can stand alone as statements
elsewhere in the MODIFY request. These actions are: read incoming data, perform
computations and validations, type messages, control Case Logic and multiple record
processing, and activate and deactivate fields.

Note that the MATCH statement can perform several actions if the ON MATCH or ON
NOMATCH condition occurs. To specify this, assign each action a separate ON MATCH
or ON NOMATCH phrase. For example:

MATCH EMP_ID
ON MATCH UPDATE CURR_SAL
ON NOMATCH TYPE "EMPLOYEE ID NOT FOUND"
ON NOMATCH REJECT

There are two ON NOMATCH phrases in this request: one specifies the TYPE action, the
other the REJECT action. If you include a REJECT action, it must appear last; otherwise
the request will terminate and generate an error message.

Reading Data
The following actions read incoming data. They work just as FIXFORM, FREEFORM,
PROMPT, and CRTFORM statements:

FIXFORM list Where list is a list of fields and formats. Reads in data from a
fixed-format data source.

FREEFORM list Where list is a list of incoming data fields. Reads in data from a
comma-delimited data source.

PROMPT list Prompts the user for data in fields named in list one field at a time.

CRTFORM Prompts the user for data using the full-screen FIDEL facility.
FIDEL is described in Chapter 11, Designing Screens With FIDEL.

TED Opens a temporary file for text field data entry using TED.

Computations, Validations, and Messages
The following actions perform calculations and validations and type messages. These
actions work the same as the COMPUTE, VALIDATE, and TYPE statements:

COMPUTE Performs computations.

VALIDATE Performs validations.

TYPE [ON ddname] Types messages to the terminal. When the ON ddname option is
used, the messages are sent to a file defined by ddname.

 Modifying Data: MATCH and NEXT

Maintaining Databases 10-69

Controlling Case Logic

The following actions control Case Logic. They are discussed in Branching to Different
Cases: The GOTO, PERFORM, and IF Statements on page 10-136:

GOTO casename Branches to another case named by casename.

PERFORM casename Branches to another case named by casename, then returns
to the PERFORM.

IF expression [THEN]

GOTO case1

[ELSE GOTO case2];

If the expression is true, the request branches to the case
named by case1; otherwise the request branches to case
named by case2.

Controlling Multiple Record Processing

These actions control multiple-record processing and are described in The REPEAT
Method on page 10-157:

REPEAT Begins a REPEAT statement which executes a group of MODIFY
statements repeatedly.

HOLD list Where list is a list of data fields. Stores field values in a buffer.

Activating and Deactivating Fields

These actions activate and deactivate fields as described in Active and Inactive Fields on
page 10-197:

ACTIVATE list Activates fields named in list.

DEACTIVATE list Deactivates fields named in list.

Place these statements within a MATCH statement if you want to execute them only when
the request can locate incoming values in the data source (or confirm that incoming values
are not in the data source). This improves efficiency and makes the request logic more
flexible.

Modifying Data Sources With MODIFY

10-70 Information Builders

Example of a Request Using MATCH Actions
For example, assume you are designing a request to update employee salaries. Those
employees who have spent more than 100 hours in class (the ED_HRS field) are granted
an extra 3% bonus.

The particular data source you are updating only contains the records of a small number
of company employees, but the transaction data source contains records for every
employee in the company. If you place the COMPUTE statement calculating the bonuses
by itself, it will calculate the bonus for every record in the transaction data source,
whether or not the record will be accepted into the data source. Instead, use the
COMPUTE statement as an ON MATCH option in a MATCH statement. COMPUTE
will then calculate the bonus only for employees in the data source. The request is:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID CURR_SAL
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH COMPUTE

CURR_SAL = IF D.ED_HRS GT 100 THEN CURR_SAL*1.03
ELSE CURR_SAL;

ON MATCH UPDATE CURR_SAL
DATA

Note the use of a D. prefixed field in the COMPUTE expression (D.ED_HRS). This field
refers only to ED_HRS values in the data source. You may refer to data source fields
when using statements in MATCH and NEXT statements or after them. The data source
fields must either be in the segment instance you are modifying or in a parent instance
along the segment path.

Modifying Segments in FOCUS Structures
This section discusses how the MATCH command modifies segments other than the root
segment. The section covers:

• Modifying unique segments.

• Modifying descendant segments.

• Modifying sibling segments (multi-path data sources).

• Modifying segments with no keys.

• Modifying segments with multiple keys.

• Using alternate views.

 Modifying Data: MATCH and NEXT

Maintaining Databases 10-71

Modifying Unique Segments
Unique segments are segments that consist of only one instance for every parent instance.
They are always descended from other segments, but may not have descendants
themselves. Because unique segment instances are extensions of their parent instances,
they have no key fields.

There are two methods of modifying unique segments:

• The CONTINUE TO method allows you to add, update, and delete unique segment
instances.

• The WITH-UNIQUES method allows you to add and update unique segment
instances, but not to delete them. However, the WITH-UNIQUES method is easier to
use.

The CONTINUE TO Method
The CONTINUE TO method first locates the parent instance, then proceeds to the unique
instance. The syntax of the MATCH command to modify unique segment instances using
the CONTINUE TO method is:

MATCH keyfield
ON NOMATCH action-1
ON MATCH CONTINUE TO u-field

ON MATCH action-2
ON NOMATCH action-3

where:

keyfield

Is the key field of the parent segment instance.

action-1

Is the action the request performs if the parent instance cannot be found.

u-field

Is the name of any field in the unique child segment.

action-2

Is the action the request performs if a unique child instance exists.

action-3

Is the action the request performs if a unique child instance does not exist.

The actions that the request can perform are the same as those described in Adding,
Updating, and Deleting Segment Instances on page 10-63 and Performing Other Tasks
Using MATCH on page 10-68. The MATCH and NOMATCH phrases that follow the ON
MATCH CONTINUE TO phrase can be in either order.

Modifying Data Sources With MODIFY

10-72 Information Builders

This example illustrates how the request selects unique segment instances. The root
segment of the EMPLOYEE data source, called EMPINFO, which contains employee
IDs, has a unique child segment called FUNDTRAN that contains information on
employee bank accounts where pay checks are to be directly deposited. Every EMPINFO
instance that describes an employee with a direct-deposit bank account has one child
instance in the FUNDTRAN segment.

You could prepare the following MODIFY request to enter information on employees
that just opened a direct-deposit account:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID BANK_NAME BANK_ACCT
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH CONTINUE TO BANK_NAME

ON MATCH REJECT
ON NOMATCH INCLUDE

DATA

A sample execution might go as follows:

1. The request prompts for an employee ID, bank name, and bank account number.

2. You enter employee ID 456456456, bank name BEST BANK, and bank account no.
235532.

3. The request does not find employee ID 456456456, so it rejects the transaction.

4. The request prompts you for another employee ID, bank name, and bank account
number.

5. You enter employee ID 071382660, bank name BEST BANK, and bank account no.
235532.

6. The request finds ID 071382660. This employee has a segment recorded in the
FUNDTRAN segment, meaning that the employee already has a direct-deposit bank
account. The request rejects the transaction.

7. The request prompts you for another employee ID, bank name, and bank account
number.

8. You enter employee ID 112847612, bank name BEST BANK, and bank account
235532.

9. The request finds employee ID 112847612 but finds no instance recorded for the
employee in the FUNDTRAN segment.

10. The request records the bank name and bank account number in a new instance in the
unique segment.

 Modifying Data: MATCH and NEXT

Maintaining Databases 10-73

The following request updates direct-deposit account information:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID BANK_NAME BANK_ACCT
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH CONTINUE TO BANK_NAME

ON MATCH UPDATE BANK_NAME BANK_ACCT
ON NOMATCH REJECT

DATA

The following request deletes account information for employees who have closed their
direct-deposit accounts:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH CONTINUE TO BANK_NAME

ON MATCH DELETE
ON NOMATCH REJECT

DATA

To modify multiple unique children of one instance using the CONTINUE TO method,
use Case Logic as explained in Case Logic Applications on page 10-145.

The WITH-UNIQUES Method
The WITH-UNIQUES method processes unique instances as extensions of their parents;
that is, it considers a parent instance and its unique child as one instance. This method
first searches for the parent instance. If it finds the parent, it can update the parent
instance and create or update the unique child at the same time. If it does not find the
parent, it can create the parent instance and the unique child at the same time.

The syntax for the MATCH statement using the WITH-UNIQUES method is

MATCH WITH-UNIQUES keyfield
ON MATCH action1
ON NOMATCH action2

where:

keyfield

Is the key field in the parent segment.

action1

Is the action performed if the MATCH statement locates the parent instance.

action2

Is the action performed if the MATCH statement does not locate the parent instance.

Modifying Data Sources With MODIFY

10-74 Information Builders

The MATCH statement can specify these actions:

• The INCLUDE action, which creates a new parent instance and unique children
instances for which there is incoming data.

• The UPDATE action, which updates a parent instance and its unique children. If a
child instance does not exist, FOCUS creates one.

• The DELETE action, which deletes the parent instance and all children instances.

• Actions that perform the functions listed in Performing Other Tasks Using MATCH
on page 10-68.

Note that the WITH-UNIQUES method can add and update unique instances, but it
cannot delete them without deleting the parent instance. To delete unique instances, use
the CONTINUE TO method described in The CONTINUE TO Method on page 10-71.

This MODIFY request adds information on new employees, including information on
direct-deposit bank accounts. If an employee is already recorded in the data source, the
request rejects the entire transaction. The request is:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID FIRST_NAME LAST_NAME
PROMPT BANK_NAME BANK_ACCT
MATCH WITH-UNIQUES EMP_ID

ON MATCH REJECT
ON NOMATCH INCLUDE

DATA

This MODIFY request updates employees’ account information. If an employee just
opened a direct-deposit account, the request automatically creates a new unique instance
to record the information. The request is:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID BANK_NAME BANK_ACCT
MATCH WITH-UNIQUES EMP_ID

ON NOMATCH REJECT
ON MATCH UPDATE BANK_NAME BANK_ACCT

DATA

This request adds and updates employees’ account information, whether or not the
employees are new:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID LAST_NAME FIRST_NAME
PROMPT BANK_NAME BANK_ACCT
MATCH WITH-UNIQUES EMP_ID

ON NOMATCH INCLUDE
ON MATCH UPDATE BANK_NAME BANK_ACCT

DATA

Note that the WITH-UNIQUES method allows you to include and update the multiple
unique children of one instance in one MATCH statement.

 Modifying Data: MATCH and NEXT

Maintaining Databases 10-75

When using MATCH WITH-UNIQUES followed by ON MATCH COMPUTE, each
computed field must have its own ON MATCH COMPUTE statement.

Modifying Descendant Segments
Modifying descendant segments is similar to modifying the root segment with one
difference: when a MATCH statement searches a root segment for a key field value, it
searches every instance of the segment. When the MATCH statement searches a
descendant segment, however, it searches only the segment chain belonging to a particular
parent instance. If the MATCH statement cannot find the key field value in this chain, it
executes the ON NOMATCH phrase. To modify the chain, you must first identify the
parent instance using a previous MATCH statement.

The following example will illustrate this. The EMPLOYEE data source contains two
segments: An EMPINFO segment containing employee IDs and a child segment called
SALINFO that keeps track of each employee’s monthly pay. Each of these IDs has an
instance in the SALINFO segment for each month that the employee worked (for
example, an employee working for eight months has eight instances in the SALINFO
segment).

To modify a June instance in the SALINFO segment, you must first identify which
employee was paid in June. If the MODIFY request cannot find the June instance for one
employee, it will execute the ON NOMATCH phrase even though a June instance exists
for another employee.

This request adds a new monthly pay instance for each employee in the company. Note
the word CONTINUE, which causes the request to proceed to the next MATCH
statement (which adds the instances to the descendant segment) without taking any action.
Also note that the phrase ON NOMATCH CONTINUE is illegal:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID PAY_DATE GROSS
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH CONTINUE

MATCH PAY_DATE
ON MATCH REJECT
ON NOMATCH INCLUDE

DATA

A sample execution might go as follows:

1. The request prompts you for an employee ID, the date the employee was paid, and
the gross earnings paid.

2. You enter an employee ID 159159159, pay date 820831 (August 31, 1982), and
gross earnings of $916.67.

3. The request cannot find ID 159159159, so it rejects the transaction.

4. The request prompts you for another employee ID, pay date, and gross earnings.

Modifying Data Sources With MODIFY

10-76 Information Builders

5. You enter employee ID 071382660, pay date 820831, and gross earnings of $916.67.

6. The request finds ID 071382660, and searches the SALINFO segment chain
belonging to 071382660 for the pay date 820831.

7. The request finds the pay date 820831 in the segment chain. Since the instance
already exists, the request rejects the transaction.

8. You enter employee ID 071382660, pay date 820930 (September 30, 1982), and
gross earnings of $916.67.

9. The request finds ID 071382660, and searches the SALINFO segment chain
belonging to 071382660 for the pay date 820930.

10. The request does not find pay date 820930 in the segment chain, so it includes a new
instance in the SALINFO segment chain for pay date 820930 with gross earnings of
$916.67.

If your request prompts for data (using either PROMPT or CRTFORM), it is better to
prompt for the child key field values after the request locates the parent key field values.
This spares the user from typing the child key if the request cannot locate the parent key.
You can rewrite the above request as:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH PROMPT PAY_DATE GROSS

MATCH PAY_DATE
ON MATCH REJECT
ON NOMATCH INCLUDE

DATA

You can also write the request to include a new EMPINFO segment instance and a new
SALINFO instance if the employee’s ID is not already there:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID PAY_DATE GROSS
MATCH EMP_ID

ON NOMATCH INCLUDE
ON MATCH CONTINUE

MATCH PAY_DATE
ON NOMATCH INCLUDE
ON MATCH REJECT

DATA

The first MATCH statement searches the EMPINFO statement for the employee ID that
you entered. If it does not find it, the request creates a new EMPINFO segment instance
with the new ID and a descendant SALINFO instance with the pay date and monthly pay
you entered.

Note that when an INCLUDE action creates a new segment instance, it also creates all
descendant instances for which data is present.

 Modifying Data: MATCH and NEXT

Maintaining Databases 10-77

If the employee ID is already in the data source, the second MATCH statement searches
the SALINFO segment for the pay date you entered. If it does not find it, the request
creates a new SALINFO instance with the pay date. If the pay date is already in the
segment, the request rejects the transaction.

This request updates monthly pay instances:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH PROMPT PAY_DATE GROSS

MATCH PAY_DATE
ON MATCH UPDATE GROSS
ON NOMATCH REJECT

DATA

This request deletes monthly pay instances:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH PROMPT PAY_DATE

MATCH PAY_DATE
ON MATCH DELETE
ON NOMATCH REJECT

DATA

You may combine the MATCH statements in the request into one statement. This is
called matching across segments. To match across segments, specify the key fields that
the request must search for from the root segment down to the descendant segment (in
that order) after the MATCH keyword. For example, the request above that updates
employee’s monthly pay can be rewritten this way:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID PAY_DATE GROSS
MATCH EMP_ID PAY_DATE

ON NOMATCH REJECT
ON MATCH UPDATE GROSS

DATA

This is the request shown earlier in this section that adds data on new employees and
employees’ monthly pay:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID PAY_DATE GROSS
MATCH EMP_ID

ON MATCH CONTINUE
ON NOMATCH INCLUDE

MATCH PAY_DATE
ON MATCH REJECT
ON NOMATCH INCLUDE

DATA

Modifying Data Sources With MODIFY

10-78 Information Builders

This request can be rewritten this way:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID PAY_DATE GROSS
MATCH EMP_ID PAY_DATE

ON MATCH REJECT
ON NOMATCH INCLUDE

DATA

Note: When a MATCH statement matches across segments, the explicit ON MATCH and
ON NOMATCH phrases in the statement are only executed for the last descendant
segment (key field PAY_DATE in the example). For the other segments, the request
executes default phrases. If you are updating or deleting instances, these phrases are:

ON MATCH CONTINUE
ON NOMATCH REJECT

If, for example, you include an ON NOMATCH TYPE phrase in the MATCH statement,
the phrase only types a message when there is an ON NOMATCH condition on the last
segment.

If you are adding new instances, the default phrases are:

ON MATCH CONTINUE
ON NOMATCH INCLUDE

Because of these defaults, use this technique only when you are confident that you
understand the logic of the request.

 Modifying Data: MATCH and NEXT

Maintaining Databases 10-79

Modifying FOCUS Structures of Three or More Levels
What has been said for two-level FOCUS structures is true for three or more levels. To
modify a descendant segment instance, you must first identify the parent instances to
which the descendant instance belongs, from the root segment down to the immediate
parent segment (the descendant segment instance belongs to a parent instance, that
instance belongs to grandparent instance, and so on up the FOCUS structure to one of the
root instances).

The following request illustrates this. The SALINFO segment has a child segment called
DEDUCT that records all the different deductions that are taken from each monthly wage.
If four deductions are taken from a monthly pay, that pay has four instances in the
DEDUCT segment. The key field in the DEDUCT segment is DED_CODE which
specifies the type of deduction, such as certain taxes. The amount of the deduction is
contained in the field DED_AMT.

MODIFY FILE EMPLOYEE
PROMPT EMP_ID PAY_DATE DED_CODE DED_AMT
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH CONTINUE

MATCH PAY_DATE
ON NOMATCH REJECT
ON MATCH CONTINUE

MATCH DED_CODE
ON NOMATCH REJECT
ON MATCH UPDATE DED_AMT

DATA

Modifying Data Sources With MODIFY

10-80 Information Builders

Modifying Sibling Segments (Multi-Path Data Sources)
If you are modifying sibling segments (segments that have a common parent), place the
MATCH statements modifying the siblings in any order after the MATCH statement
identifying the parent instance. Each sibling must have a separate MATCH statement. If
you are modifying descendants of one of the siblings, the MATCH statements that modify
the children should follow immediately after the MATCH statement that identifies the
sibling.

The following request updates the SALINFO and ADDRESS segments, both children of
the EMPINFO segment. The ADDRESS segment contains both home and bank addresses
of the employees; its key field is TYPE, which indicates whether the address is a home
address or a bank address.

The request is as follows:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH PROMPT PAY_DATE GROSS TYPE ADDRESS_LN1

MATCH PAY_DATE
ON NOMATCH REJECT
ON MATCH UPDATE GROSS

MATCH TYPE
ON NOMATCH REJECT
ON MATCH UPDATE ADDRESS_LN1

DATA

Modifying Segments With No Keys
Segments of types S0 and blank (SEGTYPE= ,) have no key fields. Segments of type
blank are always descendant segments; they can never be root segments. Segments of type
S0 can be root segments.

To modify these segments, the MATCH statement selects instances by comparing the
values of one or more fields in the segment to a similarly named transaction field. The
MATCH statement has the form

MATCH {* [SEG n]|field-1 field-2 ... field-n}
ON MATCH action-1
ON NOMATCH action-2

where:

field-1 ...

Are any fields in the segment you are modifying.

* SEG n

Matches all fields in the segment, where n is either the segment name or number as
determined by the ? FDT query (described in the Developing Applications manual).

 Modifying Data: MATCH and NEXT

Maintaining Databases 10-81

The difference between segment type S0 and blank is the way FOCUS adds new instances
to the segments.

Type S0 Segments
When you add a segment instance to a type S0 segment, FOCUS matches field values in
the segment chain from the current position forward through the chain, inserting the
instance in the chain based on ascending order. FOCUS does not search the chain from
the beginning; therefore, if the instance belongs before the current position, FOCUS
inserts the instance at the end of the chain (this means that if you are adding instances to a
new segment chain, FOCUS stores the instances in the order of submission). It may insert
the instance even if another instance has the same field values and you specified ON
MATCH REJECT. If, however, you sort the transactions in ascending sequence before
submitting them, you will preserve the correct sequence in the chain. You will also
prevent adding duplicate segments unless you specify ON MATCH INCLUDE.

Because it is difficult to ensure that segments of type S0 do not have instances with
duplicate field values, they are very hard to maintain. You should only use them for data
that needs to be loaded in once and does not need to be changed or deleted.

This is a sample FOCUS data source that stores memos, called MEMO. The Master File
is:

FILE=MEMO ,SUFFIX=FOC ,$
SEGMENT=MEMOSEG ,SEGTYPE=S1 ,$
FIELD=MEMO_NAME ,ALIAS=MEMO ,FORMAT=A25 ,$
SEGMENT=TEXTSEG ,SEGTYPE=S0 ,PARENT=MEMOSEG ,$
FIELD=LINE ,ALIAS=LN ,FORMAT=A70 ,$

The following request enters ten-line memos into the data source:

MODIFY FILE MEMO
PROMPT MEMO_NAME 10 (LINE)
MATCH MEMO_NAME

ON MATCH REJECT
ON NOMATCH INCLUDE

MATCH LINE
ON MATCH INCLUDE
ON NOMATCH INCLUDE

DATA

Note: The INCLUDE action in both ON MATCH and ON NOMATCH phrases adds a
line of text even if the line is the same as another line in the memo (which would happen
if you have more than one blank line in the memo) in all circumstances.

Modifying Data Sources With MODIFY

10-82 Information Builders

Type Blank Segments
When you add an instance to a type blank segment, the MODIFY request compares the
instance you are adding to every instance in the segment chain, based on the fields you
specify in the MATCH statement. Thus, if you specified the ON MATCH REJECT
phrase in the MATCH statement, the request does not allow you to add an instance that
has the same field values you are matching on as another instance.

You modify type blank segments the same way you modify other segments. Be careful,
however, that the fields you are matching on uniquely identify the segment instances, or
you may not be able to select the instance you want to modify. (MODIFY requests always
select the first instance that fulfills the match conditions.)

Modifying Segments With Multiple Keys
Segments may have multiple keys. These segments are types Sn or SHn where n is the
number of keys. For example, a segment in ascending order that has two keys is type S2;
that is, it has the attribute SEGTYPE=S2 in the Master File. Multiple keys are necessary
when the first field alone cannot uniquely identify a segment instance. For example, a
segment has three fields as described by the Master File:

FILE=ADDRESS ,SUFFIX=FOC ,$
SEGMENT=ADDRSEG ,SEGTYPE=S2 ,$
FIELD=LAST_NAME ,ALIAS=LNAME ,FORMAT=A15 ,$
FIELD=FIRST_NAME ,ALIAS=FNAME ,FORMAT=A15 ,$
FIELD=ADDRESS ,ALIAS=ADDR ,FORMAT=A80 ,$

Since LAST_NAME field is not enough to identify individual segment instances (some
people share the same last name), the segment uses the first two fields, LAST_NAME and
FIRST_NAME, as keys.

Note that multiple keys must always be the first fields in the segment, and they must be
next to each other; that is, a non-key field cannot be between two key fields.

Modifying segments with multiple key fields is the same as modifying segments with one
key field. The one difference is that you must specify all the key fields in the MATCH
phrase.

To enter data into the ADDRESS data source, you prepare the following MODIFY
request:

MODIFY FILE ADDRESS
PROMPT LAST_NAME FIRST_NAME ADDRESS
MATCH LAST_NAME FIRST_NAME

ON MATCH REJECT
ON NOMATCH INCLUDE

DATA

 Modifying Data: MATCH and NEXT

Maintaining Databases 10-83

A sample execution might go as follows:

1. The request prompts you for the last name, first name, and address.

2. You enter last name FOX, first name GEORGE, and address 2365 N. HAMPTON
ST. HAMILTON, MN 55473.

3. The request searches the segment for an instance with both last name FOX and first
name GEORGE.

4. The request does not find such an instance, so it creates a new instance for George
Fox.

Note that you cannot update any of the key fields.

Using Alternate File Views
To modify descendant segments, you must first specify the parent segments using a series
of MATCH statements. You can modify a descendant segment directly by declaring the
segment to be the root segment of an alternate file view. To do this, the segment must
fulfill three conditions:

• The segment must be type S1 or SH1.

• The key field must be indexed.

• The key field values should be unique throughout the data source.

To declare an alternate file view, you begin the MODIFY request this way

MODIFY FILE filename.field

where:

filename

Is the name of the FOCUS data source you are modifying.

field

Is the name of the indexed key field in the root segment of the alternate file view.

Note that you can only update the root segment of the alternate file view; you cannot add
or delete segment instances. However, you can add, update, and delete segment instances
in the descendants of this segment. In addition, you may make use of external indices only
via the FIND and LOOKUP functions. Be aware that an external index cannot be used as
an entry point. For example,

MODIFY FILE filename.field

will be ineffective. FIND and LOOKUP are described in Special Functions on page 10-
105.

Modifying Data Sources With MODIFY

10-84 Information Builders

This sample FOCUS data source, called BANK, contains information on bank accounts.
The Master File is:

FILE=BANK ,SUFFIX=FOC ,$
SEGMENT=CUSTSEG ,$

FIELD=SOC SEC NUM ,ALIAS=SSN ,FORMAT=A9 ,$
FIELD=NAME ,ALIAS=NAME ,FORMAT=A30 ,$

SEGMENT=ACCTSEG ,SEGTYPE=S1 ,PARENT=CUSTSEG ,$
FIELD=ACCT NUM ,ALIAS=ACCOUNT ,FORMAT=A10 ,
FIELDTYPE=I ,$

FIELD=AMOUNT ,ALIAS=AMOUNT ,FORMAT=D10.2 ,$
SEGMENT=TRANSSEG ,SEGTYPE=S1 ,PARENT=ACCTSEG ,$

FIELD=TRANSNUM ,ALIAS=TNUM ,FORMAT=I5 ,$
FIELD=TRANTYPE ,ALIAS=TTYPE ,FORMAT=A1 ,$
FIELD=TR_AMOUNT ,ALIAS=TAMOUNT ,FORMAT=D8.2 ,$

This Description contains three segments:

• The CUSTSEG segment contains social security numbers and names of bank
depositors.

• The ACCTSEG segment, child of CUSTSEG, contains account numbers and the
amount of money in each account. Note that the field ACCT_NUM is indexed and
that each account number is unique throughout the data source.

• The TRANSSEG segment, child of ACCTSEG, contains information on individual
bank account transactions: the transaction serial number (TRANSNUM), the type of
transaction (TRANTYPE which contains a D for deposits and a W for withdrawals),
and the amount of the transaction (TR_AMOUNT).

To add new account information in the BANK data source, you prepare the following
MODIFY request:

MODIFY FILE BANK
PROMPT SSN NAME ACCT_NUM AMOUNT
MATCH SSN

ON NOMATCH INCLUDE
ON MATCH CONTINUE

MATCH ACCT_NUM
ON NOMATCH INCLUDE
ON MATCH REJECT

DATA

 Modifying Data: MATCH and NEXT

Maintaining Databases 10-85

The MODIFY request above first specifies the parent segment CUSTSEG (MATCH
SSN) before the child segment ACCTSEG (MATCH ACCT_NUM). Since ACCTSEG is
an S1 segment with an indexed key field (ACCT_NUM), you can modify the ACCTSEG
directly with this request:

MODIFY FILE BANK.ACCT_NUM
PROMPT ACCT_NUM AMOUNT
MATCH ACCT_NUM

ON NOMATCH REJECT
ON MATCH UPDATE AMOUNT

DATA

You may modify the root segment of the alternate file view and its descendants in the
original data source structure, but not its parents. In the BANK data source, you may
modify the TRANSSEG segment using the above alternate file view but not the
CUSTSEG segment.

This request adds information on new bank account transactions to the data source:

MODIFY FILE BANK.ACCT_NUM
PROMPT ACCT_NUM AMOUNT PROMPT TRANSNUM TRANTYPE TR_AMOUNT
MATCH ACCT_NUM

ON NOMATCH REJECT
ON MATCH UPDATE AMOUNT

MATCH TRANSNUM
ON MATCH REJECT
ON NOMATCH INCLUDE

DATA

Selecting the Instance After the Current Position: The NEXT
Statement

The NEXT statement selects the next segment instance after the current position, making
the instance the new current position. The current position depends on the execution of
MATCH and NEXT statements:

• If a MATCH or NEXT statement selects a segment instance, the instance becomes
the current position within the segment.

• If a MATCH or NEXT statement selects a parent instance of a segment chain, the
current position is before the first instance in the chain.

• At the beginning of a request, the current position in the root segment is before the
first instance.

The NEXT statement can modify segment instances similarly to the MATCH statement
and follows the same rules (see The MATCH Statement on page 10-58). However, the
NEXT statement is most often used for displaying data source values.

Modifying Data Sources With MODIFY

10-86 Information Builders

Syntax of the NEXT Statement
The syntax of the NEXT statement is

NEXT field
ON NEXT action-1
ON NONEXT action-2

where:

field

Is any field in the segment whose instances are being selected.

action-1

Is the action the request takes if there is a next instance to select.

action-2

Is the action the request takes if it has reached the end of the segment chain.

There can be many ON NEXT and ON NONEXT phrases in a single NEXT statement.
Each phrase specifies one action.

An action can be any action that is legal in the MATCH statement (see Adding, Updating,
and Deleting Segment Instances on page 10-63 and Performing Other Tasks Using
MATCH on page 10-68). However, use ON NEXT INCLUDE and ON NONEXT
INCLUDE phrases only to add instances to segments of type S0 or blank. If you use these
phrases to modify other segments, you may duplicate what is already there. The
difference between the two phrases is:

• ON NEXT INCLUDE adds a new segment instance after the current position.

• ON NONEXT INCLUDE adds a new instance at the end of the segment chain. The
phrase ON NEXT INCLUDE is only valid for segments with type S0 or blank.

The following phrases are always illegal:

ON NONEXT UPDATE
ON NONEXT DELETE
ON NONEXT CONTINUE
ON NONEXT CONTINUE TO

This phrase is legal even in requests that do not involve Case Logic:

ON NONEXT GOTO EXIT

The phrase terminates the request when the NEXT statement reaches the end of the
segment chain.

 Modifying Data: MATCH and NEXT

Maintaining Databases 10-87

Note that a NEXT statement can have multiple ON NEXT and ON NONEXT phrases.
For example, the following statement displays the salaries of every employee in the data
source and shows what their salaries would be if they are granted a 5% increase:

NEXT EMP_ID
ON NEXT COMPUTE NEWSAL = 1.05 * D.CURR_SAL;
ON NEXT TYPE

"EMPLOYEE <D.EMP_ID SALARY NOW:<D.CURR_SAL"
"SALARY PLUS 5% INCREASE: <NEWSAL"

ON NONEXT TYPE
"END OF EMPLOYEE FILE"

ON NONEXT GOTO EXIT

Selecting Instances
You can use NEXT statements in non-Case Logic requests to modify or display the data
in:

• The entire root segment.

• The first instances of segment chains in descendant segments.

To modify or display data in entire descendant segment chains, you must use Case Logic
as described in Case Logic Applications on page 10-145.

The NEXT statement can modify and display data in the root segment. This request
displays all the employee IDs in the employee ID segment:

MODIFY FILE EMPLOYEE
NEXT EMP_ID

ON NEXT TYPE "EMPLOYEE ID: <D.EMP_ID"
ON NONEXT GOTO EXIT

DATA

When a NEXT statement modifies or displays data in a descendant segment, it can do so
only to the first instance in a segment chain. Consider the following request:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH TYPE "YOU ENTERED ID <EMP_ID"

NEXT PAY_DATE
ON NEXT TYPE

"THIS EMPLOYEE'S LAST PAY DATE"
"WAS <D.PAY_DATE"

ON NONEXT GOTO EXIT
DATA

Modifying Data Sources With MODIFY

10-88 Information Builders

The MATCH statement selects an instance with a particular employee ID. The NEXT
statement selects the instance with the employee’s last pay date (the pay dates are
organized in the data source from high to low). The PAY_DATE segment is a child of the
EMP_ID segment.

The NEXT statement is at its most powerful when it is used to browse through an entire
chain. To browse through a chain in a descendant segment, you must use Case Logic, as
described in Case Logic Applications on page 10-145.

Displaying Unique Segments
You can use the NEXT statement to display and modify the contents of unique segments
using two methods (see Modifying Segments in FOCUS Structures on page 10-70):

• The CONTINUE TO method.

• The WITH-UNIQUES method.

The CONTINUE TO Method
The syntax of the CONTINUE TO method is

NEXT field
ON NONEXT action-1
ON NEXT CONTINUE TO u-field

ON NEXT action-2
ON NONEXT action-3

where:

field

Is the first field in the parent instance.

action-1

Is the action the request performs if there are no more instances in the parent segment
chain.

u-field

Is the name of any field in the unique child segment.

action-2

Is the action the request performs if the parent instance has a unique child instance.

action-3

Is the action the request performs if the parent instance does not have a unique child
instance.

 Modifying Data: MATCH and NEXT

Maintaining Databases 10-89

The WITH-UNIQUES Method
The syntax of the WITH-UNIQUES method is

NEXT WITH-UNIQUES field
ON NONEXT action1
ON NEXT action2

where:

field

Is the name of any field in the parent segment.

action1

Is the action the request performs if there are no more instances in the chain.

action2

Is the action the request performs if there is a next instance in the chain. This action
can be performed on either the parent instance or the unique instance. If an UPDATE
action updates a unique instance that does not exist yet, FOCUS creates the instance.

Modifying Data Sources With MODIFY

10-90 Information Builders

Computations: COMPUTE and VALIDATE
The MODIFY command provides two facilities that perform calculations on incoming
data fields, data source fields, and temporary fields. These are:

• The COMPUTE statement. This statement allows you to modify incoming data field
values and to define temporary fields.

• The VALIDATE statement. This statement allows you to reject transactions that
contain unacceptable values.

The end of this section discusses two functions that can be used only in COMPUTE and
VALIDATE statements: the FIND and LOOKUP functions.

Computing Values: The COMPUTE Statement
The COMPUTE statement allows you to modify incoming data field values and to define
temporary fields.

A transaction data source (whether stored on the computer or typed on paper) used to
modify a data source often does not contain the same data that is to go into the data
source fields. There are many reasons why this happens:

• The incoming data contains short codes representing the alphanumeric data that is to
go into the data source. For example, incoming records contain the code P for
PRODUCTION and M for MIS. The PRODUCTION and MIS values update the
DEPARTMENT field.

• The incoming data is repetitive: the same value is used to update each instance or the
same series of values is used to update each segment chain. For example, all
employees are to receive a pay increase of 5%.

• The incoming data values are calculable from other values. For example, an
employee’s percentage salary increase is equal to the new salary divided by the old
salary minus 1.

• Some values vary in predictable ways depending on other values. For example,
employee salary increases depend on the employees’ department assignment.

The COMPUTE statement gives you control over the data that modifies the data source.
Using COMPUTE you can:

• Translate codes into data to modify the data source.

• Adjust the values of transaction fields.

• Define a data value or a series of data values to modify the data source repeatedly.

• Calculate data values from other sources and use these new values to modify the data
source.

 Computations: COMPUTE and VALIDATE

Maintaining Databases 10-91

The COMPUTE statement works by setting either an incoming data field or a temporary
field to the value of an expression. The expression may involve existing data source
fields, other temporary fields, and constants.

Note that there are three different types of fields:

• Incoming data fields (also called transaction fields) contain data read from
transaction data sources or a terminal. These fields are specified by the FIXFORM,
FREEFORM, PROMPT, and CRTFORM statements. They remain incoming data
fields even if their values are changed by COMPUTE statements.

• Data source fields contain data stored in the data source. Their field names are
prefaced by the D. prefix.

• Temporary fields are created by and receive their values from COMPUTE
statements.

The following request uses all three types of fields. The request awards a bonus of $150
to employees who received salary raises:

MODIFY FILE EMPLOYEE
1. PROMPT EMP_ID CURR_SAL

COMPUTE
2. BONUSAL/D8.2 = CURR_SAL + 150;

MATCH EMP_ID
ON NOMATCH REJECT
ON MATCH COMPUTE

3. CURR_SAL = IF CURR_SAL GT D.CURR_SAL
THEN BONUSAL
ELSE CURR_SAL;

ON MATCH UPDATE CURR_SAL
DATA

The numbers above refer to these fields:

1. The EMP_ID and CURR_SAL fields are incoming data fields, because they are read
by a PROMPT statement.

2. The BONUSAL field is a temporary field, because it is created by and receives its
value from a COMPUTE statement.

3. The D.CURR_SAL field is a data source field, since its field name is prefaced with
the D. prefix.

You may use COMPUTE statements to adjust the values of incoming data fields. For
example, your MODIFY request reads salary values from a data source and places them
into the field SALARY. You want to increase all these values by 10%. To do so, add this
statement to the request:

COMPUTE SALARY = SALARY * 1.1;

In cases where the same field name exists in more than one segment, and that field must
be redefined, the REDEFINES command should be used.

Modifying Data Sources With MODIFY

10-92 Information Builders

You may use the COMPUTE statement to define an unlimited number of temporary
fields. For example, you define a temporary field TEMPSAL to contain the number
25000 if an employee is in the MIS department and the number 18000 if an employee is
in the PRODUCTION department:

COMPUTE
TEMPSAL =IF DEPARTMENT IS 'MIS' THEN 25000

ELSE IF DEPARTMENT IS 'PRODUCTION' THEN 18000;

Note that MODIFY requests allow the use of up to 3,072 fields within the request. The
number includes:

• Data source fields referred to in the request.

• Temporary fields created by COMPUTE and VALIDATE statements.

• Temporary fields created automatically by FOCUS. These include:

FOCURRENT for MODIFY requests run in Simultaneous Usage mode. FOCUS
creates one FOCURRENT variable per request.

REPEATCOUNT for MODIFY requests containing REPEAT statements. FOCUS
creates one REPEATCOUNT variable per request regardless of the number of
REPEAT statements.

HOLDCOUNT and HOLDINDEX for MODIFY requests containing HOLD
statements. FOCUS creates one HOLDCOUNT and one HOLDINDEX variable per
request regardless of the number of HOLD statements.

Each field referred to or created in a MODIFY request counts as one field toward the
3,072 total, regardless of how often its value is changed by COMPUTE and VALIDATE
statements. However, if a data source field is read by a FIXFORM, FREEFORM,
PROMPT, or CRTFORM statement and also has its value changed by COMPUTE and
VALIDATE statements, it counts as two fields.

FOCUS compiles most COMPUTE and DEFINE calculations when the request is parsed.
Typically, the new compilation logic executes the compiled calculations in about one-fifth
the time required by uncompiled calculations. However, the compiled form requires more
memory. For this reason, very large MODIFY procedures may require more virtual
storage to execute and, should the MODIFY procedures be compiled, they will occupy
more disk space.

 Computations: COMPUTE and VALIDATE

Maintaining Databases 10-93

There are two places in the MODIFY request where you can use COMPUTE statements:

• At the beginning of the request. COMPUTE statements here define temporary field
values for every transaction. Note that these statements may not perform calculations
on data source field values (D. fields).

• In or following MATCH and NEXT statements. COMPUTE statements here define
temporary field values for transactions depending whether or not the MATCH or
NEXT statement selected a particular segment instance. These statements may
perform calculations using data source field values.

This section covers:

• The syntax of COMPUTE statements.

• Use of COMPUTE statements in MATCH and NEXT statements.

• Modifying transaction fields.

• Defining non-data source transaction fields.

Syntax COMPUTE Statement
The syntax of the COMPUTE statement is as follows (note that you can place several
COMPUTE statements after the COMPUTE keyword):

COMPUTE
field[/format] = expression;
field[/format] = expression;

.

.

.

where:

field

Is the name of the field being set to the value of expression. The field can be an
incoming data field or it can be a temporary field (whose name must be different
from the incoming field names). Fields can only modify data source fields with the
same name.

Modifying Data Sources With MODIFY

10-94 Information Builders

format

Is the format of the field if the field is temporary. Specify the format when defining
the temporary field for the first time. Field formats are described in the Describing
Data manual.
You can specify the MISSING option to declare temporary field values missing if
values in the expression are missing. The MISSING option is discussed in the
Creating Reports manual.
You can specify the YRTHRESH and DEFCENT options to handle cross-century
dates. Using these options, and working with cross-century dates, is discussed in the
Developing Applications manual.

expression;

Is any expression valid in a DEFINE or TABLE COMPUTE statement. In addition,
you may use the FIND and LOOKUP functions, described in Special Functions on
page 10-105.
Note: The expression can be null; that is, the COMPUTE statement can have the
form

COMPUTE
field/format=;

where format is the format of the field. This form is used to define transaction fields
that are not listed in the Master File.

Note that you must terminate the expression with a semi-colon (;). You may type a
COMPUTE statement over as many lines as you need, terminating the expression with a
semi-colon. The COMPUTE command supports other attributes such as DFC, YRT, and
MISSING. See the Creating Reports manual for details.

For example:

COMPUTE
CURR_SAL = IF CURR_JOBCODE IS A02 THEN 15000

ELSE IF CURR_JOBCODE IS B02 THEN 17000
ELSE IF CURR_JOBCODE IS B12 THEN 18000
ELSE 20000;

In the preceding example, the temporary field CURR_SAL will contain 15000, 17000,
18000, or 20000, depending on the value of CURR_JOBCODE. CURR_SAL will then be
used later in the MODIFY request.

You can also place an expression on the same line as a COMPUTE keyword, and several
expressions on one line (ending each expression with a semicolon). For example:

COMPUTE CURR_SAL=CURR_SAL*1.2; ED_HRS = ED_HRS-5;

You can specify the MISSING option to declare temporary field values missing if values
in the expression are missing. The MISSING option is discussed in the Creating Reports
manual.

 Computations: COMPUTE and VALIDATE

Maintaining Databases 10-95

COMPUTE Phrases in MATCH and NEXT Statements
You may place COMPUTE statements in MATCH and NEXT statements. The request
only performs the computation if the MATCH or NEXT condition is met. These
COMPUTE phrases may perform calculations on data source field values if these fields
are either in the segment instance being modified or in a parent instance along the
segment path (the parent instance, the parent’s parent, and so on until the root segment).
To specify data source field values (as opposed to values in the transaction field with the
same name), affix the D. prefix to the front of the field name.

Note that COMPUTE statements that follow a MATCH or NEXT statement may also
perform calculations on data source field values if these fields are in the instance selected
by the previous statement (or are in the segment path).

When using MATCH WITH-UNIQUES followed by ON MATCH COMPUTE, each
computed field must have its own ON MATCH COMPUTE statement.

The following request calculates employees’ new salaries giving them a 10% increase
over their present salaries. It only performs this calculations for employees whose IDs are
stored in the data source:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH COMPUTE

CURR_SAL = D.CURR_SAL * 1.1;
ON MATCH UPDATE CURR_SAL

DATA

Changing Incoming Data
You can use the COMPUTE statement to change incoming data. For example, assume
you are preparing a MODIFY request to input new salaries into the data source. Just
recently, the company granted employees in the MIS department an extra 3% pay raise.
Rather than manually recalculating the new salaries for MIS employees, you can include a
COMPUTE statement to do it for you:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID CURR_SAL DEPARTMENT
COMPUTE
CURR_SAL = IF DEPARTMENT IS 'MIS'

THEN CURR_SAL * 1.03
ELSE CURR_SAL;

MATCH EMP_ID
ON MATCH UPDATE CURR_SAL
ON NOMATCH REJECT

DATA

The new salary of employees who work in the MIS department will be 1.03 times more
what they would have received ordinarily. Everybody else gets a normal raise.

Modifying Data Sources With MODIFY

10-96 Information Builders

Defining Non-Data Source Transaction Fields
If the names of incoming data fields are not listed in the Master File describing the data
source, you must define them to FOCUS before they are read in by a FIXFORM,
FREEFORM, PROMPT, or CRTFORM statement. Otherwise, FOCUS rejects the fields
as unidentifiable and terminates the request.

To define the fields to FOCUS, specify them with the COMPUTE statement using the
notation

COMPUTE field/format=;

where:

field

Is the incoming data field you want to define to FOCUS.

format

Is the format of the field. Field formats are described in the Describing Data manual.

Because there is no expression after the equal sign (=), the request reads the statement
before it reads the incoming data. All COMPUTE statements having expressions are
executed after the request reads the incoming data.

For example, you want to record promotions to the MIS and Production Departments in
the data source. However, the transaction data source you are working with lists the
departments by code, not by name: a 1 for MIS and a 2 for Production. You prepare the
following MODIFY request:

MODIFY FILE EMPLOYEE
COMPUTE DEPCODE/I1=;
PROMPT EMP_ID DEPCODE
COMPUTE

DEPARTMENT = IF DEPCODE IS 1 THEN 'MIS' ELSE
'PRODUCTION';

MATCH EMP_ID
ON MATCH UPDATE DEPARTMENT
ON NOMATCH REJECT

DATA

The first COMPUTE statement defines the incoming DEPCODE field to FOCUS. The
second COMPUTE statement sets the value of the transaction field DEPARTMENT
depending on the value of DEPCODE. This DEPARTMENT field then updates the
DEPARTMENT field in the data source.

 Computations: COMPUTE and VALIDATE

Maintaining Databases 10-97

Validating Transaction Values: The VALIDATE Statement
Most applications require that data be checked for accuracy before it is accepted into the
data source. The VALIDATE statement checks values against certain conditions. If the
value fails the test, the request rejects the transaction and displays a warning to the user.

For example, assume you are preparing a MODIFY request to update MIS and
Production Department salaries in the data source. No one in those departments is ever
paid less than $6,000 per year or more than $50,000. You can use the VALIDATE
statement to reject those values that fall outside this range, such as a $700 or a $75,000
salary.

VALIDATE statements work the same way as COMPUTE statements: they set the value
of a temporary field to the value of an expression. The only difference is that if the field
value is set to 0, FOCUS rejects the transaction being processed and displays this message

(FOC421) TRANS n REJECTED INVALID rcode

where:

n

Is the number of the transaction being tested.

rcode

Is the variable receiving the test value.

The simplest way to use VALIDATE statements is to have them test the values of
incoming data fields. If an incoming value is unacceptable, assign the temporary field a
value of 0. Otherwise, assign the field a non-zero value. Note that the temporary field
retains its value after the VALIDATE statement, and you may use this value in other
calculations.

Tests provided by the DBA functions, which control access to data sources, function as
involuntary VALIDATE tests and produce similar error messages.

You can place VALIDATE statements in two places in MODIFY requests:

• At the beginning of the request. VALIDATE statements here test every transaction,
discarding those containing invalid values. Expressions in these VALIDATE
statements cannot use data source field values (D. fields).

• In MATCH and NEXT statements. VALIDATE statements here test the transaction
depending whether or not the MATCH or NEXT statement selected a particular
segment instance. Expressions in these VALIDATE statements can use data source
field values.

Modifying Data Sources With MODIFY

10-98 Information Builders

If you are validating fields in a repeating group and one field is rejected, all fields in the
repeating group are rejected. However, if you are validating the fields in a MATCH or
NEXT statement and one field is rejected, the other fields are not rejected.

If the MODIFY request prompts for data (the PROMPT statement), it is a good idea to
validate each field after prompting. If you validate several fields at once, users must enter
data for all the fields before the values they enter are tested. If one data value is invalid,
they must reenter all the data values. If you validate each field, users will be warned as
soon as they enter an invalid value, and the request will reprompt them for the correct
value.

This section describes:

• VALIDATE statement syntax.

• Using the VALIDATE statement to validate incoming data.

• Use of the ON INVALID phrase.

• Use of VALIDATE statements in MATCH and NEXT statements.

• Testing for the presence of incoming data.

• Use of the DECODE function in VALIDATE statements.

If you validate data entered on a CRTFORM, invalid values cause the CRTFORM screen
to be redisplayed along with the data you entered. This allows you to correct the data and
re-enter it. You can deactivate this feature using the DEACTIVATE INVALID feature
described in Active and Inactive Fields on page 10-197.

 Computations: COMPUTE and VALIDATE

Maintaining Databases 10-99

Syntax VALIDATE Statement
The syntax of the VALIDATE statement is as follows (note that you may include several
VALIDATE statements after the VALIDATE keyword)

VALIDATE
field[/format] = expression;
field[/format] = expression;

.

.

.

where:

field

Is the name of the temporary field. If this field is set to 0, FOCUS rejects the
transaction being processed. Do not use an incoming field name or data source field
name for this name.

format

Is the format of the field. The format type must be numeric (I, F, D, or P. Formats are
described in the Describing Data manual). You need to specify the format only if you
will use the field elsewhere in the request.

expression;

Is any expression valid in a DEFINE or TABLE COMPUTE statement (See the
Creating Reports manual.). Also, you may use the LOOKUP and FIND function
described in Special Functions on page 10-105. If the value of the expression is 0,
FOCUS rejects the transaction being processed. Note that you must terminate the
expression with a semicolon (;).
You may specify the MISSING option to declare temporary field values missing if
values in the expression are missing. The MISSING option is discussed in the
Creating Reports manual.

Modifying Data Sources With MODIFY

10-100 Information Builders

Using VALIDATE to Test Incoming Data
You use VALIDATE statements most often to test incoming data values, assigning the
temporary field a value of 0 if a value is not acceptable. The test expression can span
several lines, but it must end with a semi-colon (;). Tests you can use in VALIDATE
expressions are:

• IF…THEN…ELSE statements.

• Arithmetic expressions.

• Logical expressions.

• User functions and subroutines.

• DECODE functions.

• FIND and LOOKUP functions (see Special Functions on page 10-105).

You can use IF…THEN…ELSE statements in VALIDATE expressions (up to 16
statements per expression), such as:

SALTEST = IF SALARY LT 50000 THEN 1 ELSE 0;

If the incoming SALARY value is less than $50,000, the SALTEST temporary field is set
to 1. If SALARY is $50,000 or greater, SALTEST is set to 0 and the transaction is
rejected. Note that you may use all operations in VALIDATE IF…THEN…ELSE
statements that you use in COMPUTE and DEFINE statements (see the Creating Reports
manual). Also note that all alphanumeric literals must be enclosed in single quotation
marks.

Logical Expressions
If an expression is evaluated as true, the temporary field is set to 1. Otherwise, the field is
set to 0. For example:

SALTEST = SALARY LT 50000;

Note that you can use AND and OR operands in logical expressions, as discussed in the
Creating Reports manual. For example:

SALTEST = (SALARY LT 50000) AND (JOB EQ 'B12');

If the incoming salary value is less than $50,000 and the job code is B12, SALTEST is set
to 1. Otherwise, SALTEST is set to 0.

 Computations: COMPUTE and VALIDATE

Maintaining Databases 10-101

The DECODE Function
This function allows you to compare an incoming field value against a list of acceptable
and unacceptable values. For example:

SALTEST = DECODE JOBCODE (A03 0 B07 0 B12 0 ELSE 1);

If the incoming job code is A03, B07, or B12, SALTEST is set to 0.

The FIND Function
This function searches another FOCUS data source for the presence of the incoming field
value. If the value is there, the temporary field is set to a non-zero value; otherwise the
field is set to 0. For example:

SALTEST = FIND(EMP_ID IN EDUCFILE);

If the incoming employee ID value is not present in the EDUCFILE data source,
SALTEST is set to 0. The FIND function is discussed in Special Functions on page
10-105.

The following MODIFY request validates the DEPARTMENT and CURR_SAL fields:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID DEPARTMENT CURR_SAL
VALIDATE

DEPTEST = IF DEPARTMENT IS 'MIS' THEN 1 ELSE 0;
SALTEST = CURR_SAL LT 50000;

MATCH EMP_ID
ON NOMATCH REJECT
ON MATCH UPDATE CURR_SAL

DATA

This request will only accept your transactions if you enter MIS for the DEPARTMENT
field and a value less than 50,000 for the CURR_SAL field.

Modifying Data Sources With MODIFY

10-102 Information Builders

Action on Invalid Data: The ON INVALID Phrase
If a VALIDATE statement invalidates a transaction, you may take action using the ON
INVALID phrase. This phrase allows you to:

• Branch to another case using Case Logic. Case Logic is discussed in Case Logic on
page 10-131.

• Type a message. Typing messages are discussed in Messages: TYPE, LOG, and
HELPMESSAGE on page 10-115.

The ON INVALID phrase immediately follows the validate statement. The syntax is

ON INVALID GOTO casename
ON INVALID PERFORM casename
ON INVALID TYPE [ON ddname]

where:

GOTO casename

Branches to another case called casename. GOTO also takes other options described
in Branching to Different Cases: The GOTO, PERFORM, and IF Statements on page
10-136.

PERFORM casename

Branches to another case called casename. Execution then continues with the next
statement after ON INVALID. PERFORM also takes other options discussed in
Branching to Different Cases: The GOTO, PERFORM, and IF Statements on page
10-136.

TYPE [ON ddname]

Displays a message of up to four lines on the terminal. If you use the ON ddname
option, the request writes the message to a sequential data source allocated to
ddname.

This request updates employee salaries. It warns you when you have entered a salary that
fails its validation test:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID CURR_SAL
VALIDATE

SALTEST = IF CURR_SAL GT 50000 THEN 0 ELSE 1;
ON INVALID TYPE

"YOU ENTERED A SALARY HIGHER THAN $50,000"
"THIS SALARY IS TOO HIGH"
"PLEASE REENTER THE EMPLOYEE ID AND SALARY"

MATCH EMP_ID
ON NOMATCH REJECT
ON MATCH UPDATE CURR_SAL

DATA

 Computations: COMPUTE and VALIDATE

Maintaining Databases 10-103

VALIDATE Phrases in MATCH and NEXT Statements
You may place VALIDATE statements in MATCH and NEXT statements. The request
only performs the validation if the MATCH or NEXT condition is met. These
VALIDATE phrases may use data source fields if these fields are either in the segment
instance being modified or in a parent instance along the segment path (the parent
instance, the parent’s parent, and so on until the root segment). To specify data source
field values, affix the D. prefix to the front of the field name.

Note that VALIDATE statements that follow a MATCH or NEXT statement may also use
data source fields if these fields are in the instance selected by the previous statement (or
are in the segment path).

This request makes sure that an employee’s new salary is not less than the present salary
after it ascertains that the employee’s ID is recorded in the data source:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH PROMPT CURR_SAL
ON MATCH VALIDATE

SALTEST = IF CURR_SAL GE D.CURR_SAL THEN 1
ELSE 0;

ON MATCH UPDATE CURR_SAL
DATA

Testing for the Presence of Transaction Data
You may test for missing data values in transactions using the MISSING feature in IF and
WHERE phrases, described in the Creating Reports manual. These features test if an
incoming field is present in the transaction or not, and are especially useful when the
transactions are in a transaction data source.

This request rejects transactions without a job code:

MODIFY FILE EMPLOYEE
FREEFORM EMP_ID CURR_JOBCODE CURR_SAL
VALIDATE

JOBTEST = IF CURR_JOBCODE IS NOT MISSING THEN 1
ELSE 0;

MATCH EMP_ID
ON NOMATCH REJECT
ON MATCH UPDATE CURR_JOBCODE CURR_SAL

DATA
EMP_ID=071382660, CURR_JOBCODE=A13, CURR_SAL=18500.00, $
EMP_ID=112847612, CURR_SAL=19200.50, $
END

Modifying Data Sources With MODIFY

10-104 Information Builders

Validating Values From a List: The DECODE Function
The DECODE function allows you to compare incoming data values against a list of
acceptable and unacceptable values. This function is described in the Creating Reports
manual. This section discusses how best to use the DECODE function to validate data.

The syntax of the DECODE function is

field = DECODE fieldname (code1 result1...[ELSE default]);

where:

field

Is the name of the temporary field. If the field is set to 0, the transaction is rejected.
Do not use an incoming field name or data source field name for this name.

fieldname

Is the incoming data field being tested.

code1 ...

Is the list of possible values.

result1

Is the number that the temporary field is set to if the incoming field has the preceding
value. Place a 0 after invalid values; place a non-zero number after valid values.

ELSE

Indicates what the temporary field is set to if the incoming field does not have a value
on the list. This list may have up to 32,767 literals.

For example, you want to record promotions to various company departments in the data
source. There are five possible departments: Marketing, Accounting, Shipping, Sales, and
Data Processing. You prepare this MODIFY request:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID DEPARTMENT
VALIDATE

DEPTEST = DECODE DEPARTMENT (MARKETING 1
ACCOUNTING 1 SHIPPING 1 SALES 1 MIS 1
ELSE 0);

MATCH EMP_ID
ON MATCH UPDATE DEPARTMENT
ON NOMATCH REJECT

DATA

This request accepts MARKETING, ACCOUNTING, SHIPPING, SALES, and MIS as
valid incoming values for the field DEPARTMENT, but rejects all other values.

You may also store the values in a separate file. The file must consist of stacked pairs of
values, the values in each pair separated by a comma or spaces (you may want to arrange
them in columns, see the example below). The left member of each pair is a possible
value and the right member is the value that the temporary field is set to should the
incoming data field have the value on the left.

 Computations: COMPUTE and VALIDATE

Maintaining Databases 10-105

The syntax of this form of the DECODE command is

field = DECODE infield (ddname ELSE m)

where:

field

Is the name of the temporary field. If the field is set to 0, the transaction is rejected.
Do not use an incoming or data source field name for this name.

infield

Is the incoming field being tested.

ddname

Is the ddname of the file containing the list of possible values. The file may contain
up to 32,767 bytes.

m

Is the value of field if the incoming data value is not in the list.

Below is a sample DECODE file.

MARKETING 1
ACCOUNTING 1
SHIPPING 1
SALES 1
MIS 1

Special Functions
There are two functions that you can use only in MODIFY COMPUTE and VALIDATE
statements. They are:

• The FIND function which tests for the existence of indexed values in FOCUS data
sources.

• The LOOKUP function which tests for the existence of non-indexed values in
cross-referenced FOCUS data sources and makes these values available for other
computations.

Note: The LAST function in MODIFY can be used in COMPUTEs and VALIDATEs, in
combination with FREEFORM or FIXFORM, to test incoming transaction values against
those from a previously read record. For further information on the LAST function see the
Creating Reports manual.

Modifying Data Sources With MODIFY

10-106 Information Builders

Testing for the Existence of Indexed Values in FOCUS Data
Sources: The FIND Function
The FIND function verifies if an incoming data value is in a FOCUS data source field,
whether the field is in the data source you are modifying or in another data source. The
function sets a temporary field to a non-zero value if the incoming value is in the data
source field and 0 if it is not. Note that a value greater than zero confirms the presence of
the data value, not the number of instances in the data source field. You can then test and
branch on this field using Case Logic, described in Case Logic on page 10-131.

Note that the data source field you are searching must be indexed, and that the FIND
function does not work on data sources with different DBA passwords.

The syntax of the FIND function is

field = FIND(fieldname [AS dbfield] IN file);

where:

field

Is the name of the temporary field.

fieldname

Is the full name (not the alias or a truncation) of the incoming field being tested.

AS dbfield

Is the full name (not the alias or a truncation) of the data source field containing
values to be compared with the incoming data field. This field must be indexed. If the
incoming field and the data source field have the same name, you can omit this
phrase.

file

Is the name of the data source.

Note that there can be no space between FIND and the left parenthesis.

The opposite of FIND is NOT FIND. The NOT FIND function sets a temporary field to 1
if the incoming value is not in the data source and 0 if the incoming value is in the data
source. Its syntax is

field = NOT FIND(infield [AS dbfield] IN file)

where field, infield, dbfield, and file were explained previously.

You can use any number of FIND functions in COMPUTE and VALIDATE statements.
However more FIND functions increase processing time and require more buffer space in
core.

 Computations: COMPUTE and VALIDATE

Maintaining Databases 10-107

This request tests if each employee ID entered is also in the EDUCFILE data source. It
then displays a message informing you whether it found the ID in the data source or not.

MODIFY FILE EMPLOYEE
PROMPT EMP_ID
COMPUTE

EDTEST = FIND(EMP_ID IN EDUCFILE);
MSG/A40 = IF EDTEST IS 1 THEN

'STUDENT LISTED IN EDUCATION FILE' ELSE
'STUDENT NOT LISTED IN EDUCATION FILE';

MATCH EMP_ID
ON NOMATCH TYPE "<MSG"
ON MATCH TYPE "<MSG"

DATA

Using the FIND Function in VALIDATE Statements
You may use the FIND function in a VALIDATE statement to test if a transaction field
value exists in another FOCUS data source. If the field value is not in that data source, the
function returns a value of 0, causing the validation to fail and the request to reject the
transaction.

This request updates the number of hours spent by employees in class. It rejects
employees not listed in the EDUCFILE data source, which records class attendance:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID ED_HRS
VALIDATE

EDTEST = FIND(EMP_ID IN EDUCFILE);
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH UPDATE ED_HRS

DATA

This VALIDATE statement will discard any incoming EMP_ID value not found in the
EDUCFILE data source.

Modifying Data Sources With MODIFY

10-108 Information Builders

Reading Cross-referenced FOCUS Data Sources: The LOOKUP
Function
The LOOKUP function retrieves data values from cross-referenced data sources, both
data sources cross-referenced statically in the Master File and data sources joined
dynamically by the JOIN command. The LOOKUP function is necessary because unlike
TABLE requests, MODIFY requests cannot read cross-referenced data sources freely.
With the LOOKUP function, the requests can use the data in computations and in
messages but cannot modify cross-referenced data sources; to modify more than one data
source in one request, use the COMBINE command discussed in Modifying Multiple
Data Sources in One Request: The COMBINE Command on page 10-188.

The LOOKUP function can read cross-referenced segments that are linked directly to a
segment in the host data source (the host segment). This means that the cross-referenced
segments must have segment types of KU, KM, DKU, or DKM (but not KL or KLU) or
contain the cross-referenced field specified by the JOIN command (see the Describing
Data manual).

The cross-referenced segment contains two fields of interest:

• The field containing the values you want. This is the field the LOOKUP function
specifies. For example, this LOOKUP function retrieves values from the
DATE_ATTEND field:

RTN = LOOKUP(DATE_ATTEND);

• The cross-referenced field. This field shares values with a field in the host segment
called the host field. These two fields link the host segment to the cross-referenced
segment. The LOOKUP function uses the cross-referenced field, which is indexed, to
locate a specific segment instance.

To use the LOOKUP function, the MODIFY request reads a transaction value for the host
field. The LOOKUP function then searches the cross-referenced segment for an instance
containing this value in the cross-referenced field:

• If there are no such instances, the function sets a return variable to 0. If you use the
field specified by the LOOKUP function in the request, the field assumes a value of
blank if alphanumeric and 0 if numeric.

• If there are instances (there can be more than one if the cross-referenced segment
type is KM, DKM, or if you specified the ALL keyword in the JOIN command), the
function sets the return variable to one and retrieves the value of the specified field
from the first instance it finds.

 Computations: COMPUTE and VALIDATE

Maintaining Databases 10-109

The syntax of the LOOKUP function is

rcode = LOOKUP(field);

where:

rcode

Is a variable you specify to receive a return code value. This value is 1 if the
LOOKUP function can locate a cross-referenced segment instance, 0 if the function
cannot.

field

Is the field that you want to retrieve in the cross-referenced data source. Note that this
field name cannot exist in the host data source, and that the LOOKUP function may
specify only one field at a time. Each field you wish to retrieve requires a separate
LOOKUP function. To look up all fields in the cross-referenced segment, use
LOOKUP (SEG.field).

Note that there may be no space between LOOKUP and the left parenthesis. The
LOOKUP function can exist by itself or as part of a larger expression. If it exists by itself,
it must terminate with a semicolon.

For example, you wish to update the amount of classroom hours employees have spent.
Because of a new system of accounting, employees taking classes after January 1, 1985
are to be credited with 10% more classroom hours than their records indicate.

The employee IDs (EMP_ID) and classroom hours (ED_HRS) are located in the host
segment. The class dates (DATE_ATTEND) are located in the cross-referenced segment.
The shared field is the employee ID field.

The data source structure is shown in this diagram:

EMP_ID
ED_HRS

DAT_INC EMP_ID
DATE_ATTEND

DED_CODECOURSE_CODE
COURSE_NAME

PAY_DATETYPEBANK_NAME

Modifying Data Sources With MODIFY

10-110 Information Builders

The request is:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID ED_HRS
COMPUTE

EDTEST = LOOKUP(DATE_ATTEND);
COMPUTE
ED_HRS = IF DATE_ATTEND GE 820101 THEN ED_HRS * 1.1

ELSE ED_HRS;
MATCH EMP_ID

ON MATCH UPDATE ED_HRS
ON NOMATCH REJECT

DATA

A sample execution of this request might go as follows:

1. The request prompts you for an employee ID and number of class hours. You enter
the ID 117593129 and 10 class hours.

2. The LOOKUP function locates the first instance in the cross-referenced segment
containing the employee ID 117593129. Since the instance exists, the function
returns a 1 to the EDTEST variable. This instance lists the class date as 821028
(October 28, 1982).

3. The LOOKUP function retrieves the value 821028 for the DATE_ATTEND field.

4. The COMPUTE statement tests the value of the DATE_ATTEND field. Since
October 28, 1982 is after January 1, 1982, the statement increases the incoming
ED_HRS value from 10 to 11 hours.

5. The request updates the classroom hours for employee 117593129 using the new
ED_HRS value.

You may also use a data source value in a specific host segment instance to search the
cross-referenced segment. To do this, prepare the request this way:

• In the MATCH statement that selects the host segment instance, activate the host
field. This can be done with the ACTIVATE phrase (discussed in Active and Inactive
Fields on page 10-197).

• In the same MATCH statement, place the LOOKUP function after the ACTIVATE
phrase.

This request displays the employee IDs, dates of salary raises, employee names, and the
position each employee held after the raise was granted:

• The employee IDs and names (EMP_ID) are in the root segment.

• The date of raise (DAT_INC) is in the descendant host segment.

• The job titles are in the cross-referenced segment.

• The shared field is JOBCODE. You never enter any job codes; the values are all
stored in the data source.

 Computations: COMPUTE and VALIDATE

Maintaining Databases 10-111

The request is:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID DAT_INC
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH CONTINUE

MATCH DAT_INC
ON NOMATCH REJECT
ON MATCH ACTIVATE JOBCODE
ON MATCH COMPUTE

RTN = LOOKUP(JOB_DESC);
ON MATCH TYPE

"EMPLOYEE ID: <EMP_ID"
"DATE INCREASE: <DAT_INC"
"NAME: <D.FIRST_NAME <D.LAST_NAME"
"POSITION: <JOB_DESC"

DATA

A sample execution might go as follows:

1. The request prompts you for an employee ID and date of pay raise. You enter
employee ID 071382660 and date of raise 820101 (January 1, 1982).

2. The request locates the instance containing the ID 071382660, then locates the child
instance containing the date of raise 820101.

3. This child instance contains the job code A07. The ACTIVATE statement activates
this value, making it available to the LOOKUP function.

4. The LOOKUP function locates the job code A07 in the cross-referenced segment. It
returns a 1 into the RTN variable and retrieves the corresponding job description of
SECRETARY.

5. The request displays the values using a TYPE statement:

EMPLOYEE ID: 071382660
DATE INCREASE: 82/01/01
NAME: ALFRED STEVENS
POSITION: SECRETARY

Modifying Data Sources With MODIFY

10-112 Information Builders

Note: You may also need to activate the host field if you are using the LOOKUP function
within a NEXT statement. This request, similar to the previous one except for the NEXT
statement, displays the latest position held by a particular employee.

MODIFY FILE EMPLOYEE
PROMPT EMP_ID
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH CONTINUE

NEXT DAT_INC
ON NONEXT REJECT
ON NEXT ACTIVATE JOBCODE
ON NEXT COMPUTE

RTN = LOOKUP(JOB_DESC);
ON MATCH TYPE

"EMPLOYEE ID: <EMP_ID"
"DATE OF POSITION: <DAT_INC"
"NAME: <D.FIRST_NAME <D.LAST_NAME"
"POSITION: <JOB_DESC"

DATA

LOOKUP Extended Syntax
If the function cannot locate a value of the host field in the cross-referenced segment, you
may specify that the LOOKUP function locate the next highest or lowest cross-referenced
field value in the cross-referenced segment by using an extended syntax.

To use this LOOKUP feature, the index must have been created on FOCUS Release 4.5
or later with the INDEX parameter set to NEW (the binary tree scheme). To determine
what type of index your data source uses, enter the ? FDT command (see the Developing
Applications manual).

Note that a field retrieved by the LOOKUP function does not require the D. prefix to be
displayed in TYPE statements. FOCUS treats the field value as a transaction value.

The extended syntax of the LOOKUP function is

COMPUTE
rcode = LOOKUP(field operator);

where:

rcode

Is a variable you specify to receive a return code value. (The value the variable
receives depends on the outcome of the function below.)

field

Is the name of the field you want to use in MODIFY computations. Note that this
cannot be the cross-referenced field.

 Computations: COMPUTE and VALIDATE

Maintaining Databases 10-113

operator

These parameters specify the action the request takes if there is no cross-referenced
segment instance corresponding to the host field value. The actions can be one of the
following:
EQ causes the LOOKUP function to take no further action if an exact match is not
found. If a match is found, the value of rcode is set to 1; otherwise, it is set to 0. This
is the default.
GE causes the LOOKUP function to locate the instance with the exact or next highest
value of the cross-referenced field.
LE causes the LOOKUP function to locate the instance with the exact or next lowest
value of the indexed field.

Note that there can be no space between LOOKUP and the left parenthesis.

This table summarizes the value of rcode depending on which instance the LOOKUP
function locates:

Action rcode value

Exact cross-referenced value located 1

Next highest cross-referenced value located 2

Next lowest cross-referenced value located -2

Cross-referenced field value not located 0

Modifying Data Sources With MODIFY

10-114 Information Builders

Using the LOOKUP Function in VALIDATE Statements
When you use the LOOKUP function, you may want to reject transactions containing
values for which there is no corresponding instance in the cross-reference segment. To do
this, place the function in a VALIDATE statement. If the function cannot locate the
instance in the cross-referenced segment, it sets the value of the return variable to 0. This
causes the request to reject the transaction.

The following request updates an employee’s classroom hours (ED_HRS). If the
employee attended classes on or after January 1, 1982, the request increases the number
of classroom hours by 10%. The classroom attendance dates are stored in a
cross-referenced segment (field DATE_ATTEND). The shared field is the employee ID.

The request is:

MODIFY FIELD EMPLOYEE
PROMPT EMP_ID ED_HRS
VALIDATE

TEST_DATE = LOOKUP(DATE_ATTEND);
COMPUTE

ED_HRS = IF DATE_ATTEND GE 820101 THEN ED_HRS * 1.1
ELSE ED_HRS;

MATCH EMP_ID
ON MATCH UPDATE ED_HRS
ON NOMATCH REJECT

DATA

If the employee is not recorded in the cross-referenced segment, then the employee has
never attended a class. This means that a transaction recording the employee’s classroom
hours is an error and should be rejected.

This is the purpose of the LOOKUP function in the VALIDATE statement. If the function
cannot locate an employee’s record in the cross-referenced segment, it returns a 0 to the
TEST_DATE field. This causes the request to reject the transaction.

 Messages: TYPE, LOG, and HELPMESSAGE

Maintaining Databases 10-115

Messages: TYPE, LOG, and HELPMESSAGE
This section describes how MODIFY requests handle messages. There are four types:

• Messages written into requests.

• Messages indicating the rejection of transactions.

• Messages originating from the Master File with the HELPMESSAGE attribute.

• Messages that echo transactions.

These messages are helpful in debugging MODIFY requests, locating rejected
transactions, and instructing the operator. There are two statements and one attribute that
control the display of messages:

• The TYPE statement enables you to write messages to the terminal and to sequential
files.

• The LOG statement stores incoming or rejected transactions in sequential files and
controls the display of rejection messages.

• The HELPMESSAGE attribute is a field attribute included in the Master File (of
FOCUS data sources). Text messages specified in the Master are displayed in the
TYPE area of MODIFY CRTFORMs.

Displaying Specific Messages: The TYPE Statement
The TYPE statement either displays on the terminal or stores in a sequential file messages
that you prepare. This section describes:

• The syntax of the TYPE statement.

• Use of embedded data fields.

• Use of spot markers.

• Use of extended attributes.

Note: Text fields cannot be used with the TYPE statement.

Modifying Data Sources With MODIFY

10-116 Information Builders

Syntax TYPE Statement
The syntax of the TYPE statement is

TYPE [AT START|AT END] [ON ddname]

"message"
["message"]

where:

AT START

Displays a message at the beginning of execution only.

AT END

Displays a message at the end of execution only. If you are using Case Logic, the
TYPE AT END statement must be in the case that generates the end-of-file
condition. Either the case must include a FIXFORM or FREEFORM statement that
will reach the end of the transaction data source, or a PROMPT statement at which
the user will type END or QUIT, or a CRTFORM statement at which the user will
type END or press the PF3 key.

ON ddname

Writes the message to a sequential file allocated to ddname. The TYPE statement can
write lines of up to 256 characters each, including blanks and embedded field values.
If you omit this phrase, the request displays the message on the terminal.

message

Is any message. Enclose each line in double quotation marks (except when you want
to display two lines as one line, as described later in this section in Embedding Spot
Markers on page 10-120.) If you are displaying messages at the terminal, the lines
begin in column 2 on the screen. If you are writing the message to a file, the lines
begin in column 3 in the file. You may embed spot markers and data fields in the
message.

Note that you can type the TYPE statement on one line. For example:

TYPE "THIS IS A ONE LINE MESSAGE"

TYPE statements can stand by themselves, they can be part of MATCH and NEXT
statements, and they can follow VALIDATE statements. For example:

MODIFY FILE EMPLOYEE
TYPE

" "
"PLEASE ENTER THE FOLLOWING DATA"
" "

PROMPT EMP_ID CURR_SAL
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH UPDATE CURR_SAL

DATA

 Messages: TYPE, LOG, and HELPMESSAGE

Maintaining Databases 10-117

This request asks the user to enter data at the beginning of every transaction. Note that
there is a blank message line both before and after the message “PLEASE ENTER THE
FOLLOWING DATA:” This enhances readability and appearance.

TYPE statements may be part of MATCH and NEXT statements. For example, this
request warns the user when an employee ID which the user has entered is not in the data
source:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID CURR_SAL
MATCH EMP_ID

ON MATCH UPDATE CURR_SAL
ON NOMATCH TYPE

" "
"NO SUCH EMPLOYEE IN THE DATABASE"
"PLEASE RETYPE THE EMPLOYEE ID"

ON NOMATCH REJECT
DATA

TYPE statements can display messages when incoming data values fail validation tests, as
discussed in Validating Transaction Values: The VALIDATE Statement on page 10-97.
For example, this request warns the user when a salary higher than $50,000 is entered:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID CURR_SAL
VALIDATE

SALTEST = IF CURR_SAL LE 50000 THEN 1 ELSE 0;
ON INVALID TYPE

" "
"THE CURR_SAL VALUE IS OVER 50000"
"AND THEREFORE CANNOT BE ENTERED INTO THE"
"DATABASE. PLEASE NOTIFY YOUR SUPERVISOR."

MATCH EMP_ID
ON MATCH UPDATE CURR_SAL
ON NOMATCH REJECT

DATA

Note that ON INVALID TYPE phrases can occur after VALIDATE statements that stand
by themselves or are part of MATCH statements. For example:

MATCH PAY_DATE
ON NOMATCH REJECT
ON MATCH VALIDATE

GROSS_TEST = IF GROSS LT 1500 THEN 1 ELSE 0;
ON INVALID TYPE

"GROSS OVER $1500. PLEASE REENTER"

Modifying Data Sources With MODIFY

10-118 Information Builders

Embedding Data Fields
You can embed data fields in the middle of messages. Embedded data fields are described
in the Creating Reports manual. The kind of field you may embed depends on the
position of the TYPE statement:

• TYPE statements preceding MATCH or NEXT statements only accept incoming data
fields in messages, not data source fields.

• This request contains a TYPE statement before the MATCH statement:

MODIFY FILE EMPLOYEE
FIXFORM EMP_ID/9 X1 CURR_SAL/8
TYPE

"EMPLOYEE ID: <EMP_ID SALARY: <CURR_SAL"
MATCH EMP_ID

ON MATCH UPDATE CURR_SAL
ON NOMATCH REJECT

DATA ON EMPSAL
END

• TYPE phrases in or following a MATCH or NEXT statement accept both incoming
data fields and data source fields in messages. The data source field must either be in
the segment instance that the MATCH or NEXT statement is modifying or in a parent
instance along the segment path (the parent instance, the parent’s parent, and so on to
the root segment). To specify a data source field, affix the prefix D. to the field name.

This TYPE phrase displays both the incoming value of CURR_SAL and the data source
value:

ON MATCH TYPE
"SALARY ENTERED IS: <CURR_SAL"
"OLD SALARY WAS: <D.CURR_SAL"

You can use embedded fields together in a statement to display a total. This request totals
all salaries updated:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID CURR_SAL
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH COMPUTE

TOTAL_SAL/D10.2 = TOTAL_SAL + CURR_SAL;
ON MATCH UPDATE CURR_SAL

TYPE AT END
"TOTAL OF ALL NEW SALARIES IS <TOTAL_SAL"

DATA

 Messages: TYPE, LOG, and HELPMESSAGE

Maintaining Databases 10-119

Every time the user enters a salary, the request adds it to the running total TOTAL_SAL.
After the user enters the last salary, the request displays the TOTAL_SAL value
embedded in the message.

Note: Each line of text can contain up to 256 characters. This includes the lengths of the
embedded fields as defined by the display field formats (for example, the CURR_SAL
field, having the format D12.2M, takes up 15 characters, including decimal point,
commas, and dollar sign).

Embedded fields enable you to design your own log files to record transactions, replacing
the automatic log file facility activated by the LOG statement. This request logs accepted
transactions into the file ACCFILE and logs rejected transactions into the file REJFILE:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID CURR_SAL
MATCH EMP_ID

ON MATCH TYPE ON ACCFILE
"<EMP_ID <12 <CURR_SAL"

ON MATCH UPDATE CURR_SAL
ON NOMATCH TYPE ON REJFILE

"<EMP_ID <12 <CURR_SAL"
ON NOMATCH REJECT

DATA

This request records in the ACCFILE file the employee ID and new salary entered by the
user if the ID is in the data source and records the ID and salary in the REJFILE file if the
ID is not in the data source. Note that the spot markers in both TYPE messages ensure
that the fields will be aligned in the files, making the files fixed sequential files. If the
request logged the transactions using the MODIFY LOG facility, the files would have
been comma-delimited because the request uses PROMPT to input data. Note that you
must issue a FILEDEF or allocation for each log file prior to using it in the MODIFY
request.

Modifying Data Sources With MODIFY

10-120 Information Builders

Embedding Spot Markers
You can embed spot markers in TYPE statement messages. Spot markers are devices that
place message text at different places on the screen. Spot markers are described in
Chapter 4, Tutorial: Painting a Procedure. Some common spot markers are shown below
(where n is an integer):

<n

Places text starting at the nth column.

<+n

Places text n columns to the right.

</n

Places text n lines down.

<0X

Positions the next character immediately to the right of the last character (skip zero
columns). This is used when you have two or more lines between the double
quotation marks in a procedure that make up a single line of information on a FIDEL
screen. No spaces are inserted between the spot marker and the start of a continuation
line.

For example, the statement

TYPE
"THE DOLLAR SIGN IS IN COLUMN 40: <40 $"
"TEN SPACES ARE EMBEDDED <+10 IN THIS LINE"
"</1 THIS LINE SKIPS A LINE <0X
AND PROVIDES AN EXAMPLE OF THE USE <0X
OF A COLUMN MARKER"

produces the following output:

Note: The spot marker to skip a line, </n, can appear on the same line with other text in a
TYPE statement. However, in a CRTFORM, this spot marker must appear on a line by
itself (see Chapter 11, Designing Screens With FIDEL).

Sometimes, a line of text you want displayed cannot fit on one line within the TYPE
command. This can occur because you are indenting lines or because there are
non-printable characters in the message, such as spot markers and field prefixes. To have
two lines in the TYPE statement displayed as one line, do the following:

• End the first line without an end quotation mark.

• Do not begin the second line with a quotation mark. Instead, begin the line with a
<+n spot marker where n is any number greater than or equal to zero.

 Messages: TYPE, LOG, and HELPMESSAGE

Maintaining Databases 10-121

This TYPE statement demonstrates how this feature can be used:

TYPE
"<D.FIRST_NAME <D.LAST_NAME EMP. #<EMP_ID
<+1 SALARY: <CURR_SAL"

If you enter in the employee ID 123764317 and a salary of $27,000, the request displays
this message:

JOAN IRVING EMP. #123764317 SALARY: $27,000.00

You may write a message of several lines this way. Begin the first line of the message
with a quotation mark and end the last line with a quotation mark. Begin alternating lines
with the <+1 spot marker. This causes the request to display every two lines of text as one
line.

For example, if you type this statement in the request:

TYPE
"SALARY UPDATE PROCEDURE
<+1 WRITTEN JUNE 26, 1985"
"ENTER EACH EMPLOYEE ID AND SALARY
<+1 AFTER THE PROMPTS"

The request displays the message as:

SALARY UPDATE PROCEDURE WRITTEN JUNE 26, 1985
ENTER EACH EMPLOYEE ID AND SALARY AFTER THE PROMPTS

The following request employs both spot markers and embedded fields in messages:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID
MATCH EMP_ID

ON NOMATCH TYPE
"</1 EMPLOYEE <EMP_ID NOT IN THE DATABASE"
"PLEASE RETYPE NUMBER OR NOTIFY SUPERVISOR"

ON NOMATCH REJECT
ON MATCH TYPE

"</1 EMPLOYEE <15 LAST_NAME <30 FIRST_NAME <45 SALARY"
"</1 <EMP_ID <15 <D.LAST_NAME
<+1 <30 <D.FIRST_NAME <40 <D.CURR_SAL"
"</1 ENTER SALARY FOR EMPLOYEE <EMP_ID"
" "

ON MATCH PROMPT CURR_SAL
ON MATCH UPDATE CURR_SAL

DATA

Modifying Data Sources With MODIFY

10-122 Information Builders

When you execute this request, the session looks like this:

> EMPLOYEE ON 10/10/98 AT 19.44.47
DATA FOR TRANSACTION 1

EMP_ID = > 451123478

EMPLOYEE LAST_NAME FIRST_NAME SALARY

451123478 MCKNIGHT ROGER $16,100.00

ENTER SALARY FOR EMPLOYEE 451123478

CURR_SAL = > 18500
DATA FOR TRANSACTION 2

EMP_ID = >

Screen Attributes
If your request includes CRTFORMs, you can enhance TYPE statements with screen
attributes, devices that display a line, part of a line, or an embedded field in color, in
reverse video, flashing, or underlined. Screen attributes are discussed in Chapter 11,
Designing Screens With FIDEL, in connection with the FIDEL facility.

Note the following when using screen attributes in TYPE statements:

• You may use screen attributes only in TYPE statements that follow a CRTFORM and
will appear on the screen beneath the CRTFORM during execution.

• Extended attributes in TYPE statements only work on terminals that can process all
screen attributes. To use screen attributes in TYPE statements you must issue the
command:

SET EXTTERM = ON

• When you add an attribute to a line, whether you place the attribute before a field or
before text, the attribute remains in effect until the end of the line or until the next
attribute, whichever comes first.

• Attributes for TYPE statements are cleared at the end of each line. To apply an
attribute to a block of text, type the attribute at the beginning of each line.

 Messages: TYPE, LOG, and HELPMESSAGE

Maintaining Databases 10-123

This request uses attributes in TYPE statements:

MODIFY FILE EMPLOYEE
CRTFORM
"ENTER EMPLOYEE ID: <EMP_ID"
"ENTER SALARY: <CURR_SAL"

MATCH EMP_ID
ON MATCH UPDATE CURR_SAL
ON NOMATCH TYPE
"<.WHITE. EMPLOYEE #<.AQUA.EMP_ID"
"<.WHITE. IS <.RED. NOT <.WHITE. IN THE DATABASE"
"<.WHITE. PLEASE NOTIFY SUPERVISOR"
ON NOMATCH REJECT

DATA
END

The request displays the employee ID in aquamarine and the EMPLOYEE IS NOT IN
THE DATABASE message in white, except for the word NOT which is in red.

Logging Transactions: The LOG Statement
The LOG statement enables you to record transactions in sequential files automatically
and to control the display of rejection messages at the terminal. You may use the LOG
statement to record transactions in files, one file for each type of transaction: all
transactions, accepted transactions, and different types of rejected transactions. The
statement can also shut off MODIFY command rejection messages, enabling you to
substitute your own. ..:

Logging Transactions in Sequential Files
The LOG statement enables you to record transactions processed by a MODIFY request
in sequential files. You can record all transactions or only transactions accepted into the
data source. You can record in separate files transactions rejected because of an ON
MATCH REJECT or ON NOMATCH REJECT phrase, transactions rejected because of
validation tests, and transactions rejected because of format errors.

Note that you can design your own log files by using the TYPE ON ddname statement
described in Displaying Specific Messages: The TYPE Statement on page 10-115 instead
of the LOG facility.

Modifying Data Sources With MODIFY

10-124 Information Builders

You add a LOG statement for each file in which you are storing transactions. The syntax
for the LOG statement is

LOG category [ON ddname] [MSG {ON|OFF}]

where:

category

Is the type of transaction to be logged. The types are:
TRANS are all transactions processed by the request.
ACCEPT are transactions accepted into the data source.
DUPL are transactions rejected because of an ON MATCH REJECT phrase (the
transactions have field values that match those in the data source).
NOMATCH are transactions rejected because of an ON NOMATCH REJECT phrase
(the transactions have field values that do not match values in the data source).
INVALID are transactions rejected because of data values that failed validation tests.
FORMAT are transactions rejected because of data values that have invalid formats (for
example: a numeric field containing letters; an alphanumeric field with more
characters than allowed by the format). Any non-CRTFORM transaction that fails an
ACCEPT test can also be logged to this file.

ddname

The ddname of the file to which you are writing.

MSG

Controls the display of rejection messages (messages displayed on the terminal when
a transaction is rejected). The default setting is ON, except for ACCEPT where the
default is OFF. The ON setting enables the display of rejection messages

You can log messages on six files in one request. If the files existed before the user
executed the request, the logged transactions replace the file contents

How the request stores transactions depends on the statement used to read them in

FIXFORM The request stores the transactions in fixed format. Each
FIXFORM statement retrieving data from the data source logs
one transaction. Each transaction consists of the fields defined
by the FIXFORM statement plus the fields to the end of the
physical record.

FREEFORM The request stores the transactions in comma-delimited format.
Each FREEFORM statement logs one transaction. Each
transaction consists of one physical record delimited by a
comma-dollar sign (,$).

Note: Unless FREEFORM is explicitly included in the syntax,
only the last line entered will be logged.

 Messages: TYPE, LOG, and HELPMESSAGE

Maintaining Databases 10-125

PROMPT The request stores the transactions in comma-delimited format.
Each PROMPT statement logs one transaction. Each
transaction consists of data collected from the first PROMPT
statement in the request to the PROMPT statement logging the
transaction.

CRTFORM The request stores the transactions in fixed format. Each
CRTFORM logs one transaction. Each transaction consists of
data collected from the first CRTFORM in the request to the
CRTFORM logging the transaction.

When you allocate the files, you must assign each file a record length just large enough to
hold the transaction. How you determine the length depends on how the request reads
transactions:

FIXFORM and FREEFORM Define the record length as the length of the longest logical
transaction record, including blanks and commas between the
fields. Remember that a logical transaction record can extend
over more than one line in the transaction data source (but is
recorded as one line in the log file).

PROMPT Define the record length as the sum of the lengths of the fields
as defined by the FORMAT attribute (for example, a field
having a format of D12.2 has a length of 12), plus one byte for
each field, plus one more byte.

CRTFORM Define the record length as the sum of the lengths of the fields
as defined by the FORMAT attribute (for example, a field
having a format of D12.2 has a length of 12), plus one byte for
each CRTFORM, plus one more byte.

Modifying Data Sources With MODIFY

10-126 Information Builders

The sample request below updates employee salaries and logs the transactions on five
separate files. The original transaction data source was stored in file ddname SALFILE.
Note the VALIDATE statement that checks if the salary in each transaction exceeds
$50,000.

MODIFY FILE EMPLOYEE

LOG TRANS ON ALLTRANS
LOG ACCEPT ON GOODTRAN
LOG NOMATCH ON NOEMPL
LOG INVALID ON BIGSAL
LOG FORMAT ON BADFORM

PROMPT EMP_ID CURR_SAL
VALIDATE

SAL_TEST = IF CURR_SAL GT 50000 THEN 0 ELSE 1;
MATCH EMP_ID

ON MATCH UPDATE CURR_SAL
ON NOMATCH REJECT

DATA

Note the five files specified in the LOG statements:

• The ALLTRANS file records all transactions.

• The GOODTRAN file records transactions accepted into the data source.

• The NOEMPL file records transactions with employee IDs that do not exist in the
data source.

• The BIGSAL file records transactions with salaries that are too big (over $50,000).

• The BADFORM file records transactions with salaries having invalid characters.

 Messages: TYPE, LOG, and HELPMESSAGE

Maintaining Databases 10-127

Controlling the Printing of Rejection Messages
The MSG option on a LOG statement allows you to control the display of FOCUS
automatic rejection messages. You can replace these messages by shutting them off and
displaying your own messages using the TYPE command. The FOCUS messages are the
following:

• For transactions rejected because of an ON MATCH REJECT phrase (the
transactions have values that match values in the data source)

(FOC405)TRANS n REJECTED DUPL: segment

where n is the transaction number and segment is the data source segment containing
the data value that matched the transaction value.

• For transactions rejected because of an ON NOMATCH REJECT phrase (the
transactions have values that do not match values in the data source)

(FOC415) TRANS n REJECTED NOMATCH segment

where n is the transaction number and segment is the data source segment containing
the data field that failed to match the transaction value.

• For transactions rejected because of values that failed validation tests

(FOC421)TRANS n REJECTED INVALID field

where n is the transaction number and field is the return code field.

• For transactions read in via FIXFORM that were rejected because of values with
format errors or ACCEPT errors

(FOC428)TRANS n REJECTED FORMAT COL m FLD field

where n is the transaction number, m is the first column of the field having the error,
and field is the data field containing the error.

• For transactions read in via FREEFORM and PROMPT that were rejected because of
values with format errors

(FOC210) THE DATA VALUE HAS A FORMAT ERROR: v

where v is the data value.

• For transactions read in via CRTFORM that were rejected because of values with
format errors

SCREEN REJECTED.. FORMAT ERROR IN FIELD field

where field is the data field with the format error.

Modifying Data Sources With MODIFY

10-128 Information Builders

• For transactions read in via CRTFORM or PROMPT that were rejected because a
value failed in an ACCEPT test

(FOC534) Data Value is not among the acceptable values for: field

where field is the data field containing the error.

In addition, FOCUS displays the rejected transaction after each rejection message (except
for format error transactions read in via PROMPT and CRTFORM).

You may want to replace these messages with your own. To do so, use the TYPE
statement described in Displaying Specific Messages: The TYPE Statement on page 10-
115. To turn off the FOCUS messages, use the LOG statement with this syntax

LOG category [ON ddname] MSG {ON|OFF}

where:

category

Is the type of transaction that triggers the rejection message: DUPL, NOMATCH,
INVALID, and FORMAT. These types are described previously in Logging
Transactions in Sequential Files on page 10-123.

ON ddname

Logs the transaction in a file defined by ddname. This option is described previously
in Logging Transactions in Sequential Files on page 10-123.

MSG

Is the parameter that turns FOCUS rejection messages ON (the default) or OFF.

For example, this request shuts off the automatic NOMATCH message and replaces it
with another message:

MODIFY FILE EMPLOYEE
LOG NOMATCH MSG OFF
PROMPT EMP_ID CURR_SAL
MATCH EMP_ID

ON MATCH UPDATE CURR_SAL
ON NOMATCH TYPE

"THIS EMPLOYEE IS NOT RECORDED IN THE DATABASE"
"DID YOU ENTER THE ID NUMBER CORRECTLY?"
"THE NUMBER YOU ENTERED WAS: <EMP_ID"

ON NOMATCH REJECT
DATA

Note that you may combine logging and the display of rejection messages in one LOG
statement. For example, to both log transactions rejected because of the ON NOMATCH
REJECT phrase and shut off the FOCUS message that results from those transactions,
you can use this LOG statement:

LOG NOMATCH ON NOEMPL MSG OFF

Adding the logging facility enables the end user to deal with problem transactions after
entering all the data.

 Messages: TYPE, LOG, and HELPMESSAGE

Maintaining Databases 10-129

Displaying Messages: The HELPMESSAGE Attribute
The HELPMESSAGE attribute enables you to specify a text message in the Master File
of FOCUS data sources. The message is displayed in the TYPE area of MODIFY
CRTFORMs.

Syntax HELPMESSAGE
The syntax for specifying the HELPMESSAGE attribute in the Master File is

FIELDNAME=name, ALIAS=alias, FORMAT=format,
HELPMESSAGE= text...,$

where:

text

Is a one-line text message up to 78 characters which may include all characters and
digits. Text containing a comma must be enclosed in single quotation marks; leading
blanks are ignored.

For example:

FIELDNAME=LAST_NAME, ALIAS=LN, FORMAT=A10,
ACCEPT = SMITH JONES,
HELPMESSAGE = 'LAST_NAME MUST BE SMITH, OR JONES',$

The field for LAST_NAME has an ACCEPT attribute which tests values entered for that
field. If a value other than Smith or Jones is entered, the following messages will be
displayed:

(FOC534) DATA VALUE IS NOT AMONG ACCEPTABLE VALUES FOR LAST_NAME
LAST_NAME MUST BE SMITH, OR JONES

The HELPMESSAGE attribute can be used with a field that has an ACCEPT test (see the
Describing Data manual), or any other field in the Master File.

Modifying Data Sources With MODIFY

10-130 Information Builders

Messages specified with the HELPMESSAGE attribute are displayed when:

• The value entered for a data source field is invalid according to the ACCEPT test for
that field.

• The value entered for a data source field causes a format error.

• The user places the cursor in the data entry area for a particular field and presses a
predefined PF key.

Regardless of the condition that triggers display of the message specified with the
HELPMESSAGE attribute, the same message will appear.

Displaying Messages: Setting PF Keys to HELP
In order to see the HELPMESSAGE text for a field on the CRTFORM, set a PF key to
HELP before executing the MODIFY procedure. To set a PF key, enter

SET PFnn = HELP

where:

nn

Is the number of the PF key you want to define as your HELP key.

To display a message for a particular field, position the cursor on the data entry area for
that field on the CRTFORM and press the defined PF Key. If no message has been
specified for the field, the following message will be displayed:

NO HELP AVAILABLE FOR THIS FIELD.

 Case Logic

Maintaining Databases 10-131

Case Logic
Case Logic allows you to branch to different parts of MODIFY requests during execution.
This enables you to construct more complex MODIFY requests. For example, Case Logic
requests can offer the terminal operator the choice of different procedures, process
different transaction records differently, or update multiple segment instances with a
single transaction.

Case Logic also extends the use of the NEXT statement to process segment chains and
facilitates modifying multiple unique child segments.

To prepare a request using Case Logic, you divide the request into sections called cases.
Each case is labeled, allowing you to branch to the case from elsewhere in the request.

Syntax Case Statement
Each case begins with the statement

CASE {AT START|casename}

where:

AT START

Indicates that the case is to be executed only at the beginning of the request. This
case is called the START case.

casename

Is a label of up to 12 characters that does not contain embedded blanks or the
characters:

+ - * / & $ ’ "

Each case ends with the statement:

ENDCASE

The CASE and ENDCASE statements must both be on lines by themselves.

The first case in the request, the one immediately following the MODIFY command,
needs neither a beginning nor an ending statement. It is automatically assigned the label
TOP. Note, however, that if the request contains only one case, you may want to begin the
case with the statement CASE TOP and end it with ENDCASE. This allows you to
branch to the beginning of the request from its middle.

Modifying Data Sources With MODIFY

10-132 Information Builders

The following request updates employee salaries in the EMPLOYEE data source. If the
salary is above $50,000, the request has the user retype the value to confirm it:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID CURR_SAL
IF CURR_SAL GT 50000 GOTO CONFIRM ELSE GOTO NEWSAL;

CASE NEWSAL
MATCH EMP_ID

ON MATCH UPDATE CURR_SAL
ON NOMATCH REJECT

ENDCASE

CASE CONFIRM
TYPE

"THE SALARY YOU ENTERED EXCEEDS $50,000"
"PLEASE REENTER THE SALARY TO CONFIRM IT"
"OR ENTER A NEW SALARY"

PROMPT CURR_SAL
GOTO NEWSAL
ENDCASE
DATA

This request consists of three cases: the TOP case, the NEWSAL case, and the
CONFIRM case. (The blank lines between cases are there to enhance readability and are
not required.)

The TOP case contains the first two statements in the request:

PROMPT EMP_ID CURR_SAL
IF CURR_SAL GT 50000 GOTO CONFIRM

The TOP case prompts you for an employee ID and new salary. It then tests the salary
value you entered. If the salary is more than $50,000, it branches to the CONFIRM case.
Otherwise, the request proceeds with the next case.

The next case is the NEWSAL case. This case updates the employee salaries. After the
update, the request automatically returns to the beginning of the TOP case to prompt for
the next employee ID and salary.

The third case is the CONFIRM case. This is where the request branches if you enter a
salary higher than $50,000. The case asks you to reenter the salary. It then branches to the
NEWSAL case to enter the salary into the data source.

 Case Logic

Maintaining Databases 10-133

This is the order of cases executed if you enter a salary lower than $50,000:

1. The TOP case.

2. The NEWSAL case.

3. Back to the TOP case.

This is the order of cases executed if you enter a salary higher than $50,000:

1. The TOP case.

2. The CONFIRM case.

3. The NEWSAL case.

4. Back to the TOP case.

Rules Governing Cases
The following rules apply to cases:

• Each case (except for the TOP case) must begin with a CASE statement and end with
an ENDCASE statement; both statements must appear on separate lines.

• Each case must have a unique name within the MODIFY request.

• The TOP case is always the first case in the procedure. It has no beginning or ending
case statements. No other case may be labeled TOP.

• If the TOP case has both CRTFORM and COMPUTE commands, the CRTFORM
(data entry) is processed before the computation.

• There can be only one START case. If you include a START case, it must come after
the TOP case. The START case is discussed in Executing a Case at the Beginning of
a Request Only: The START Case on page 10-135.

• No case may be named EXIT. The label EXIT refers to the end of the request.

• Except for the TOP case which must come first and the START case which follows
after, the cases may appear in the request in any order.

• Except for the TOP and START cases, you can execute a case only by using a
GOTO, PERFORM, or IF statement to branch to it.

• At the end of a case, the request branches back to the TOP case unless a GOTO or IF
statement states otherwise.

Modifying Data Sources With MODIFY

10-134 Information Builders

• You cannot branch to the middle of a case, only to its beginning.

• Each case must contain complete MODIFY statements, not phrases or fragments. For
example, the following case is illegal

CASE REJECT
ON NOMATCH REJECT
ENDCASE

because ON NOMATCH REJECT is a phrase belonging to the MATCH statement.

• Cases cannot be nested; that is, you cannot put a case within another case. Each case
must end before another can begin.

• You cannot have a statement between two cases except for comments. As soon as one
case ends, the next case must begin.

• Certain MODIFY statements are global and apply to the request as a whole. We
recommend that these statements follow the last case:

START
STOP
LOG
DATA
CHECK

• Cases do not allow you to use either the FREEFORM or the PROMPT statement in
requests with FIXFORM or CRTFORM statements. You also cannot use more than
one FIXFORM statement with CRTFORMs. For using FIXFORM statements with
CRTFORMs, see Chapter 11, Designing Screens With FIDEL. You can mix
FREEFORM statements with PROMPT statements in one request, and one
FIXFORM statement with CRTFORM statements.

• There is no limit to the number of cases you can use in a MODIFY request.

• If a request executes a case repeatedly which has a CRTFORM, the case can produce
up to 75 TYPE messages. If it produces more, FOCUS aborts the request.

• If you use fields with D. and T. prefixes in TYPE statements and CRTFORMs, a
MATCH or NEXT statement must precede the fields, either in the same case or in a
previously executed case (but not before the TOP case).

 Case Logic

Maintaining Databases 10-135

Executing a Case at the Beginning of a Request Only: The START
Case

You can have your request begin execution with an initial case which is never executed
afterwards. This case is called the START case and begins with the label:

CASE AT START

You cannot branch from other cases to the START case, but you can branch from the
START case to other cases. If you do not branch to another case, the START case passes
control to the TOP case. Note that the START case comes after the TOP case in the text
of the request.

The following request counts how many employee salaries it updates. However, it starts
counting from three:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID CURR_SAL
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH COMPUTE

SALCOUNT/I4 = SALCOUNT + 1;
ON MATCH UPDATE CURR_SAL

TYPE AT END
"<SALCOUNT SALARIES PROCESSED"

CASE AT START
COMPUTE

SALCOUNT = 3;
ENDCASE
DATA

The START case initializes the SALCOUNT counter to 3. After that, the request does not
need to refer to the case again.

Note that temporary fields used in the START case that appear earlier in the request, must
have their formats defined there.

Modifying Data Sources With MODIFY

10-136 Information Builders

Branching to Different Cases: The GOTO, PERFORM, and IF
Statements

Three statements branch to other cases:

• The GOTO statement, which branches unconditionally to another case. After the case
executes, control returns to the TOP case.

• The PERFORM statement, which branches unconditionally to another case. When
the case called by the PERFORM reaches ENDCASE, control returns to the
statement following the PERFORM.

• The IF statement, which branches to GOTO or PERFORM as above, depending on
the value of a logical expression.

The GOTO Statement
GOTO statements unconditionally branch to another case. The syntax is

GOTO location

where:

location

Is one of the following:
TOP branches to the beginning of the TOP case.
ENDCASE branches to the end of the case. If the case was called by a PERFORM
statement either directly or indirectly (for example, a PERFORM statement called a
case that branched to this case), then control returns to the statement after the most
recently executed PERFORM statement. Otherwise, the request branches back to the
TOP case.
casename branches to the beginning of the specified case.
variable branches to the beginning of the case whose name is the value of the
temporary field variable. The temporary field must have a format of A12.
EXIT terminates the request. This is useful when you want to halt execution before the
last transaction in a data source or the transaction specified by the STOP command.
Note that the statement GOTO EXIT is legal even in MODIFY requests without
cases.

If a case does not have a GOTO statement, it branches to the TOP case upon completion
unless a PERFORM or IF statement branches somewhere else.

 Case Logic

Maintaining Databases 10-137

The PERFORM Statement
The PERFORM statement causes the request to branch to another case, executes that
case, then returns control to the statement after the most recently executed PERFORM
statement. The syntax is.

PERFORM location

where:

location

Is one of the following:
TOP branches to the beginning of the TOP case. All return points are cleared and the
procedure continues as if no PERFORM statement had executed
ENDCASE branches to the end of the case. If the case was called by another
PERFORM statement, either directly or indirectly (for example, a PERFORM
statement called a case that branched to this case), then control returns to the
statement after the most recently executed PERFORM statement. Otherwise, the
request branches back to the TOP case.
casename branches to the beginning of a specified case.
variable branches to the beginning of the case whose name is the value of the
temporary field variable. The temporary field must have a format of A12.
EXIT terminates the request.

A PERFORM statement can branch to a case containing a GOTO or IF statement that
branches to a second case. The second case can branch to a third case, and so on until the
request encounters an ENDCASE statement at the end of a case. Control then returns to
the statement after the most recently executed PERFORM statement.

A PERFORM statement can branch to a case containing a PERFORM statement that
leads to other cases. When the request encounters an ENDCASE statement at the end of a
case, control returns to the statement after the most recently executed PERFORM
statement. Control eventually returns to the original PERFORM.

If a case branches to the TOP case, control does not return to the last PERFORM. Rather,
the request begins a new cycle starting from the TOP case. All PERFORM return points
are cleared.

Modifying Data Sources With MODIFY

10-138 Information Builders

This sample request updates employee salaries. If a user enters a salary greater than
$50,000, the request checks the employee ID against a list of IDs in the sequential data
source EMPLIST. If the employee is listed, the request updates the salary; otherwise, it
asks the user to re-enter the information. The request is:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID CURR_SAL
PERFORM EMPCHECK
PERFORM UPSAL
TYPE

"SALARY OF EMPLOYEE <EMP_ID UPDATED"

CASE EMPCHECK
IF CURR_SAL LE 50000 GOTO ENDCASE;
COMPUTE

RAISE_OK/A3 = DECODE EMP_ID (EMPLIST ELSE 'NO');
IF RAISE_OK IS 'NO' THEN PERFORM TOP;
ENDCASE

CASE UPSAL
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH UPDATE CURR_SAL

ENDCASE
DATA

Supposing the data source EMPLIST contained the following data:

071382660 YES
451123478 YES

A sample execution might go as follows:

1. The request prompts you for an employee ID and a salary. You enter ID 818692173
and a salary of $35,000.

2. The PERFORM EMPCHECK statement branches to the EMPCHECK case.

3. Since the salary is less than $50,000, the PERFORM ENDCASE phrase returns
control to the statement after the PERFORM EMPCHECK statement (PERFORM
UPSAL).

4. The PERFORM UPSAL statement branches to the UPSAL case.

5. The case updates the salary and passes control to the TYPE statement (the statement
after the most recently executed PERFORM statement).

6. The TYPE statement displays the message:

SALARY FOR EMPLOYEE 8188692173 UPDATED

 Control goes to the beginning of the TOP case.

7. The TOP case prompts you for an employee ID and a salary.

8. You enter an ID Of 119329144 and a salary of $65,000.

 Case Logic

Maintaining Databases 10-139

9. The PERFORM EMPCHECK statement branches to the EMPCHECK case. Since
employee 119329144 is not listed in the EMPLIST data source, the IF...GOTO TOP
phrase branches to the TOP case.

10. The TOP case prompts you for an employee ID and a salary. You enter an ID of
071382660 and a salary of $65,000.

11. The PERFORM EMPCHECK statement branches to the EMPCHECK case. Since
employee 071382660 is listed in the EMPLIST data source, control returns to the
statement after the most recently executed PERFORM statement (PERFORM
UPSAL).

12. The PERFORM UPSAL statement branches to the UPSAL case which updated the
salary. Control then passes to the TYPE statement (the statement after the most
recently executed PERFORM statement).

13. The TYPE statement displays a message:

SALARY FOR EMPLOYEE 071382660 UPDATED

 Control goes to the beginning of the TOP case.

The following rules apply to PERFORM statements:

• PERFORM statements can be nested; that is, one PERFORM statement can call a
case containing a second PERFORM statement. PERFORM statements can be nested
to any depth, limited only by the available memory. If memory runs out, FOCUS
displays the message:

(FOC187) PERFORMS NESTED TOO DEEPLY

• REPEAT statements can contain PERFORM statements. When control returns to the
statement after the most recently executed PERFORM statement, the REPEAT
statement resumes execution. For example:

REPEAT 5 TIMES
PERFORM ANALYSIS
COMPUTE AMOUNT/D8.2 = RECEIPTS + AWARDS;

ENDREPEAT

Each pass of this REPEAT statement executes the ANALYSIS case, then computes
the value of the AMOUNT field.

• When a PERFORM statement branches to a case, you can return control to the
PERFORM before the end of the case by including the GOTO ENDCASE or
PERFORM ENDCASE statement in the case.

Modifying Data Sources With MODIFY

10-140 Information Builders

The IF Statement
The IF statement branches to another case depending on how an expression is evaluated.
The syntax is

IF expr [THEN] {GOTO|PERFORM} location1 [ELSE {GOTO|PERFORM} location2]

where:

expr

Is any logical expression legal in a DEFINE or COMPUTE IF statement (see the
Creating Reports manual). For example:

IF CURR_SAL GT 50000
IF SALARY/12 LT GROSS
IF LAST_NAME CONTAINS 'BLACK'
IF (CURR_SAL GT SALARY) OR

(CURR_JOB CONTAINS 'B')

Note that literals must be enclosed in single quotation marks. Parentheses are
necessary if the expression is compound.
IF expressions cannot compare data source fields unless they are used in or following
MATCH or NEXT statements (see Branching to Different Cases: The GOTO,
PERFORM, and IF Statements on page 10-136).

location1, location2

The options are:
TOP branches to the TOP case.
ENDCASE branches to the end of the case (the request then branches to the TOP case
or to the statement after the most recently executed PERFORM statement).
case1 branches to the case named case1.
var branches to the case whose name is contained in the temporary field var.
EXIT terminates the request.
The word THEN is optional and is there to enhance readability.

An IF statement can extend over several lines, but must end with a semicolon (;).

Like IF statements in TABLE requests and Dialogue Manager control statements, Case
Logic IF statements can be nested. You can nest IF statements so that if the outer IF
expression is true, the inner IF is executed. You place the inner IF phrase within
parentheses following the THEN phrase. For example:

IF expression1
THEN (IF expression2
THEN (IF expression3 GOTO case4 ELSE GOTO case3)
ELSE GOTO case2)
ELSE GOTO case1;

 Case Logic

Maintaining Databases 10-141

You can also nest IF statements so that if the outer IF expression is false, the inner IF is
executed. You place the inner IF statement after the ELSE phrase. The inner IF does not
need parentheses:

IF expression1 THEN GOTO case1
ELSE IF expression2 THEN GOTO case2
ELSE IF expression3 THEN GOTO case3
ELSE...;

The following request offers the user a choice between deleting a segment instance and
including a new one:

MODIFY FILE EMPLOYEE
COMPUTE CHOICE/A6=;
TYPE

"ENTER 'UPDATE' TO UPDATE A SALARY"
"ENTER 'DELETE' TO DELETE AN EMPLOYEE"

PROMPT CHOICE

IF CHOICE IS 'UPDATE' THEN GOTO UPDSEG
ELSE IF CHOICE IS 'DELETE' THEN GOTO DELSEG
ELSE GOTO TOP;

CASE UPDSEG
PROMPT EMP_ID CURR_SAL
MATCH EMP_ID

ON MATCH UPDATE CURR_SAL
ON NOMATCH REJECT

ENDCASE

CASE DELSEG
PROMPT EMP_ID
MATCH EMP_ID

ON MATCH DELETE
ON NOMATCH REJECT

ENDCASE
DATA

This request has three cases:

• The TOP case defines a variable called CHOICE which will contain your response to
its menu:

If you enter UPDATE, the request branches to the UPDSEG case.

If you enter DELETE, the request branches to the DELSEG case.

If you enter neither, it reprompts you for another response by branching back to the
beginning of the case.

• The UPDSEG case prompts you for the employee ID and new salary and updates the
employee’s salary.

• The DELSEG case prompts you for the employee ID and deletes that ID from the
data source.

Modifying Data Sources With MODIFY

10-142 Information Builders

Rules Governing Branching
The following rules govern the sequence of case execution and branching:

• The request first executes the START case, if there is one. It then executes the TOP
case, unless the START case branches to another case.

• If a case does not execute a GOTO statement, a PERFORM statement, or an IF
statement to branch to another case, it branches to the TOP case by default. This is
true of both the START and TOP cases. However, if the case was called by a
PERFORM statement either directly or indirectly (for example, a PERFORM
statement called a case that branched to a case that branched to this case), then
control returns to the statement after the most recently executed PERFORM
statement.

• A case can branch to itself.

• Branching to the TOP case, whether by a GOTO TOP statement, PERFORM TOP
statement or by default, deactivates all data fields (field activation and deactivation
are described in Active and Inactive Fields on page 10-197) and increments the
transaction counter by one.

• When you branch to a case, you always branch to the beginning of the case. You can
never branch into the middle of a case.

• If one case contains a MATCH or NEXT statement that selects a particular segment
instance, it can branch to another case that modifies the child segment chain
belonging to the same instance. The second case need not reselect the parent
instance, but it must contain at least one MATCH statement. For example, the
segment EMPINFO (key field EMP_ID) has the child segment SALINFO (key field
PAY_DATE). You can include a new SALINFO segment with this request:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID PAY_DATE
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH GOTO NEWPAY

CASE NEWPAY
MATCH PAY_DATE

ON NOMATCH INCLUDE
ON MATCH REJECT

ENDCASE
DATA

The second case, NEWPAY, modifies the segment chain descended from the segment
instance selected in the TOP case.

 Case Logic

Maintaining Databases 10-143

GOTO, PERFORM, and IF Phrases in MATCH Statements
You can use GOTO, PERFORM, and IF statements in MATCH and NEXT statements,
where they form part of ON MATCH, ON NOMATCH, ON NEXT, or ON NONEXT
phrases. IF phrases in MATCH and NEXT statements can use data source fields in
expressions. To do this, affix the D. prefix to the field name. For example, the phrase

ON MATCH IF CURR_SAL LT D.CURR_SAL ...

tests whether the incoming value of CURR_SAL is less than the data source value of
CURR_SAL. The data source value must either be in the segment instance that the
MATCH or NEXT statement is processing or in a parent instance along the segment path
(the parent, the parent’s parent, and so on up to the root segment).

For example, this request does not accept a new salary for an employee if it is less than
the employee’s present salary:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID CURR_SAL
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH IF CURR_SAL LT D.CURR_SAL GOTO ERROR;
ON MATCH UPDATE CURR_SAL

CASE ERROR
TYPE

"YOU ENTERED A NEW SALARY"
"LESS THAN THE EMPLOYEE'S PRESENT SALARY"
"PLEASE REENTER DATA"

ENDCASE
DATA

This request consists of two cases:

• The TOP case prompts you for an employee ID and new salary. If the employee ID is
in the data source, the case tests whether the new salary is less than the present one. If
the new salary is lower, it branches to the ERROR case. Otherwise, it updates the
salary and branches back to the TOP case.

• The ERROR case warns you that the salary you entered is unacceptable and branches
back to the TOP case.

Modifying Data Sources With MODIFY

10-144 Information Builders

If the MATCH statement specifies fields in multiple segments (the technique of matching
across segments, described in Modifying Segments in FOCUS Structures on page 10-70),
the GOTO, PERFORM and IF phrases in the statement are only executed when the
MATCH statement modifies the last segment. For example, this request adds instances to
the EMPINFO, SALINFO, and DEDUCT segments:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID PAY_DATE DED_CODE
GOTO ADD

CASE ADD
MATCH EMP_ID PAY_DATE DED_CODE

ON MATCH REJECT
ON NOMATCH INCLUDE
ON NOMATCH GOTO MESSAGE

ENDCASE

CASE MESSAGE
TYPE

"NEW INSTANCE ADDED"
ENDCASE
DATA

The ADD case branches to the MESSAGE case only when it includes a new instance in
the segment containing the DED_CODE field. If you want the case to branch to the
MESSAGE case when it includes a new instance in any of the segments, then write the
case with a separate MATCH statement for each segment it searches:

CASE ADD
MATCH EMP_ID

ON MATCH CONTINUE
ON NOMATCH INCLUDE
ON NOMATCH GOTO MESSAGE

MATCH PAY_DATE
ON MATCH CONTINUE
ON NOMATCH INCLUDE
ON NOMATCH GOTO MESSAGE

MATCH DED_CODE
ON MATCH REJECT
ON NOMATCH INCLUDE
ON NOMATCH GOTO MESSAGE

ENDCASE

 Case Logic

Maintaining Databases 10-145

Case Logic and Validation Tests
You can also branch to other cases when an incoming field value fails a validation test.
Do this by including GOTO, PERFORM, and IF statements as part of the ON INVALID
phrase. For example, this request processes transactions with salaries higher than $50,000
in a separate case:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID
GOTO NEWSAL

CASE NEWSAL
PROMPT CURR_SAL
VALIDATE

SALTEST = IF CURR_SAL GT 50000 THEN 0 ELSE 1;
ON INVALID GOTO HIGHSAL

MATCH EMP_ID
ON MATCH UPDATE CURR_SAL
ON NOMATCH REJECT

ENDCASE

CASE HIGHSAL
TYPE

"SALARY ABOVE $50,000 NOT ALLOWED"
"RETYPE SALARY BELOW"

GOTO NEWSAL
ENDCASE
DATA

Case Logic Applications
This section discusses some examples of applications for Case Logic that extend the
capabilities of MODIFY requests. The applications are:.

• Looping through segment chains using the NEXT statement.

• Modifying multiple unique child segments.

• Using Case Logic to offer user choices.

• Using Case Logic to process transaction data sources.

• Using Case Logic to process transactions based on the values of their fields.

• Using Case Logic to process transactions with bad values.

Modifying Data Sources With MODIFY

10-146 Information Builders

Looping Through a Segment Chain With the NEXT Statement
The NEXT statement, discussed in Selecting the Instance After the Current Position: The
NEXT Statement on page 10-85, modifies or displays the next segment instance after the
current position in the data source. Using Case Logic, you can use NEXT statements to
process entire segment chains.

To display an entire segment chain, the request must branch back to the beginning of the
NEXT statement until the whole chain has been displayed. Put the NEXT statement in a
separate case, as shown below:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH TYPE
"WAGES PAID TO EMPLOYEE #<EMP_ID"
ON MATCH GOTO SALHIST

CASE SALHIST
NEXT DAT_INC

ON NEXT TYPE "<D.DAT_INC <D.SALARY"
ON NEXT GOTO SALHIST
ON NONEXT GOTO TOP

ENDCASE
DATA

This request consists of two cases:

• The TOP case prompts you for an employee ID and branches to the SALHIST case.

• The SALHIST case contains one NEXT statement that displays the next instance of
the employee’s salary chain. The case then branches back to the its beginning to
display the next instance. When it reaches the end of the chain, it branches back to
the TOP case.

To return to the beginning of a segment chain, use the REPOSITION statement. The
syntax is

REPOSITION field

where field is any field of the segment. The REPOSITION statement allows you to return
to the beginning of the segment chain you are now modifying, or to the beginning of the
chain of any of the parent instances along the segment path (that is, the parent instance,
the parent’s parent, and so on to the root segment). You can then search the segment chain
from the beginning.

 Case Logic

Maintaining Databases 10-147

The following request allows you to allocate a new monthly pay for a selected employee
for each pay date. The request accumulates each pay in a total. If this total pay exceeds
the employee’s yearly salary, the request returns to the first pay date to permit you to
enter new values for the entire chain:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH GOTO PAYLOOP

CASE PAYLOOP
NEXT PAY_DATE

ON NONEXT GOTO TOP
ON NEXT TYPE

"EMPLOYEE ID: <EMP_ID"
"PAY DATE: <D.PAY_DATE MONTHLY PAY: <D.GROSS"

ON NEXT PROMPT GROSS.ENTER MONTHLY PAY:.
ON NEXT COMPUTE

TOTAL_PAY/D10.2 = TOTAL_PAY + GROSS;
ON NEXT IF TOTAL_PAY GT D.CURR_SAL GOTO ERROR;
ON NEXT UPDATE GROSS
ON NEXT GOTO PAYLOOP

ENDCASE

CASE ERROR
TYPE

"TOTAL MONTHLY PAY EXCEEDS YEARLY SALARY"
"REENTER PROPOSED PAY STARTING FROM"
"THE FIRST PAY DATE"

REPOSITION PAY_DATE
COMPUTE TOTAL_PAY = 0;
GOTO PAYLOOP
ENDCASE
DATA

Note that the ERROR case in the example warns you that the sum of the figures you
entered exceeds the employee’s yearly salary. It then repositions the current position of
the PAY_DATE field at the beginning of the segment chain and branches back to the
PAYLOOP case, allowing you to reenter pay figures for the entire chain.

Modifying Data Sources With MODIFY

10-148 Information Builders

When you use INCLUDE, UPDATE, and DELETE actions in looping NEXT statements,
note the following:

• Use the ON NEXT INCLUDE and ON NONEXT INCLUDE phrases only to add
instances to segments of type S0 or blank. If you use these phrases to modify other
segments, you will duplicate what is already there. The difference between the two
phrases is:

ON NEXT INCLUDE adds a new segment instance after the current position.

ON NONEXT INCLUDE adds a new instance at the end of the segment chain.

• Use the ON NEXT UPDATE phrase without restriction. The phrase updates the
segment instance at the current position. If you are looping with the NEXT statement,
the phrase updates the entire chain.

• Use the ON NEXT DELETE phrase to delete entire segment chains. This phrase
deletes the segment instance at the current position. If you are looping with the
NEXT statement, the phrase deletes the entire chain, but only if you start at the
beginning of a chain. Otherwise, the phrase deletes every second instance.

Note that the phrases ON NONEXT UPDATE and ON NONEXT DELETE are illegal
and will generate error messages.

Modifying Multiple Unique Segments
Modifying unique segments is described in Modifying Segments in FOCUS Structures on
page 10-70. This section describes how to modify several unique segments descended
from one parent using the CONTINUE TO method.

To modify multiple unique segments, prepare separate cases containing a MATCH or
NEXT statement for each segment you are modifying. The sample request below
illustrates this. The request loads data into the SUBSCRIBE data source, which records
magazine subscribers, their mailing addresses, and expiration dates. The Master File is:

FILE=SUBSCRIB ,SUFFIX=FOC,$
SEGMENT=SUBSEG ,$
FIELD=SUBSCRIBER ,ALIAS=NAME ,FORMAT=A35 ,$
SEGMENT=ADDRSEG,SEGTYPE=U,PARENT=SUBSEG ,$
FIELD=ADDRESS ,ALIAS=ADDR ,FORMAT=A40 ,$
SEGMENT=EXPRSEG,SEGTYPE=U,PARENT=SUBSEG ,$
FIELD=EXPR_DATE ,ALIAS=EXDATE ,FORMAT=I6DMYT ,$

 Case Logic

Maintaining Databases 10-149

The following MODIFY request loads the data:

MODIFY FILE SUBSCRIB
PROMPT SUBSCRIBER
MATCH SUBSCRIBER

ON NOMATCH INCLUDE
ON MATCH CONTINUE

GOTO NEWADDR

CASE NEWADDR
PROMPT ADDRESS
MATCH SUBSCRIBER

ON NOMATCH REJECT
ON MATCH CONTINUE TO ADDRESS

ON MATCH REJECT
ON MATCH GOTO NEWDATE
ON NOMATCH INCLUDE
ON NOMATCH GOTO NEWDATE

ENDCASE

CASE NEWDATE
PROMPT EXPR_DATE
MATCH SUBSCRIBER

ON NOMATCH REJECT
ON MATCH CONTINUE TO EXPR_DATE

ON MATCH REJECT
ON NOMATCH INCLUDE

ENDCASE
DATA

Note the last two cases in the request:

• The NEWADDR case loads subscriber addresses into the unique segment
ADDRSEG. The case examines the ADDRSEG segment. Does the subscriber have a
mailing address listed? If not, the request includes the new address. In either event,
the request continues to the NEWDATE case.

• The NEWDATE case loads expiration dates into the sibling unique segment
EXPRSEG. It examines the EXPRSEG segment with the EXPR_DATE field. Does
the subscriber have a magazine expiration date? If not, the request includes the new
expiration date. If the subscriber has an expiration date then the request checks to
determine if it gave the subscriber a new address.

If the request gave the subscriber a new address, the request does not reject the
transaction.

If the request did not give the subscriber a new address, the request rejects the
transaction.

If you were to include the MATCH statements in one case, the request would reject a
transaction if the subscriber either already had an address or an expiration date. Since you
want the transaction rejected only if the subscriber already has both, separate the MATCH
statements into separate cases.

Modifying Data Sources With MODIFY

10-150 Information Builders

Using Case Logic to Offer User Selections
You can use Case Logic to offer users a selection of options. The request below offers a
choice between updating employee salaries, monthly pay, or addresses:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH GOTO MENU

CASE MENU
TYPE
"TO UPDATE THE EMPLOYEE'S SALARY, TYPE 'SALARY' "
"TO UPDATE THE EMPLOYEE'S MONTHLY PAY, TYPE 'PAY' "
"TO UPDATE THE EMPLOYEE'S ADDRESS, TYPE 'ADDRESS' "
COMPUTE CHOICE/A7=;
PROMPT CHOICE

IF CHOICE IS 'SALARY' THEN GOTO SALARY
ELSE IF CHOICE IS 'PAY'THEN GOTO PAY
ELSE IF CHOICE IS 'ADDRESS'THEN GOTO ADDRESS;

TYPE "ILLEGAL CHOICE, PLEASE TYPE ENTRY AGAIN"
GOTO MENU
ENDCASE

CASE SALARY
PROMPT CURR_SAL
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH UPDATE CURR_SAL

ENDCASE

CASE PAY
PROMPT PAY_DATE GROSS
MATCH PAY_DATE

ON NOMATCH REJECT
ON MATCH UPDATE GROSS

ENDCASE

CASE ADDRESS
PROMPT TYPE ADDRESS_LN1 ADDRESS_LN2
MATCH TYPE

ON NOMATCH REJECT
ON MATCH UPDATE ADDRESS_LN1 ADDRESS_LN2

ENDCASE
DATA

 Case Logic

Maintaining Databases 10-151

Using Case Logic to Process Transaction Data Sources
You can use Case Logic to process records in a transaction data source in different ways.
For example, each transaction record contains a field that defines what type of record it is.
The MODIFY request can use these record types to branch to the appropriate case and
process the transaction.

The following request processes two record types: type A updates employee department
assignments and job codes; type B updates salaries and classroom hours. The record type
field (called RTYPE) is the last field in each record. It contains either the letter A or B,
depending on the record type.

MODIFY FILE EMPLOYEE
COMPUTE RTYPE/A1=;
FIXFORM X26 RTYPE/1

IF RTYPE IS 'A' THEN GOTO TYPE_A
ELSE IF RTYPE IS 'B'THEN GOTO TYPE_B;

TYPE "BAD RECTYPE VALUE"
GOTO TOP

CASE TYPE_A
FIXFORM X-27 EMP_ID/9 X1 DEPARTMENT/10
FIXFORM X1 CURR_JOBCODE/3 X3
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH UPDATE DEPARTMENT CURR_JOBCODE

ENDCASE

CASE TYPE_B
FIXFORM X-27 EMP_ID/9 X1 CURR_SAL/8 X1 ED_HRS/6 X2
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH UPDATE CURR_SAL ED_HRS

ENDCASE
DATA ON FIXTYPE
END

Notice the three FIXFORM statements: one in each of the cases. Only the statement in the
TOP case reads a record from disk or tape. The other two statements redefine the record
for the case.

Also note that each of these two statements begins with X-27, which allows the case to
redefine the 27-byte record from the beginning. Always place the notation X-n at the
beginning of the FIXFORM statement that is redefining the record, not at the end of the
previous FIXFORM statement.

Modifying Data Sources With MODIFY

10-152 Information Builders

A FIXFORM statement reads a new record from disk or tape if one of these conditions
are met:

• The statement is the first FIXFORM statement in the request.

• The statement defines records to be longer than they were defined before. For
instance, if one FIXFORM statement defines a record of 80 bytes, and the next
FIXFORM statement defines a record from the same data source as being 90 bytes,
the second FIXFORM statement reads a new record.

• The statement reads records from a different data source than the one read
previously. This is possible if the statement has the form

FIXFORM ON ddname

where ddname is the ddname of the second transaction data source. If the next
FIXFORM statement does not have the ON ddname option, it too reads another
record.

 Case Logic

Maintaining Databases 10-153

Using Case Logic to Process Transactions Based on the Values
of Their Fields
You can use Case Logic to process transactions depending on their field values. The
following request updates employee salaries. If the user enters a salary higher than
$50,000, the request checks the employee ID against a list of employees authorized for
large salaries:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID
GOTO NEWSAL

CASE NEWSAL
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH PROMPT CURR_SAL
ON MATCH IF CURR_SAL GT 50000 THEN GOTO HIGHSAL;
ON MATCH UPDATE CURR_SAL

ENDCASE

CASE HIGHSAL
COMPUTE

SALTEST = DECODE EMP_ID (HIGHPAY);
IF SALTEST NE 1 THEN GOTO WRONGSAL;
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH UPDATE CURR_SAL

ENDCASE

CASE WRONGSAL
TYPE

"EMPLOYEE NOT AUTHORIZED FOR SALARY INCREASE"
"PLEASE REENTER THE DATA"

ENDCASE
DATA

Modifying Data Sources With MODIFY

10-154 Information Builders

Using Case Logic to Process Transactions With Bad Values
You can use Case Logic to process transactions with values that would otherwise cause
the transactions to be rejected. You do this by combining GOTO and IF phrases with:

• The ON MATCH phrase, if you are adding new segment instances.

• The ON NOMATCH phrase, if you are updating or deleting instances.

• The ON INVALID phrase, if you are validating incoming data fields.

This request updates employee salaries. If it cannot find an employee record, it queries
the user whether to include the transaction as a new employee record:

MODIFY FILE EMPLOYEE
PROMPT EMP_ID CURR_SAL
MATCH EMP_ID

ON MATCH UPDATE CURR_SAL
ON NOMATCH GOTO QUERY

CASE QUERY
COMPUTE CHOICE/A1=;
TYPE

"EMPLOYEE ID NOT FOUND IN THE DATABASE"
"INCLUDE THE TRANSACTION ANYWAY (Y/N)?"

PROMPT CHOICE
IF CHOICE IS 'Y' THEN GOTO INCLUDE

ELSE IF CHOICE IS 'N'THEN GOTO REJECT;
TYPE "PLEASE TYPE EITHER Y OR N"
GOTO QUERY
ENDCASE

CASE INCLUDE
MATCH EMP_ID

ON MATCH REJECT
ON NOMATCH INCLUDE

ENDCASE

CASE REJECT
MATCH EMP_ID

ON MATCH REJECT
ON NOMATCH REJECT

ENDCASE
DATA

 Case Logic

Maintaining Databases 10-155

Tracing Case Logic: The TRACE Facility
The TRACE facility displays the name of each case that is entered during the execution of
a MODIFY request. This is a useful tool for debugging large Case Logic requests.

You can allocate the output to a file or to your terminal. Then, add the word TRACE to
the end of the MODIFY command line

MODIFY FILE filename TRACE

where filename is the name of the FOCUS data source you are modifying.

When the TRACE facility is on, it lists in the HLIPRINT file the name of the case about
to run

TRACE ===> AT CASE case

where case is the name of the case. Note that if you are using FIDEL and displaying the
TRACE output on the terminal, the following happens. When you enter a CRTFORM
screen, the screen clears and displays the name of the next case. Clear the screen, and the
next CRTFORM screen appears.

The request and sample execution below illustrate the use of the TRACE facility:

MODIFY FILE EMPLOYEE TRACE
PROMPT EMP_ID CURR_SAL
IF CURR_SAL GT 50000 GOTO HIGHSAL
ELSE GOTO UPDATE;

CASE UPDATE
MATCH EMP_ID

ON MATCH UPDATE CURR_SAL
ON NOMATCH REJECT

ENDCASE

CASE HIGHSAL
TYPE

" "
"YOU ENTERED A SALARY ABOVE $50,000"
" "

PROMPT CURR_SAL.PLEASE REENTER THE SALARY.
IF CURR_SAL GT 50000 GOTO HIGHSAL
ELSE GOTO UPDATE;
ENDCASE
DATA

Modifying Data Sources With MODIFY

10-156 Information Builders

The following is a sample execution of the previous request:

> EMPLOYEE ON 10/04/98 AT 14.02.33
**** START OF TRACE ****
TRACE ===> AT CASE TOP
DATA FOR TRANSACTION 1

EMP_ID = > 112847612
CURR_SAL = > 67000
TRACE ===> AT CASE HIGHSAL

YOU ENTERED A SALARY ABOVE $50,000

PLEASE REENTER THE SALARY > 27000
TRACE ===> AT CASE UPDATE
TRACE ===> AT CASE TOP
DATA FOR TRANSACTION 2

EMP_ID = 0

Multiple Record Processing
Multiple record processing enables you to process multiple segment instances at one time.
One important application is the use of multiple record processing with the FIDEL facility
to enable the terminal operator to add, update, or delete several segment instances on one
screen. This section discusses multiple record processing based on this application.
However, you can apply the principles stated here to other applications as well.

Usually, a MODIFY request using FIDEL prompts you for a key field value, then uses the
value to retrieve one segment instance. After you modify the instance, you enter the key
field value to retrieve the next instance. This way, you modify segment instances one at a
time.

Multiple record processing causes the request to retrieve multiple segment instances
before FIDEL displays instance values. Each time the request retrieves an instance, it
stores the instance values in a work area in memory called the Scratch Pad Area. The
request continues to retrieve instances until it reaches a specified number.

After the request has retrieved the instances, FIDEL reads the instance values from the
Scratch Pad Area and displays them all on one screen. The user can update these values
and transmit the updated values back to the data source with one press of the Enter key.

Note: Text fields cannot be put into the Scratch Pad (HOLD).

You may also design a request that adds several instances at one time, or a request that
both updates existing instances and adds new ones all on the same screen.

 Multiple Record Processing

Maintaining Databases 10-157

The REPEAT Method on page 10-157 describes multiple record processing using the
REPEAT statement. This method requires only that you know the fields you want to
process. However, it only enables you to process instances from one segment at a time.

Manual Methods on page 10-169 discusses manual methods which require you to know
how instances are stored in the Scratch Pad Area. These methods are more powerful and
enable you to process multiple segments at one time.

The REPEAT Method
This section describes multiple record processing using REPEAT statements. One
REPEAT statement collects segment instances and loads them into the Scratch Pad Area;
another REPEAT statement retrieves the instances from the Area and uses them to modify
the data source. This method does not require you to know how the instances are stored in
the Area; however, you must process the instances sequentially, and you can process only
one segment at one time.

Multiple record processing has four phases. They are:

1. Selection. The request selects the parent instance of the instances to be processed.

2. Collection. The request retrieves multiple segment instances and stores their data
values in the Scratch Pad Area.

3. Display. The FIDEL facility displays the data on one screen for editing.

4. Modification. The request uses the edited data values to modify the data source.

Modifying Data Sources With MODIFY

10-158 Information Builders

The Selection Phase: Selecting the Parent Instance
To modify multiple instances in a segment, you must first identify the parent instance. (If
you are modifying the root segment, skip this phase and start with The Collection Phase:
Storing Instances in a Buffer on page 10-159.) Do this as you would any other request.

For example, the beginning of this request identifies an employee ID in the EMPLOYEE
data source, allowing you to modify the employee’s child segment instances:

MODIFY FILE EMPLOYEE
CRTFORM LINE 2
"**************************************"
"* MONTHLY PAY UPDATE *"
"**************************************"
" "
"ENTER EMPLOYEE'S ID: <EMP_ID"

MATCH EMP_ID
ON NOMATCH REJECT
ON MATCH GOTO COLLECT

If you are using multiple record processing only to create new instances, skip the
collection phase and proceed directly to the display phase. The following MATCH
statement adds a new employee ID to the data source. It then branches to the case
NEWADDRESS where the display phase prompts the user for all the employees’
addresses:

MODIFY FILE EMPLOYEE
CRTFORM
"ENTER EMPLOYEE'S ID: <EMP_ID"
MATCH EMP_ID

ON MATCH REJECT
ON NOMATCH INCLUDE
ON NOMATCH GOTO NEWADDRESS

 Multiple Record Processing

Maintaining Databases 10-159

The Collection Phase: Storing Instances in a Buffer
During the collection phase, the request retrieves multiple segment instances and stores
their values in the Scratch Pad Area.

After identifying the parent instance, read the child instances into the Scratch Pad Area (if
you are modifying the root segment, reading the instances into the Area is your first step).
You do this using the REPEAT statement which the request executes repeatedly. Each
time the request executes a REPEAT statement, the phrases in the statement retrieve one
segment instance and store its data values in the Area.

Syntax The REPEAT Statement
The syntax of the REPEAT statement is

REPEAT {*|count}[TIMES] [MAX limit] [NOHOLD]
.
.

phrases
.
.

ENDREPEAT

where:

count

Is an integer or temporary integer field determining the number of times the request
executes the REPEAT. This value can be between 0 and 32,767 but should be no
smaller than the number of segment instances you want to display on the FIDEL
screen.
If this value is 0, the request does not execute the REPEAT (this allows you to skip a
REPEAT if you are using a temporary field for this parameter). If the value is an
asterisk, the REPEAT is executed 65,535 times. Once the REPEAT begins
execution, the value cannot be changed.

TIMES

Is an optional word which you can add to enhance readability.

limit

Is an integer specifying the maximum number of times the request can execute the
REPEAT. Specify this parameter only if you are using a temporary field for the count
parameter.

NOHOLD

Is an option that enables you to use REPEAT as a simple loop that executes any
group of MODIFY statements repeatedly.

phrases

Are the MODIFY statements to be executed within the REPEAT statement. Each
phrase must begin on a new line.

Modifying Data Sources With MODIFY

10-160 Information Builders

ENDREPEAT

Ends the statement. This phrase must be on a line by itself.

There are three types of REPEAT statements:

• Stacking REPEAT statements. These statements contain HOLD phrases that stack
data into the Scratch Pad Area. They appear in the collection phase of multiple
record processing.

• Retrieving REPEAT statements. These statements retrieve data placed in the Scratch
Pad Area by the stacking REPEAT statements. They usually appear in the
modification phase and in validation routines in multiple record processing.

• Simple REPEAT statements. These statements consist of any combination of
MODIFY statements to be executed repeatedly. You indicate a simple repeat
statement by specifying the NOHOLD option in the REPEAT phrase. Simple
REPEAT statements neither stack data nor retrieve data from the Scratch Pad Area.

FOCUS determines the type of REPEAT statement in the following manner:

• If the statement specifies the NOHOLD option, it is a simple REPEAT statement.

• If the statement contains a HOLD phrase, it is a stacking REPEAT statement.

• If the statement neither specifies the NOHOLD option nor contains a HOLD phrase,
it is a retrieving REPEAT statement.

The REPEAT statement can stand by itself or it can be part of an ON MATCH, ON
NOMATCH, ON NEXT, or ON NONEXT phrase in a MATCH or NEXT statement. For
example:

REPEAT 12 TIMES

ON MATCH REPEAT 6

ON NEXT REPEAT BUFCOUNT MAX 10

Note that you cannot nest REPEAT statements; one statement must end before another
can begin.

Two GOTO phrases especially apply to REPEAT statements. They are:

• GOTO ENDREPEAT. This phrase branches processing to the end of the REPEAT
statement, increments the counter by 1, and executes the request REPEAT again.

• GOTO EXITREPEAT. This phrase branches processing to the first executable
statement following the REPEAT loop.

 Multiple Record Processing

Maintaining Databases 10-161

This REPEAT saves the first five pay dates and monthly pay amounts in the EMPLOYEE
data source in the Scratch Pad Area:

CASE COLLECT
REPEAT 5 TIMES

NEXT PAY_DATE
ON NEXT HOLD PAY_DATE GROSS
ON NONEXT GOTO EXITREPEAT

ENDREPEAT
GOTO DISPLAY
ENDCASE

Note the ON NONEXT GOTO EXITREPEAT phrase. This specifies that if there are less
than five employee IDs in the segment chain, the request will branch to the next statement
after the REPEAT. If the ON NONEXT phrase was not included, the request would
automatically branch back to the beginning of the request.

The HOLD Phrase
The REPEAT statement retrieves instances using MATCH and NEXT statements. Each
time the REPEAT retrieves an instance, you may store the instance values in the Scratch
Pad Area. Do this with the phrase

HOLD [SEG.]field-1 field-2 ... field-n

where field-1 through field-n are the data fields whose values you want to save in the
Scratch Pad Area. The specified fields can be data source fields or temporary fields. The
data source fields must exist either in the instance or in a parent instance along the
segment path (the parent of the instance, the parent’s parent, and so on to the root
segment). For example, the phrase

HOLD EMP_ID FIRST_NAME LAST_NAME CURR_SAL

stores the employee IDs, first and last names, and salaries of each retrieved instance in the
Scratch Pad Area.

If you want to save the values of all the data fields in the instance, specify just one field
with the SEG. prefix affixed to the front of the field name.

HOLD stores the fields whether they are active or inactive. To ensure that the fields
placed in the Scratch Pad Area are active, use the ACTIVATE phrase described in Active
and Inactive Fields on page 10-197.

Modifying Data Sources With MODIFY

10-162 Information Builders

The HOLD phrase can stand by itself, or it can be part of an ON MATCH, ON
NOMATCH, ON NEXT, or ON NONEXT phrase in a MATCH or NEXT statement. If
you use HOLD in ON NOMATCH and ON NONEXT phrases, you may specify only
temporary fields and fields in parent instances along the segment path. If the list of fields
is too long to fit on one line, repeat the word HOLD for each line you need. Some
examples are:

HOLD EMP_ID LAST_NAME FIRST_NAME DEPARTMENT
HOLD CURR_JOBCODE ED_HRS

ON MATCH HOLD EMP_ID DEPARTMENT CURR_SAL

ON NONEXT HOLD DEPCODE

When a REPEAT statement containing a HOLD phrase begins execution, FOCUS clears
the Scratch Pad Area of data stored from previous REPEATs.

The following is a piece of a MODIFY request that executes the collection phase:

CASE COLLECT
REPEAT 5 TIMES

NEXT PAY_DATE
ON NEXT HOLD PAY_DATE GROSS
ON NONEXT GOTO DISPLAY

ENDREPEAT
GOTO DISPLAY
ENDCASE

 Multiple Record Processing

Maintaining Databases 10-163

The REPEATCOUNT and HOLDCOUNT Variables
Two variables assume values during the collection phase. These are:

• The REPEATCOUNT variable. This variable contains the value of the REPEAT
counter.

• The HOLDCOUNT variable. This variable contains the current number of instances
stored in the Scratch Pad Area.

If you design your request with Case Logic, you can test and branch on these variables.
The following IF statement branches to the TOP case if the preceding REPEAT did not
retrieve any segment instances:

IF HOLDCOUNT EQ 0 GOTO TOP

Please note the following values that the REPEATCOUNT and HOLDCOUNT variables
take under these circumstances:

• When a REPEAT statement begins execution, REPEATCOUNT is set to 1.

• If a REPEAT is set to execute 0 times, REPEATCOUNT is set to 0.

• If the REPEAT beginning execution contains HOLD phrases, the Scratch Pad Area is
cleared and HOLDCOUNT is set to 0. If the REPEAT does not contain HOLD
phrases, HOLDCOUNT is unchanged.

• At each repetition of the REPEAT, REPEATCOUNT is increased by one. After each
HOLD phrase is executed, HOLDCOUNT is increased by one.

• The REPEATCOUNT variable maintains its value after the REPEAT completes
execution until the next REPEAT, even if the request branched from the REPEAT
with a GOTO phrase.

Note: A CRTFORM displaying records in the Scratch Pad Area can change the
HOLDCOUNT value. For this reason, you may want to store the HOLDCOUNT
value in a temporary field for use later in the request. For example, this COMPUTE
statement saves the value of the HOLDCOUNT field in the temporary field
BUFFNUMBER:

COMPUTE BUFFNUMBER/I5 = HOLDCOUNT;

Modifying Data Sources With MODIFY

10-164 Information Builders

The Display Phase: Displaying Instances in One CRTFORM
After the request stores the segment instance values in the Scratch Pad Area, you display
the values on one screen using the FIDEL facility (see Chapter 11, Designing Screens
With FIDEL). Since you use the same field names for all instances (multiple record
processing can only modify one segment at a time), you need to distinguish between
instances. To do this, add subscripts to the fields using the form.

field(n)

where n (the subscript) is an integer greater than 0. The subscript indicates the instance
that a field belongs to in the order that the instances are read from the Scratch Pad Area.

For example, this CRTFORM displays the employee IDs, departments, and salaries of
five segment instances numbered 1 through 5:

CASE DISPLAY
IF HOLDCOUNT EQ 0 GOTO TOP;
COMPUTE

BUFFNUMBER/I5=HOLDCOUNT;
CRTFORM LINE 9

" MONTHLY PAY FOR <D.FIRST_NAME <D.LAST_NAME"
" "
" PAY DATEAMOUNT PAID"
" -------------------"
"<D.PAY_DATE(1) <T.GROSS(1)>"
"<D.PAY_DATE(2) <T.GROSS(2)>"
"<D.PAY_DATE(3) <T.GROSS(3)>"
"<D.PAY_DATE(4) <T.GROSS(4)>"
"<D.PAY_DATE(5) <T.GROSS(5)>"

GOTO UPDATE
ENDCASE

Note the D. prefix (display) that displays protected field values, and the T. prefix
(turnaround) that displays field values to be updated. Display fields and turnaround fields
are described in Chapter 11, Designing Screens With FIDEL. Make all turnaround fields
non-conditional; that is, end the field name with a right caret.

Once you have updated the values, you can transmit all the changes at one time by
pressing the Enter key. These changes update the appropriate instances in the Scratch Pad
Area. The request then branches to the modification phase (the UPDATE case), where
your changes are entered into the data source. The CRTFORM may then prompt you for
the next parent instance or may display the next set of multiple instances for you to
change.

For example, a request that updates employee’s monthly pay prompts you for an
employee ID. This employee has eight pay dates recorded. The screen displays the first
five pay dates. You make your adjustments and press Enter. The screen displays the last
three pay dates. You make your adjustments and press Enter. The request then prompts
you for the next employee ID.

 Multiple Record Processing

Maintaining Databases 10-165

You may add subscripts to fields only in CRTFORMs, not in REPEATs. REPEATs that
follow the CRTFORMs process the fields in the order of the instances in the Scratch Pad
Area, one at a time.

Positioning the Cursor on Specific Field Values
You can design the request so that the cursor is automatically positioned on a particular
field value on the FIDEL screen. To do this, set the CURSOR variable equal to the field
name, as described in Chapter 11, Designing Screens With FIDEL. If the fields are
subscripted, set a field called CURSORINDEX equal to the value of the subscript. For
example, this COMPUTE statement places the cursor on the field CURR_SAL(3):

COMPUTE
CURSOR/A12 = 'CURR_SAL';
CURSORINDEX = 3;

These cursor-positioning variables are useful when you perform validation tests on data
entered on the FIDEL screen. After the CRTFORM, write a REPEAT statement for each
field you are validating. Specify as many executions for the REPEAT as the highest
subscript in the CRTFORM.

In the REPEAT statement:

• Set the CURSOR variable equal to the name of the field you are validating.

• Set the CURSORINDEX variable equal to the REPEATCOUNT variable. This sets
the CURSORINDEX variable to the subscript of the field being validated.

• Validate the field.

• If a field value proves invalid, branch back to the CRTFORM using Case Logic. The
CURSOR and CURSORINDEX variables will position the cursor at the invalid
value.

Note: Remember to assign the CURSOR variable a format of A12 and the
CURSORINDEX variable a format of I5.

Modifying Data Sources With MODIFY

10-166 Information Builders

This is a sample case validating the CURR_SAL field:

CASE DISPLAY
CRTFORM
"EMPLOYEE SALARY DEPARTMENT"
"-------- ------ --------- "
"<D.EMP_ID(1) <T.CURR_SAL(1)> <T.DEPARTMENT(1)>"
"<D.EMP_ID(2) <T.CURR_SAL(2)> <T.DEPARTMENT(2)>"
"<D.EMP_ID(3) <T.CURR_SAL(3)> <T.DEPARTMENT(3)>"
"<D.EMP_ID(4) <T.CURR_SAL(4)> <T.DEPARTMENT(4)>"
"<D.EMP_ID(5) <T.CURR_SAL(5)> <T.DEPARTMENT(5)>"

REPEAT 5 TIMES
COMPUTE

CURSOR/A12 = 'CURR_SAL';
CURSORINDEX/15 = REPEATCOUNT;

VALIDATE
SALTEST = IF CURR_SAL GT 50000 THEN 0 ELSE 1;
ON INVALID TYPE

"THIS SALARY ENTERED WAS TOO HIGH"
"PLEASE RE-ENTER"

ON INVALID GOTO DISPLAY
ENDREPEAT
ENDCASE

The Modification Phase
After the user has entered changes on a FIDEL screen, the request uses the data to update
instances in the Scratch Pad Area and to add new ones. To transfer the changes from the
Area to the data source, prepare a REPEAT statement that modifies a data source instance
on each pass.

This REPEAT updates the EMPLOYEE data source using data entered on the FIDEL
screen shown in the previous section, The Display Phase: Displaying Instances in One
CRTFORM on page 10-164. The REPEAT should execute as many times as there are
instances in the Scratch Pad Area. This number was stored in the HOLDCOUNT variable.
However, the HOLDCOUNT value can be changed by the CRTFORMs that display
records in the Area. Therefore, you should store the HOLDCOUNT variable in a
temporary field in the display phase before the CRTFORM. (This is shown in the
example at the beginning of the section mentioned above.) This field can then set the
number of times that the REPEAT statement executes.

 Multiple Record Processing

Maintaining Databases 10-167

At each pass, the REPEAT statement retrieves one instance from the Scratch Pad Area. It
can then match on key fields in the instance to locate the corresponding instance in the
data source (or determine that such an instance does not exist), then update the data
source instance or add a new one.

In this example, the case UPDATE updates the data source instances, then branches back
to the collection phase (COLLECT case). The collection phase reads the next five
employee pay dates which you can then change on the CRTFORM. This cycle continues
until all the employee’s pay dates have been read. You then enter the ID of the next
employee. The number of instances in the Scratch Pad Area is contained in the temporary
field BUFFNUMBER:

CASE UPDATE
REPEAT BUFFNUMBER

MATCH PAY_DATE
ON NOMATCH INCLUDE
ON MATCH UPDATE GROSS

ENDREPEAT
GOTO COLLECT
ENDCASE

DATA VIA FI3270
END

Modifying Data Sources With MODIFY

10-168 Information Builders

A Sample MODIFY Request Using Multiple Record Processing
(REPEAT Method)
The sample request on the next page updates the monthly pay of employees. The
CRTFORM in the display phase displays the data for the five months in which the
employee was paid. After you update the monthly pay of these five months, the display
phase displays the next five months. This continues until it displays all the months
recorded for that employee. The request then prompts for the next employee ID.

The request is as follows:

MODIFY FILE EMPLOYEE
CRTFORM LINE 2
"**************************************"
"*MONTHLY PAY UPDATE*"
"**************************************"
" "
"ENTER EMPLOYEE'S ID: <EMP_ID"

MATCH EMP_ID
ON NOMATCH REJECT
ON MATCH GOTO COLLECT

CASE COLLECT
REPEAT 5 TIMES

NEXT PAY_DATE
ON NEXT HOLD PAY_DATE GROSS
ON NONEXT GOTO DISPLAY

ENDREPEAT
GOTO DISPLAY
ENDCASE

CASE DISPLAY
IF HOLDCOUNT EQ 0 GOTO TOP;
COMPUTE

BUFFNUMBER/I6=HOLDCOUNT;
CRTFORM LINE 9
" MONTHLY PAY FOR <D.FIRST_NAME <D.LAST_NAME"
" "
"PAY DATE AMOUNT PAID"
"--------------- -----------"
"<D.PAY_DATE(1) <T.GROSS(1)>"
"<D.PAY_DATE(2) <T.GROSS(2)>"
"<D.PAY_DATE(3) <T.GROSS(3)>"
"<D.PAY_DATE(4) <T.GROSS(4)>"
"<D.PAY_DATE(5) <T.GROSS(5)>"
GOTO UPDATE
ENDCASE

 Multiple Record Processing

Maintaining Databases 10-169

CASE UPDATE
REPEAT BUFFNUMBER

MATCH PAY_DATE
ON NOMATCH INCLUDE
ON MATCH UPDATE GROSS

ENDREPEAT
GOTO COLLECT
ENDCASE

DATA VIA FI3270
END

Manual Methods
This section discusses manual methods of multiple record processing. These methods
allow you to manipulate individual records in the Scratch Pad Area and to process
instances from multiple segments at one time.

Manual methods depend on two temporary fields:

• The HOLDINDEX field. This field contains index values of records in the Scratch
Pad Area. When you place a record in the Area using the HOLD statement, FOCUS
assigns the record an index value equal to the value of the HOLDINDEX field. When
you request a record from the Area using the GETHOLD statement, FOCUS retrieves
the record having an index value equal to the value of the HOLDINDEX field.

When you place a record into the area using the HOLD phrase, set HOLDCOUNT
equal to HOLDINDEX, then increment HOLDINDEX by 1.

• The SCREENINDEX field. This field determines the group of records to appear on
subscripted CRTFORMs.

There are manual methods for the collection, sorting, display, and modification phases of
multiple record processing. There are no manual methods for the first phase, the selection
phase (discussed in Multiple Record Processing on page 10-156). Note, however, that if
you process multiple segments that have no common parent, you must select the parent
instance of each segment chain.

Initialization
Before loading instances into the Scratch Pad Area, the request may need to perform the
following tasks:

• Define the following variables with a format of I5:

The HOLDCOUNT field. Set HOLDCOUNT equal to 0.

The HOLDINDEX field. Set HOLDINDEX equal to 1.

The SCREENINDEX field. Set SCREENINDEX equal to 0.

Modifying Data Sources With MODIFY

10-170 Information Builders

• Use the REPOSITION statement to insure that the current position in each segment
from which instances will be loaded into the Scratch Pad Area is at the beginning of
the segment.

The following is the beginning of a MODIFY request that uses manual methods:

MODIFY FILE EMPLOYEE
CRTFORM

"ENTER EMPLOYEE ID: <EMP_ID"
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH GOTO INITIAL

CASE INITIAL
REPEAT 1

HOLD EMP_ID
ENDREPEAT
COMPUTE

HOLDCOUNT/I5 = 0;
HOLDINDEX/I5 = 1;
SCREENINDEX/I5 = 0;

REPOSITION SALARY
REPOSITION PAY_DATE
GOTO SALCOLLECT
ENDCASE

The Collection Phase
During the collection phase, the request retrieves multiple segment instances from the
data source and stores each instance as a record in the Scratch Pad Area. FOCUS assigns
each record an index value equal to the current value of the HOLDINDEX field, then
increments HOLDINDEX by 1. For example, if HOLDINDEX is equal to 5, then the
request stores one segment instance in the Area as Record 5, the next instance as Record
6, and so on.

To store instances from multiple segments, follow this procedure:

1. Assign each segment a range of index values (for example, assign one segment values
1 through 5, another 6 through 11, and so on).

2. Write the request so that a separate case loads instances from each segment. Before
each case executes, have a COMPUTE statement set HOLDINDEX to the index
value of the first record for that segment.

To assign index values to a segment, you need to know the largest number of instances
you will be storing from that segment. In many applications, you will be storing an entire
segment chain at a time. You then need to know the size of the largest segment chain.

Note: Be sure that you set HOLDINDEX to a value less than or equal to the current value
of the HOLDCOUNT field. A HOLDINDEX value greater than HOLDCOUNT generates
an error that terminates the request.

 Multiple Record Processing

Maintaining Databases 10-171

For example, suppose you write a request to update both employees’ salary history
(SALARY) and monthly pay (GROSS), information contained in two different segments
in the EMPLOYEE data source (see the diagram that follows).

To determine the size of the largest chains in both segments, enter this procedure:

TABLE FILE EMPLOYEE
COUNT SALARY AND PAY_DATE BY EMP_ID
ON TABLE HOLD
END

TABLE FILE HOLD
SUM MAX.SALARY AND MAX.PAY_DATE
END

EMP_ID

DED_CODE
DED_AMT

PAY_DATE
GROSS

DAT_INC
SALARY

The output appears as follows:

PAGE 1
MAX MAX
SALARY PAY_DATE
------ --------

2 10

The report shows that the largest salary history chain consists of two instances and the
largest monthly pay chain consists of ten instances. Therefore, you assign values 1 and 2
to the salary history segment and values 3 through 12 to the monthly pay segment.
Schematically, the Scratch Pad Area will look like this:

1. DAT_INC(1) SALARY(1) - -
2. DAT_INC(2) SALARY(2) - -
3. - - PAY_DATE(3) GROSS(3)
4. - - PAY_DATE(4) GROSS(4)
5. - - PAY_DATE(5) GROSS(5)
6. - - PAY_DATE(6) GROSS(6)
7. - - PAY_DATE(7) GROSS(7)
8. - - PAY_DATE(8) GROSS(8)
9. - - PAY_DATE(9) GROSS(9)
10. - - PAY_DATE(10) GROSS(10)
11. - - PAY_DATE(11) GROSS(11)
12. - - PAY_DATE(12) GROSS(12)

Modifying Data Sources With MODIFY

10-172 Information Builders

To fix the index values in the request, set HOLDINDEX to the first index value assigned
to a segment before loading instances from that segment. In the example above, set
HOLDINDEX to 1 before loading the salary history instances, and set HOLDINDEX to 3
before loading the monthly pay instances. This reserves the proper index values for each
segment.

Prepare separate cases to load instances from each segment. During the modification
phase, discussed on the next page, you may plan to retrieve all records from the same
segment at one time. If so, store the index value of the last instance loaded into the
Scratch Pad Area from that segment (this is the HOLDINDEX value after the last instance
is loaded minus one) in a field. This field will help retrieve the records in the modification
phase.

For example, you are loading monthly pay instances into the Scratch Pad Area. The last
monthly pay instance loaded into the Area is assigned index value 8. You then store 8 in
the field LASTPAY.

This example is a request fragment that updates employees’ salary histories and monthly
pay:

CASE SALCOLLECT
NEXT SALARY

ON NEXT HOLD DAT_INC SALARY
ON NEXT GOTO SALCOLLECT
ON NONEXT COMPUTE

LASTSAL/I5 = HOLDINDEX-1;
HOLDINDEX = 3;

ON NONEXT GOTO PAYCOLLECT
ENDCASE

CASE PAYCOLLECT
NEXT PAY_DATE

ON NEXT HOLD PAY_DATE GROSS
ON NEXT GOTO PAYCOLLECT
ON NONEXT COMPUTE

LASTPAY/I5 = HOLDINDEX-1;
ON NONEXT GOTO DISPLAY

ENDCASE

 Multiple Record Processing

Maintaining Databases 10-173

The three cases are:

• The TOP case. This case selects an employee and sets the HOLDINDEX field to 1
to index the salary history instances.

• The SALCOLLECT case. This case loads the salary history instances into the
Scratch Pad Area. After the instances are loaded, the case stores the index value of
the last loaded salary history instance in the field LASTSAL. It then sets the
HOLDINDEX field to 3 to index the monthly pay instances.

• The PAYCOLLECT case. This case loads the monthly pay instances into the
Scratch Pad Area. After it loads the instances, it stores the index value of the last
loaded monthly pay instance in the field LASTPAY. It then proceeds to the display
phase.

The Display Phase: The SCREENINDEX Field
This section shows how to display a specific group of records in the Scratch Pad Area.

The REPEAT Method on page 10-157 described how to display records in the Scratch
Pad Area on a CRTFORM. The CRTFORM statement specifies the field names with
subscripts which refer to the records in the Area. For example:

CRTFORM
"MONTHLY PAY FOR <D.FIRST_NAME <D.LAST_NAME"
" "
"PAY DATE AMOUNT PAID"
"-------- -----------"
"<D.PAY_DATE(1) <T.GROSS(1)>"
"<D.PAY_DATE(2) <T.GROSS(2)>"
"<D.PAY_DATE(3) <T.GROSS(3)>"
"<D.PAY_DATE(4) <T.GROSS(4)>"
"<D.PAY_DATE(5) <T.GROSS(5)>"

To display a subscripted field, FOCUS adds the field subscript to the value of a field
called SCREENINDEX, then uses the sum as an index value to locate a record in the
Scratch Pad Area. It then displays the field value in that record. For example, if the
SCREENINDEX value for the above CRTFORM is 4, FOCUS will display the
PAY_DATE and GROSS values from Area records 5 through 9.

You can use this feature to scroll back and forth through the Scratch Pad Area. To scroll
forward, increase the value of SCREENINDEX; to scroll backward, decrease the value of
SCREENINDEX.

If you update a field value on the CRTFORM, FOCUS updates the appropriate record in
the Scratch Pad Area.

Modifying Data Sources With MODIFY

10-174 Information Builders

Note:

• If the request does not give SCREENINDEX a value, the default value is 0.

• If the sum of the SCREENINDEX value and a field subscript is less than 0 or more
than the current value of the HOLDCOUNT field, then the CRTFORM displays that
field as blank.

• If you use the CURSORINDEX field to place the cursor on a field value (as
described in The REPEAT Method on page 10-157), the CURSORINDEX value
refers to the field subscript, not the index value.

This sample case displays blocks of eight records stored in the Scratch Pad Area. The first
record in each block is a monthly pay instance. The remaining seven records are
deductions taken from the employee’s paycheck. The case is:

CASE DISPLAY
IF HOLDCOUNT EQ 0 THEN GOTO TOP;
COMPUTE

PFKEY/A4 = ' ';
EMPID/A9 = EMP_ID;
DED_AMT/D12.2M = DED_AMT;

CRTFORM LINE 1
"DEDUCTION RECORD SCREEN"
" "

" EMPLOYEE: <D.EMPID PAY DATE: <D.PAY_DATE(1)"
" "
"1. <D.DED_CODE(2) <T.DED_AMT(2)>"
"2. <D.DED_CODE(3) <T.DED_AMT(3)>"
"3. <D.DED_CODE(4) <T.DED_AMT(4)>"
"4. <D.DED_CODE(5) <T.DED_AMT(5)>"
"5. <D.DED_CODE(6) <T.DED_AMT(6)>"
"6. <D.DED_CODE(7) <T.DED_AMT(7)>"
"7. <D.DED_CODE(8) <T.DED_AMT(8)>"
" "
"PRESS PF4 TO DISPLAY THE NEXT EMPLOYEE"
"PRESS PF5 TO DISPLAY THE LAST PAY DATE"
"PRESS PF6 TO DISPLAY THE NEXT PAY DATE"
COMPUTE

SCREENINDEX/I5 = IF PFKEY IS 'PF04' THEN 0
ELSE IF PFKEY IS 'PF05' THEN SCREENINDEX - 8
ELSE IF PFKEY IS 'PF06' THEN SCREENINDEX + 8
ELSE SCREENINDEX;

IF PFKEY IS 'PF04' THEN GOTO TOP ELSE GOTO DISPLAY;

Pressing one of the PF keys gives the variable PFKEY a value that the request tests to
adjust SCREENINDEX. By adding eight to SCREENINDEX, the request displays the
next block of records. By subtracting eight from SCREENINDEX, the request displays
the previous block of records.

 Multiple Record Processing

Maintaining Databases 10-175

The Modification Phase: The GETHOLD Statement
During the modification phase, the request retrieves records from the Scratch Pad Area
and uses them to modify the data source. It retrieves records using the GETHOLD
statement. The syntax is

GETHOLD

without any parameters. The GETHOLD statement retrieves the record whose index value
is the value of the HOLDINDEX field. The HOLDINDEX field is then incremented by 1.
For example, if the current value of HOLDINDEX is 5, the GETHOLD statement
retrieves Record 5 from the Scratch Pad Area. HOLDINDEX is then increased to 6.

After the record is retrieved, all fields in the record become available for processing:
matching, adding new segment instances, updating, deleting, and computations. Note that
you may need to activate these fields before processing. For example, these statements
update an employee’s monthly pay using Record 5 in the Scratch Pad Area. Record 5
contains two fields: PAY_DATE and GROSS:

COMPUTE HOLDINDEX = 5;
GETHOLD
ACTIVATE PAY_DATE GROSS
MATCH PAY_DATE

ON NOMATCH REJECT
ON MATCH UPDATE GROSS

You may use the GETHOLD statement to process all the records in the Scratch Pad Area.
If the records contain data loaded from different segments, use separate cases to process
records from each segment. First, set the HOLDINDEX field to the index value of the
first record from the segment. As the request retrieves each record, HOLDINDEX
increases by 1. When HOLDINDEX is greater than the index value of the last record
from the segment (which you stored earlier in a field), you can branch to another case.

For example, this request fragment updates employees’ salary history and monthly pay.
The Scratch Pad Area consists of the following records:

• The first two records contain the fields DAT_INC and SALARY to update the salary
history.

• The next ten records contain the fields PAY_DATE and GROSS to update monthly
pay.

Modifying Data Sources With MODIFY

10-176 Information Builders

The fragment is:

CASE SALSET
COMPUTE HOLDINDEX = 1;
GOTO SALUPDATE
ENDCASE

CASE SALUPDATE
GETHOLD
MATCH DAT_INC

ON MATCH UPDATE SALARY
ON MATCH IF HOLDINDEX GT LASTSAL GOTO PAYSET

ELSE GOTO SALUPDATE;
ON NOMATCH REJECT

ENDCASE

CASE PAYSET
COMPUTE HOLDINDEX = 3;
GOTO PAYUPDATE
ENDCASE

CASE PAYUPDATE
GETHOLD
MATCH PAY_DATE

ON MATCH UPDATE GROSS
ON MATCH IF HOLDINDEX GT LASTPAY GOTO TOP

ELSE GOTO PAYUPDATE;
ON NOMATCH REJECT

ENDCASE

DATA VIA FIDEL
END

The cases are as follows:

• The SALSET case sets HOLDINDEX to 1, the index value of the first salary history
record.

• The SALUPDATE case updates the salary history using the records in the Scratch
Pad Area. Each time the case retrieves a record, HOLDINDEX is incremented by 1.
When HOLDINDEX is greater than the index value of the last salary history record
(the value of field LASTSAL), the case branches to the PAYSET case.

• The PAYSET case sets HOLDINDEX to 3, the index value of the first monthly pay
record in the Scratch Pad Area.

• The PAYUPDATE case updates monthly pay using the records in the Scratch Pad
Area. When HOLDINDEX is greater than the index value of the last monthly pay
record in the Area (the value of field LASTPAY), the case branches back to the top.

 Multiple Record Processing

Maintaining Databases 10-177

You can also use the GETHOLD statement to retrieve and process a single record from
the Scratch Pad Area. This request fragment allows the user to delete a single monthly
pay instance:

CASE DISPLAY
CRTFORM
COMPUTE LN/I1 = 0;

"MONTHLY PAY FOR <D.FIRST_NAME <D.LAST_NAME"
" "
"PAY DATE AMOUNT PAID"
"-------- -----------"
"1. <D.PAY_DATE(1) <T.GROSS(1)>"
"2. <D.PAY_DATE(2) <T.GROSS(2)>"
"3. <D.PAY_DATE(3) <T.GROSS(3)>"
"4. <D.PAY_DATE(4) <T.GROSS(4)>"
"5. <D.PAY_DATE(5) <T.GROSS(5)>"
" "
"TO DELETE AN INSTANCE, ENTER LINE NUMBER HERE: <LN"

IF (LN LT 1) OR (LN GT 5) GOTO DISPLAY ELSE GOTO DELETE;
ENDCASE

CASE DELETE
COMPUTE

HOLDINDEX = LN;
GETHOLD
MATCH PAY_DATE

ON NOMATCH REJECT
ON NOMATCH GOTO TOP
ON MATCH DELETE
ON MATCH GOTO TOP

ENDCASE

Note: Be sure that you set HOLDINDEX to a value less than or equal to the current value
of the HOLDCOUNT field. A HOLDINDEX value greater than HOLDCOUNT generates
an error that terminates the request.

Modifying Data Sources With MODIFY

10-178 Information Builders

Example Manual Methods: Two Examples
This section shows two examples which illustrate manual methods in multiple record
processing:

• The first example updates employees’ salary history and monthly pay. This is data
contained in segments on two different paths.

• The second example deletes records of employee deductions. This is data contained
in segments on one path (a parent and its child).

A diagram showing the place of salary history (SALARY), monthly pay (GROSS), and
pay deductions (DED_AMT) in the EMPLOYEE data source structure appears at the
beginning of The Collection Phase on page 10-170 in this section.

Example First Example: Processing Segments on Two Different Paths
This request is an example of a procedure that processes segments lying on different
paths. The example updates employees’ salary history and monthly pay. The salary
history segment and monthly pay segment are both children of the employee segment, and
they are on two separate paths.

This request also demonstrates the use of the GETHOLD statement to retrieve segment
chains from the Scratch Pad Area. Explanatory comments are embedded in the request.

MODIFY FILE EMPLOYEE
-* First, select the parent employee instance.

CRTFORM
"ENTER EMPLOYEE ID: <EMP_ID"

MATCH EMP_ID
ON NOMATCH REJECT
ON MATCH GOTO INITIAL

CASE INITIAL
-* Flush the Scratch Pad Area, then initialize fields
-* and segment chains.

REPEAT 1
HOLD EMP_ID

ENDREPEAT
COMPUTE

HOLDCOUNT/I5 = 0;
HOLDINDEX/I5 = 1;

REPOSITION SALARY
REPOSITION PAY_DATE
GOTO SALCOLLECT
ENDCASE

 Multiple Record Processing

Maintaining Databases 10-179

CASE SALCOLLECT
-* Place the employees' salary history in the Scratch
-* Pad Area. Afterwards, store the index value of the
-* last loaded instance in the field LASTSAL. Then
-* set HOLDINDEX to 3, which is the index of the
-* first monthly pay instance.

NEXT SALARY
ON NEXT HOLD DAT_INC SALARY
ON NEXT GOTO SALCOLLECT
ON NONEXT COMPUTE

LASTSAL/I5 = HOLDINDEX-1;
HOLDINDEX = 3;
ON NONEXT GOTO PAYCOLLECT

ENDCASE

CASE PAYCOLLECT
-* Place the monthly pay instances in the Scratch Pad
-* Area. Afterwards, store the index value of the last
-* loaded instance in the field LASTPAY.

NEXT PAY_DATE
ON NEXT HOLD PAY_DATE GROSS
ON NEXT GOTO PAYCOLLECT
ON NONEXT COMPUTE

LASTPAY/I5 = HOLDINDEX-1;
ON NONEXT GOTO DISPLAY

ENDCASE

CASE DISPLAY
-* If nothing was collected, go back to TOP.
-* Otherwise, display the two segment chains
-* side by side. Then reset HOLDINDEX to 1
-* to prepare for updating.

IF HOLDCOUNT EQ 0 GOTO TOP;
CRTFORM LINE 3

"SALARY HISTORY AND MONTHLY PAY RECORD"
" "
"SALARY HISTORY <40 MONTHLY PAY"
-------------- <40 -----------"
" "
" <D.DAT_INC(1) <T.SAL(1> <40 <D.PD(3) <T.GROSS(3)>"
" <D.DAT_INC(2) <T.SAL(2> <40 <D.PD(4) <T.GROSS(4)>"
" <40 <D.PD(5) <T.GROSS(5)>"
" <40 <D.PD(6) <T.GROSS(6)>"
" <40 <D.PD(7) <T.GROSS(7)>"
" <40 <D.PD(8) <T.GROSS(8)>"
" <40 <D.PD(9) <T.GROSS(9)>"
" <40 <D.PD(10) <T.GROSS(10)>"
" <40 <D.PD(11) <T.GROSS(11)>"
" <40 <D.PD(12) <T.GROSS(12)>"

COMPUTE HOLDINDEX=1;
GOTO SALUPDATE
ENDCASE

Modifying Data Sources With MODIFY

10-180 Information Builders

CASE SALUPDATE
-* Update the salary history instances.
-* LASTSAL contains the index value of the
-* last salary history record.

GETHOLD
MATCH DAT_INC

ON MATCH UPDATE SALARY
ON MATCH IF HOLDINDEX GT LASTSAL GOTO HOLDSET

ELSE GOTO SALUPDATE;
ON NOMATCH REJECT

ENDCASE

CASE HOLDSET
-* Set HOLDINDEX to 3 to update the first
-* monthly pay instance.

COMPUTE HOLDINDEX = 3;
GOTO PAYUPDATE
ENDCASE

CASE PAYUPDATE
-* Update the monthly pay instances. The field
-* LASTPAY contains the index value of the last
-* monthly pay record. Afterwards, go back to TOP.

GETHOLD
MATCH PAY_DATE

ON MATCH UPDATE GROSS
ON MATCH IF HOLDINDEX GT LASTPAY GOTO TOP

ELSE GOTO PAYUPDATE;
ON NOMATCH REJECT

ENDCASE

DATA VIA FIDEL
END

 Multiple Record Processing

Maintaining Databases 10-181

Example Second Example: Modifying Segments on the Same Path
This is a sample request that processes segments lying on the same path. The request
deletes employee pay deductions. To do so, it displays a pay date on the top of the screen;
below, it shows the deductions taken from the employee’s pay check that date. The user
can scroll back and forth between pay dates and may choose particular deductions to
delete. The pay date is a field in the monthly pay segment; the deductions are fields in the
child deduction segment, as shown in the diagram in The Collection Phase on page 10-
170.

The request also demonstrates the use of the SCREENINDEX field to display different
groups of records on subscripted CRTFORMs, and the use of the GETHOLD statement
to retrieve specific records. Explanatory comments are embedded in the request.

MODIFY FILE EMPLOYEE

-* First, select the parent employee instance.

CRTFORM
"ENTER EMPLOYEE ID: <EMP_ID"

MATCH EMP_ID
ON NOMATCH REJECT
ON MATCH GOTO INITIAL

CASE INITIAL
-* Flush the Scratch Pad Area, then initialize fields
-* and segment chains.

REPEAT 1
HOLD EMP_ID

ENDREPEAT
COMPUTE

HOLDCOUNT/I5 = 0;
HOLDINDEX/I5 = 1;
SCREENINDEX/I5 = 0;

BLOCKCOUNT/I5 = 0;
REPOSITION PAY_DATE
GOTO PAYCOLLECT
ENDCASE

CASE PAYCOLLECT
-* The next two cases create blocks of eight
-* instances within the Scratch Pad Area. Each block
-* consists of a monthly pay instance followed
-* by seven descendant instances in the
-* deduction segment. The field BLOCKCOUNT counts
-* the number of blocks in the Scratch Pad Area so far.
-* The field BLOCKNUM contains the total number of
-* blocks in the Area after all instances have
-* been loaded.

Modifying Data Sources With MODIFY

10-182 Information Builders

NEXT PAY_DATE
ON NEXT COMPUTE

HOLDINDEX = 8 * BLOCKCOUNT + 1;
BLOCKCOUNT = BLOCKCOUNT + 1;

ON NEXT ACTIVATE PAY_DATE
ON NEXT HOLD PAY_DATE
ON NEXT GOTO DEDCOLLECT
ON NONEXT COMPUTE

BLOCKNUM/I5 = BLOCKCOUNT;
ON NONEXT GOTO DISPLAY

ENDCASE

CASE DEDCOLLECT
NEXT DED_CODE

ON NEXT ACTIVATE DED_CODE DED_AMT
ON NEXT HOLD DED_CODE DED_AMT
ON NEXT GOTO DEDCOLLECT
ON NONEXT GOTO PAYCOLLECT

ENDCASE

CASE DISPLAY
-* If nothing was collected, go back to TOP.
-* Otherwise, initialize the PFKEY and LINENO
-* fields. The EMPID field is for display
-* purposes. Then, display the current block.
-*
-* At the bottom of the screen is a menu to offer
-* users the choice of processing the records
-* of another employee, displaying the previous
-* block or displaying the next block. the field
-* PFKEY reads the PF key that the user presses
-* (see Chapter 16). The field LINENO contains the
-* line number of the deduction instance that the
-* user wants to delete.

 Multiple Record Processing

Maintaining Databases 10-183

IF HOLDCOUNT EQ 0 THEN GOTO TOP;
COMPUTE

PFKEY/A4 = ' ';
LINENO/I1 = 0;
EMPID/A9 = EMP_ID;

CRTFORM LINE 1
"DEDUCTION RECORD DELETION SCREEN"
" "
"EMPLOYEE: <D.EMPID PAY DATE: <D.PAY_DATE(1)"
" "
"1. <D.DED_CODE(2) <D.DED_AMT(2)"
"2. <D.DED_CODE(3) <D.DED_AMT(3)"
"3. <D.DED_CODE(4) <D.DED_AMT(4)"
"4. <D.DED_CODE(5) <D.DED_AMT(5)"
"5. <D.DED_CODE(6) <D.DED_AMT(6)"
"6. <D.DED_CODE(7) <D.DED_AMT(7)"
"7. <D.DED_CODE(8) <D.DED_AMT(8)"
" "
"PRESS PF4 TO DISPLAY THE NEXT EMPLOYEE"
"PRESS PF5 TO DISPLAY THE LAST PAY DATE"
"PRESS PF6 TO DISPLAY THE NEXT PAY DATE"
" "
"TO DELETE A RECORD, ENTER LINE NUMBER HERE ==> <LINENO"

IF PFKEY IS 'PF04' THEN GOTO TOP;
IF (LINENO GE 1) AND (LINENO LE 7) THEN PERFORM DELETE;
IF (PFKEY IS 'PF05') OR (PFKEY IS 'PF06')

THEN PERFORM ADJUST;
GOTO DISPLAY
ENDCASE

CASE ADJUST
-* Adjust SCREENINDEX to display another block.
-* The BACK and FORW fields perform the arithmetic
-* but also insure that SCREENINDEX stays within
-* its proper range. BLOCKNUM is the total number
-* of blocks in the Scratch Pad Area.

COMPUTE
BACK/I5 = IF SCREENINDEX GT 8 THEN SCREENINDEX-8 ELSE 0;
FORW/I5 = IF SCREENINDEX LT 8*(BLOCKNUM-1)

THEN SCREENINDEX+8 ELSE 8*(BLOCKNUM-1);
SCREENINDEX = IF PFKEY IS 'PF05' THEN BACK ELSE FORW;
ENDCASE

CASE DELETE
-* Delete the deduction instance indicated by the user.
-* The first GETHOLD statement retrieves the monthly
-* pay instance from the Scratch Pad Area. The second
-* GETHOLD statement retrieves the desired deduction
-* instance. After activating the PAY_DATE and DED_CODE
-* key fields, the case locates the deduction instance
-* in the database and deletes it. Note: The record
-* in the Scratch Pad Area is NOT deleted and will
-* continue to appear on the screen.

Modifying Data Sources With MODIFY

10-184 Information Builders

COMPUTE HOLDINDEX = SCREENINDEX + 1;
GETHOLD
COMPUTE HOLDINDEX = SCREENINDEX + LINENO + 1;
GETHOLD
ACTIVATE PAY_DATE DED_CODE
MATCH PAY_DATE

ON NOMATCH REJECT
ON MATCH CONTINUE

MATCH DED_CODE
ON NOMATCH TYPE "DEDUCTION RECORD NOT FOUND"
ON NOMATCH GOTO DISPLAY
ON MATCH DELETE
ON MATCH TYPE "RECORD ON LINE <LINENO DELETED"
ON MATCH GOTO DISPLAY

ENDCASE

DATA VIA FIDEL
END

Sorting the Scratch Pad Area: SORTHOLD
You can sort the contents of the Scratch Pad Area using any field or combination of fields
in the Scratch Pad Area, and display them in any convenient order. The command uses
syntax similar to the sorting specifications in the TABLE command.

The MODIFY subcommand that sorts the Scratch Pad Area is

SORTHOLD BY [HIGHEST] field1 [BY [HIGHEST] field2...]

where field1 is the primary sort field, and field2 to field8 are optional secondary sort
fields.

 Multiple Record Processing

Maintaining Databases 10-185

Note:

• The SORTHOLD statement cannot span more than one line. The default sort order is
from low-to-high, but a high-to-low sort can be specified with the keyword
HIGHEST. You can sort the Scratch Pad Area by up to eight fields.

• If you sort the Scratch Pad Area before display, always sort by the data source key
fields before entering a MATCH…UPDATE loop, to be sure the transactions are in
sequence with the data source. Otherwise you increase your execution time
substantially. This procedure

SORTHOLD BY ITEM

performs this sort. It is issued after the records are displayed but before they are
updated in the data source.

Consider the following Master File:

FILENAME=PRODUCT, SUFFIX=FOC
SEGNAME=SEGONE, SEGTYPE=S1
FIELD=ORDERNO, ALIAS=ONO, FORMAT=I4, $
SEGNAME=SEGTWO, SEGTYPE=S1, PARENT=SEGONE
FIELD=ITEM, ALIAS=ITEMNO, FORMAT=A3, $
FIELD=PRODUCT, ALIAS=PRD, FORMAT=A12, $
FIELD=QTY,ALIAS=QUANTITY, FORMAT=I4S, $

Modifying Data Sources With MODIFY

10-186 Information Builders

The following procedure will display all of the ITEM instances for a specified
ORDERNO, in order of the PRODUCT name and highest QTY sequence. The command

SORTHOLD BY PRODUCT BY QTY

performs the sort.

MODIFY FILE PRODUCT
CRTFORM LINE 1

"ENTER ORDER NUMBER <ORDERNO"
MATCH ORDERNO

ON NOMATCH GOTO TOP
ON MATCH REPEAT 12

NEXT ITEM
ON NEXT HOLD ITEM PRODUCT QTY
ON NONEXT GOTO SCREEN

ENDREPEAT
GOTO SCREEN
CASE SCREEN

IF HOLDCOUNT EQ 0 GOTO TOP;

SORTHOLD BY PRODUCT BY HIGHEST QTY

CRTFORM LINE 1
"ORDER NUMBER IS <D.ORDERNO "

" "
" ITEM PRODUCT QUANTITY "
" ---- ------- -------- "
"<D.ITEM(1) <D.PRODUCT(1) <T.QTY(1)> "
"<D.ITEM(2) <D.PRODUCT(2) <T.QTY(2)> "
.
.
.
"<D.ITEM(12) <D.PRODUCT(12) <T.QTY(12)>"

SORTHOLD BY ITEM
REPEAT HOLDCOUNT

MATCH ITEM
ON MATCH UPDATE

QTY
ON NOMATCH GOTO

ENDREPEAT
ENDREPEAT
GOTO TOP

ENDCASE
DATA VIA FIDEL
END

 Advanced Facilities

Maintaining Databases 10-187

Advanced Facilities
This section discusses facilities that can assist you in using the MODIFY command.
These facilities are:

• The COMBINE command for modifying multiple FOCUS data sources in one
MODIFY request.

• The COMPILE command for translating MODIFY requests into compiled code
ready for execution.

• The ACTIVATE and DEACTIVATE statements for activating and deactivating
fields.

• The Checkpoint and Absolute File Integrity facilities for protecting FOCUS data
sources from system failures.

• The ECHO facility for displaying the logical structure of MODIFY requests.

• Dialogue Manager system variables that record execution statistics every time a
MODIFY request is run.

• FOCUS query commands that display statistical information on MODIFY request
executions and FOCUS data sources.

• COMMIT and ROLLBACK subcommands for controlling changes made to FOCUS
data sources, and for protecting FOCUS data sources from system failures.

All these facilities are described in the sections that follow.

If you are operating in Simultaneous Usage mode (SU), please refer to the appropriate
Simultaneous Usage manual.

Modifying Data Sources With MODIFY

10-188 Information Builders

Modifying Multiple Data Sources in One Request: The COMBINE
Command

The COMBINE command allows you to modify two or more FOCUS data sources in the
same MODIFY request. The command combines the logical structures of the FOCUS
data sources into one structure while leaving the physical structures of the data sources
untouched. This combined structure lasts for the duration of the FOCUS session, until you
enter another COMBINE command, or it is cleared with the AS CLEAR option. Only one
combined structure can exist at a time.

Note the following:

• The combined structure can contain up to 63 segments with one additional reserved
for BINS.

• You can COMBINE data sources which come from different applications and have
different DBA passwords. The only requirement is a valid password for each data
source. For more information refer to the Describing Data manual.

• Only the MODIFY and CHECK commands can process combined structures.

• If you are using Simultaneous Usage mode, all the data sources in the combined
structure must either be all on the same FOCUS Database Server or all in local mode.

• The differences between JOIN and COMBINE commands are discussed in
Differences Between COMBINE and JOIN Commands on page 10-195.

 Advanced Facilities

Maintaining Databases 10-189

Syntax How to Combine Data Sources
Enter the COMBINE command at the FOCUS command level (at the FOCUS prompt).
The syntax is

COMBINE [FILES] file-1 [PREFIX string-1] [TAG tag1] [AND]
file-2 [PREFIX string-2] [TAG tag2] [AND] ...
file-n [PREFIX string-n] [TAG tag3] AS name

where:

file-1 ... file-n

Are the names of the data sources you want to modify in the request. You may
specify up to 16 data sources.

PREFIX string

Is a parameter that enables you to refer to transaction fields with the prefix “string” of
up to four characters. See Referring to Fields in Combined Structures: The PREFIX
Parameter on page 10-192 later in this section.

TAG tag

Is an alias for a data source name of up to eight characters that enables you to refer to
transaction fields. See Referring to Fields in Combined Structures: The TAG
Parameter on page 10-191 later in this section.

AND

Is an optional word to enhance readability.

name

Is the name of the combined structure that you will use in the MODIFY and CHECK
commands. For example, if you name the combined structure EDJOB, begin the
request with:

MODIFY FILE EDJOB

AS CLEAR

Is the command that clears the combined structure which is currently in effect.

Note:

• TAG and PREFIX may not be used together in a COMBINE.

• You can type the command on one line or on as many lines as you need.

For example, to combine data sources EDUCFILE and JOBFILE, enter:

COMBINE FILES EDUCFILE AND JOBFILE AS EDJOB

Modifying Data Sources With MODIFY

10-190 Information Builders

After entering this command, you can execute the following request. Notice that the
statements pertaining to each data source are placed in different cases (Case Logic is
discussed in Case Logic on page 10-131). This clarifies the request logic and makes it
easier to understand and clarify the request. The first case modifies the EDUCFILE data
source, and the second case modifies the JOBFILE data source.

MODIFY FILE EDJOB
PROMPT COURSE_CODE COURSE_NAME JOBCODE JOB_DESC
GOTO EDUCFILE

CASE EDUCFILE
MATCH COURSE_CODE

ON MATCH REJECT
ON MATCH GOTO JOBFILE
ON NOMATCH INCLUDE
ON NOMATCH GOTO JOBFILE

ENDCASE

CASE JOBFILE
MATCH JOBCODE

ON MATCH REJECT
ON NOMATCH INCLUDE

ENDCASE
DATA

Support for Long and Qualified Field Names
If you are using tag names, you must also set the command SET FIELDNAME to NEW
or NOTRUNC. The SET FIELDNAME command enables you to activate long (up to 66
characters) and qualified field names. The syntax for this SET command is

SET FIELDNAME = type

where:

type

Is one of the following:
OLD specifies that 66-character and qualified field names are not supported; the
maximum length is 12 characters.
NEW specifies that 66-character and qualified field names are supported; the maximum
length is 66 characters. NEW is the default value.
NOTRUNC prevents unique truncations of field names and supports the 66-character
maximum.

 Advanced Facilities

Maintaining Databases 10-191

When the value of FIELDNAME is changed within a FOCUS session, COMBINE
commands are affected as follows:

• When you change from a value of OLD to a value of NEW, all COMBINE
commands are cleared.

• When you change from a value of OLD to NOTRUNC, all COMBINE commands
are cleared.

• When you change from a value of NEW to OLD, all COMBINE commands are
cleared.

• When you change from a value of NOTRUNC to OLD, all COMBINE commands
are cleared.

Other changes to the FIELDNAME value do not affect COMBINE commands.

Note: For more information on the SET FIELDNAME command, refer to the Developing
Applications manual.

Referring to Fields in Combined Structures: The TAG Parameter
For a MODIFY request to refer to transaction fields in a combined structure by their
transaction field names, the field names must be unique; that is, the transaction field
names in one data source cannot appear in other data sources. Refer to any transaction
field names that are not unique by their aliases, or use the TAG parameter in the
COMBINE command to assign a tag name to the data sources that share the transaction
field names.

When a data source has a tag, refer to its transaction field names by affixing the tag name
to the beginning of each field name.

For example, this COMBINE command combines data sources EDUCFILE and
JOBFILE into the structure EDJOB, and assigns the tag AAA to all the transaction fields
in the EDUCFILE data source:

COMBINE FILES EDUCFILE TAG AAA AND JOBFILE AS EDJOB

Modifying Data Sources With MODIFY

10-192 Information Builders

When you create a request that modifies this structure, type the EDUCFILE field names
with the AAA prefix in front:

COMBINE FILES EDUCFILE TAG AAA AND JOBFILE AS EDJOB
MODIFY FILE EDJOB
PROMPT AAA.COURSE_CODE AAA.COURSE_NAME JOBCODE JOB_DESC
GOTO EDUCFILE
CASE EDUCFILE
MATCH AAA.COURSE_CODE
ON MATCH REJECT
ON NOMATCH INCLUDE
GOTO JOBFILE
ENDCASE
CASE JOBFILE
MATCH JOBCODE
ON MATCH REJECT
ON NOMATCH INCLUDE
ENDCASE
DATA

In this request, the tag AAA has been attached to the two transaction field names in the
EDUCFILE data source: COURSE_CODE and COURSE_NAME, making the new field
names AAA.COURSE_CODE and AAA.COURSE_NAME. Use these tagged field
names only in MODIFY requests that modify the combined structure.

Referring to Fields in Combined Structures: The PREFIX
Parameter
For a MODIFY request to refer to fields in a combined structure by their field names, the
field names must be unique so that there is no ambiguity in the request. That is, the field
names in one data source cannot appear in other data sources. If there are field names that
are not unique, refer to the fields by their aliases or use the PREFIX parameter in the
COMBINE command to assign a prefix of up to four characters to the data sources
sharing the field names.

When a data source has a prefix, refer to its field names with the prefix affixed to the
beginning of each field name. The field name can be up to 66 characters in length. For
example, this COMBINE command combines data sources EDUCFILE and JOBFILE
into the structure EDJOB, and assigns the prefix ED to all the fields in the EDUCFILE
data source:

COMBINE FILES EDUCFILE PREFIX ED JOBFILE AS EDJOB

 Advanced Facilities

Maintaining Databases 10-193

When you enter a request modifying the structure, type the EDUCFILE field names with
the ED prefix in front:

COMBINE FILES EDUCFILE PREFIX ED JOBFILE AS EDJOB
MODIFY FILE EDJOB
PROMPT EDCOURSE_CODE EDCOURSE_NAME JOBCODE JOB_DESC
GOTO EDUCFILE

CASE EDUCFILE
MATCH EDCOURSE_COD

ON MATCH REJECT
ON NOMATCH INCLUDE

GOTO JOBFILE
ENDCASE

CASE JOBFILE
MATCH JOBCODE

ON MATCH REJECT
ON NOMATCH INCLUDE

ENDCASE
DATA

In this request, the prefix ED has been attached to the two field names in the EDUCFILE
data source: COURSE_CODE and COURSE_NAME. The new field names are
EDCOURSE_CODE and EDCOURSE_NAME.

You use these prefixed field names only in MODIFY requests modifying the combined
structure. These prefixed field names are not displayed by either the ?F query or the
CHECK command.

Note: A MODIFY COMBINE with prefixes cannot be loaded through the LOAD facility.
However, the unloaded compiled and uncompiled versions will run. For more information
on compiling MODIFY requests see Compiling MODIFY Requests: The COMPILE
Command on page 10-196. For more information on loading data sources, see the
Developing Applications manual.

Modifying Data Sources With MODIFY

10-194 Information Builders

How Data Source Structures Are Combined
Combined structures start with a dummy root segment called SYSTEM, which becomes
the parent of the root segments of the individual data sources. The SYSTEM segment
contains no data. This is not an alternate view; the relationships between segments in each
data source remain the same.

The following figure shows how two data sources, EDUCFILE and JOBFILE, are
combined into one structure. The first two diagrams represent the EDUCFILE and
JOBFILE structures; the third diagram represents the combined structure. Note that the
relationship between the two segments in each data source does not change.

EMP_ID

SKILLS
SKILLS_DESC

SEC_CLEAREMP_ID
DATA_ATTEND

COURSE_CODE
COURSE_NAME

EDUCFILE Structure JOBFILE Structure

EMP_ID

SKILLS
SKILLS_DESC

SEC_CLEAREMP_ID
DATA_ATTEND

COURSE_CODE
COURSE_NAME

SYSTEM

Combined Structure
Field names are considered duplicates when two or more fields are referenced with the
same field name or alias. Duplication can occur if a COMBINE is done without a prefix
or a tag. Duplicate fields are not allowed in the same segment. The second occurrence is
never accessed by FOCUS and the following warning message is generated when
CHECK and CREATE FILE are issued:

(FOC1829) WARNING. FIELDNAME IS NOT UNIQUE WITHIN A SEGMENT: fieldname

 Advanced Facilities

Maintaining Databases 10-195

Differences Between COMBINE and JOIN Commands
The COMBINE command differs from the JOIN command in the following ways:

• The JOIN command is effective for TABLE, TABLEF, MATCH, GRAPH, and
CHECK commands but is not effective for MODIFY requests (except for the
LOOKUP function). The COMBINE command is effective only for MODIFY
requests and CHECK commands.

• The JOIN command joins a variety of FOCUS and non-FOCUS data sources. The
COMBINE command combines FOCUS data sources only.

• The JOIN command can only join data sources with common fields. The COMBINE
command can combine all FOCUS data sources.

• The JOIN command joins data source structures together at segments with a common
field. This can invert some of the segment relationships in the cross-referenced data
source (see alternate file view in the Describing Data and Creating Reports
manuals). The COMBINE command combines the data source structures under a
dummy root segment. Segment relationships remain intact.

The ? COMBINE Query
To display information on the combined structure currently in effect, enter:

? COMBINE

FOCUS responds

FILE=name TAG PREFIX
file-1 tag-1 prefix-1
file-2 tag-2 prefix-2
file-3 tag-3 prefix-3
. . .
. . .
file-n tag-n prefix-n

where:

name

Is the name of the combined structure.

file-1 ... file-n

Are the names of the data sources that make up the combined structure.

tag-1 ... tag-n

Are the tags attached to the field names in the data source. These tags correspond to
the aliases given to the data source(s) in the combined structure.

prefix-1 ... prefix-n

Are the prefixes attached to the field names in the data source.

Modifying Data Sources With MODIFY

10-196 Information Builders

For example, when data source EDUCFILE is combined with data source JOBFILE, enter
the command

? COMBINE

to display the following information:

Note: TAG and PREFIX may not be mixed in a COMBINE.

Compiling MODIFY Requests: The COMPILE Command
The COMPILE command translates a MODIFY request stored in a procedure into an
executable code module. This module, like an object code module, cannot be edited by a
user. However, it loads faster than the original request because the MODIFY statements
have already been interpreted by FOCUS (the initialization time of a compiled MODIFY
module can be four to ten times faster than the original request). Compiling a request can
save a significant amount of time if the request is large and must be executed repeatedly.
You compile the request once, and execute the module as many times as you need it.

Enter the COMPILE command at the FOCUS command level (the FOCUS prompt). The
syntax is

COMPILE focexec [AS module]

where:

focexec

Is the name of the procedure where the request is stored.

module

Is the name of the module. The default is the procedure name.

Procedure names and module names are system dependent.

To execute a module, enter from the FOCUS command level:

RUN module

where module is the name of the module. You will see no difference in execution between
the module and the original request, but it will load much faster.

 Advanced Facilities

Maintaining Databases 10-197

Please note the following regarding compilation of MODIFY requests:

• The procedure to be compiled may only contain one MODIFY request. It may not
contain any other FOCUS, Dialogue Manager, or operating system statements.

• Before compiling a request or executing a module, allocate all input and output files
such as transaction files and log files. These allocations must be in effect at run time.

• Before compilation, issue any SET, USE, COMBINE, or JOIN statements necessary
to run the request.

• If the data source you are modifying is joined to another data source (using the JOIN
command) during compilation, it must be joined to the data source at run time.

• If you are modifying a combined structure (using the COMBINE command), the
structure must be combined both at compilation and at run time.

• Procedures prompt for Dialogue Manager variable values at compilation time. These
values cannot be changed at run time.

• If you are using FOCUS security to prevent unauthorized users from executing the
request, the password you set at compilation time must be the same one set at run
time.

Active and Inactive Fields
This section discusses active and inactive fields. When you execute a request, FOCUS
keeps track of which transaction fields are active or inactive during execution:

• Active fields have incoming data for them. You may use active fields to add, update,
and delete segment instances.

• Inactive fields do not have incoming data for them. You can use inactive fields in
calculations only.

When a MATCH statement matches on an inactive field, the request returns to the
beginning (the TOP case in case requests) to avoid modifying segments for which data is
not present.

If a MATCH or NEXT statement executes an INCLUDE action, all segment instances
having active fields are added to the data source.

If a MATCH or NEXT statement executes an UPDATE action, only active fields update
the data source. Data source fields corresponding to the inactive incoming fields remain
unchanged.

Modifying Data Sources With MODIFY

10-198 Information Builders

This section covers the following:

• When fields are active and inactive.

• Activating fields with the ACTIVATE statement.

• Deactivating fields with the DEACTIVATE statement.

When Fields Are Active and Inactive
A data field becomes active when:

• It is described in the Master File and it is read in by a FIXFORM, FREEFORM,
PROMPT, or CRTFORM statement. Note that if the field is declared a conditional
field, the following rules apply:

• In a FIXFORM statement, a conditional field is active when it has a value
present in a record.

• In a CRTFORM, a conditional entry field is active when you enter data for it. A
conditional turnaround field is active when you change its value (see Chapter 11,
Designing Screens With FIDEL).

• The field is assigned a value by a COMPUTE or VALIDATE statement.

• The field is activated by the ACTIVATE statement.

A data field becomes inactive when:

• Execution branches to the top of the request, whether this is done implicitly or by a
GOTO statement.

• It modifies a segment instance because of an INCLUDE, UPDATE, or DELETE
action.

• It has been made available to the request through the LOOKUP function.

• It is deactivated by the DEACTIVATE statement.

 Advanced Facilities

Maintaining Databases 10-199

Activating Fields: The ACTIVATE Statement
To activate an inactive field, use the ACTIVATE statement. the ACTIVATE statement
performs two tasks:

• It declares a transaction field to be present (considered part of the current
transaction). The field can then be used for matching, including, and updating.

• It equates the value of the transaction field to the corresponding data source field.
This occurs when both of the following conditions are true:

The ACTIVATE statement either appears within or it follows a MATCH or NEXT
statement that modifies the segment containing the corresponding data source field.

The ACTIVATE statement converts the field from being inactive to active. Included
are fields for which the request has not read any data or assigned a value with a
compute statement. Fields already active are excluded.

If one of these conditions is not true, the activate statement does not change the value of
the field. If the field has no data, FOCUS sets the value of the field to blank if
alphanumeric, zero if numeric, and the missing data symbol if the field is described by the
MISSING=ON attribute in the Master File (discussed in the Describing Data manual).

The syntax of the ACTIVATE statement is

ACTIVATE [RETAIN|MOVE] [SEG.]field1 field2 ... fieldn

where:

RETAIN

Is an option that activates the field but leaves its value unchanged, even if the
ACTIVATE statement converts the field from being inactive to active.

MOVE

Is an option that activates the field and equates its value to the corresponding data
source field, even if the field was already active before the ACTIVATE statement.

field1 ...

Are the names of the fields you want to activate. To activate all the fields in one
segment, specify any segment field with the prefix SEG. affixed in front of the field
name. For example:

ACTIVATE SEG.SKILLS

Modifying Data Sources With MODIFY

10-200 Information Builders

This sample request illustrates how ACTIVATE statements affect the fields they specify.
The numbers on the margin refer to the notes below. The request is:

MODIFY FILE EMPLOYEE

1. FREEFORM EMP_ID CURR_SAL ED_HRS

2. ACTIVATE DEPARTMENT
MATCH EMP_ID

ON MATCH REJECT
3. ON NOMATCH INCLUDE
4. GOTO NEXT_EMP1

CASE NEXT_EMP1
5. NEXT EMP_ID

ON NONEXT GOTO EXIT
6. ON NEXT ACTIVATE RETAIN CURR_SAL DEPARTMENT
7. ON NEXT UPDATE DEPARTMENT ED_HRS
8. ON NEXT GOTO NEXT_EMP2

ENDCASE

CASE NEXT_EMP2
9. NEXT EMP_ID

ON NONEXT GOTO EXIT
10. ON NEXT ACTIVATE CURR_SAL DEPARTMENT ED_HRS
11. ON NEXT ACTIVATE MOVE CURR_SAL
12. ON NEXT GOTO NEXT_EMP3

ENDCASE

CASE NEXT_EMP3
13. NEXT EMP_ID

ON NONEXT GOTO EXIT
14. ON NEXT UPDATE CURR_SAL DEPARTMENT ED_HRS

ENDCASE

DATA
EMP_ID=222333444, CURR_SAL=50000, ED_HRS=40, $
END

 Advanced Facilities

Maintaining Databases 10-201

When you execute the request, the following happens:

1. The request reads the record:

EMP_ID=222333444, CURR_SAL=50000, ED_HRS=40, $

2. The statement

ACTIVATE DEPARTMENT

 activates the DEPARTMENT field. Since the request did not read any data for this
field and the statement precedes the MATCH and NEXT statements, FOCUS equates
the field value to blank.

 The transaction record is as follows:

Transaction Record:

EMP_ID: 22223333444 (active)
CURR_SAL: 50000 (active)
ED_HRS: 40 (active)
DEPARTMENT:blank (active)

3. The MATCH statement does not find the EMP_ID value in the data source. It
therefore includes the record in the data source as a new segment instance. All fields
included in the instance, EMP_ID, CURR_SAL, DEPARTMENT and ED_HRS,
become inactive.

4. The request branches to the NEXT_EMP1 case.

5. The request moves the current position in the data source to the next segment
instance after EMP_ID 444. This instance contains the following fields:

Database Segment Instance:

EMP_ID: 326179357
CURR_SAL: 21780.00
ED_HRS: 75.00
DEPARTMENT:MIS

6. The statement

ACTIVATE RETAIN CURR_SAL DEPARTMENT

 activates the CURR_SAL and DEPARTMENT fields. The RETAIN keyword
prevents their values from changing. The transaction record is now:

Transaction Record:

EMP_ID: 326179357 (inactive)
CURR_SAL: 50000 (active)
DEPARTMENT:blank (active)
ED_HRS: 40 (inactive)

Modifying Data Sources With MODIFY

10-202 Information Builders

7. The statement

UPDATE DEPARTMENT ED_HRS

 changes the DEPARTMENT field value in the segment instance to blank and
deactivates the DEPARTMENT field on the transaction record. Since the ED_HRS
transaction field is inactive, it does not change the data source ED_HRS value. The
segment instance is now:

Database Segment Instance:

EMP_ID: 326179357
CURR_SAL: 21780.00
DEPARTMENT:blank
ED_HRS: 75.00

 The request did not use the CURR_SAL transaction field to update the instance, so
the CURR_SAL field remains active. The transaction record is as follows:

Transaction Record:

EMP_ID: 326179357 (inactive)
CURR_SAL: 50000 (active)
DEPARTMENT:BLANK (inactive)
ED_HRS: 40 (inactive)

8. The request branches to the NEXT_EMP2 case.

9. The request moves the current position to the next current instance after EMP_ID
326179357. This instance contains the following fields:

Database Segment Instance:

EMP_ID: 451123478
CURR_SAL: 16100.00
DEPARTMENT:PRODUCTION
ED_HRS: 50.00

10. The statement

ACTIVATE CURR_SAL DEPARTMENT ED_HRS

declares the CURR_SAL, DEPARTMENT, and ED_HRS transaction fields to be
active. Since CURR_SAL was already active, its value does not change.
DEPARTMENT and ED_HRS are converted into active fields, and their values
change to that of the DEPARTMENT and ED_HRS fields in the segment instance.
The transaction record is now:

Transaction Record:

EMP_ID: 451123478 (inactive)
CURR_SAL: 50000 (active)
DEPARTMENT:PRODUCTION (active)
ED_HRS: 50 (active)

 Advanced Facilities

Maintaining Databases 10-203

11. The statement

ACTIVATE MOVE CURR_SAL

declares the CURR_SAL transaction field to be active. The MOVE keyword changes
the value of CURR_SAL to that of the CURR_SAL field in the segment instance,
even though the CURR_SAL field was already active. The transaction record is now:

Transaction Record:

EMP_ID: 451123478 (inactive)
CURR_SAL: 16100.00 (active)
DEPARTMENT:PRODUCTION (active)
ED_HRS: 50 (active)

12. The request branches to the NEXT_EMP3 case.

13. The request moves the current position to the next current instance after EMP_ID
451123478. This instance contains the following fields:

Database Segment Instance:

EMP_ID: 543729165
CURR_SAL: 9000.00
DEPARTMENT:MIS
ED_HRS: 25.00

14. The request updates the data source CURR_SAL, DEPARTMENT, and ED_HRS
fields using the transaction record, causing the CURR_SAL, DEPARTMENT, and
ED_HRS transaction fields to become inactive. The segment instance is now:

Database Segment Instance:

EMP_ID: 543729165
CURR_SAL: 16100.00
DEPARTMENT:PRODUCTION
ED_HRS: 50.00

The transaction record is now:

Transaction Record:

EMP_ID: 543729165 (inactive)
CURR_SAL: 16100.00 (inactive)
DEPARTMENT:PRODUCTION (inactive)
ED_HRS: 50 (inactive)

Modifying Data Sources With MODIFY

10-204 Information Builders

Deactivating Fields: The DEACTIVATE Statement
To deactivate a field, use the DEACTIVATE statement. If the field is a transaction field,
the DEACTIVATE statement changes its value to blank if alphanumeric, zero if numeric,
or the MISSING symbol for fields described by the MISSING=ON attribute (discussed in
the Describing Data manual). It also deactivates the corresponding data source field. The
RETAIN option leaves the transaction value unchanged.

The syntax is

DEACTIVATE [RETAIN] [SEG.]field-1 field-2 ... field-n
DEACTIVATE [RETAIN] ALL
DEACTIVATE COMPUTES
DEACTIVATE INVALID

where:

RETAIN

Is an option that deactivates data source fields but does not change the value of the
corresponding transaction fields to blank or 0.

field-1 ...

Are the fields you want to deactivate. to deactivate all the fields in one segment,
specify any segment field with the prefix seg. affixed in front of the field name. For
example:

DEACTIVATE SEG.SKILLS

ALL

Is an option that deactivates all fields (including temporary fields) and automatically
invokes the INVALID option if the request contains CRTFORM statements (see
below).

COMPUTES

Is an option that deactivates all temporary fields.

INVALID

Is an option that causes the following: if the user enters a value on a CRTFORM
screen and the value fails a validation test, FIDEL does not redisplay the CRTFORM
screen to reprompt the user for a valid value. Rather, it displays the next screen.
Use the INVALID option only with requests containing CRTFORM statements.

The ACTIVATE and DEACTIVATE statements can stand by themselves or they can
form part of an ON MATCH, ON NOMATCH, ON NEXT, or ON NONEXT phrase in a
MATCH or NEXT statement. These are some sample statements:

ACTIVATE RETAIN SKILLS

ON MATCH DEACTIVATE ALL

ON NONEXT ACTIVATE FULL_NAME SEG.SKILLS JOBS_DONE

 Advanced Facilities

Maintaining Databases 10-205

Protecting Against System Failures
FOCUS provides three ways to protect your data if your system experiences hardware or
software failure while you are executing a MODIFY request. They are:

• The Checkpoint facility.

• The Absolute File Integrity feature.

• The COMMIT and ROLLBACK subcommands.

Safeguarding Transactions: The Checkpoint Facility
The Checkpoint facility limits the number of transactions lost if the system fails when you
are modifying a data source. You can set checkpoints for transactions that are being read
from a data source, or from the terminal.

When a MODIFY request is executed, it does not write transactions to the data source
immediately; rather, it collects them in a buffer. When the buffer is full, FOCUS writes all
transactions in the buffer to the data source at one time. This cuts down on the
input/output operations that FOCUS must perform. If, however, the system crashes, the
transactions collected in the buffer may be lost.

You may cause FOCUS to write more frequently to the data source by using the
checkpoint facility. When you activate the Checkpoint facility, FOCUS writes to the data
source whenever a pre-determined number of transactions accumulates in the buffer. The
point at which FOCUS writes the transactions is called the checkpoint.

You control the Checkpoint facility with the following MODIFY statement

CHECK option

where:

option

Is one of the following:
ON activates the Checkpoint facility. FOCUS writes to the data source when the buffer
accumulates 500 transactions in CMS, or 1000 transactions in MVS.
OFF deactivates the Checkpoint facility.
n is an integer. Activates the Checkpoint facility. FOCUS writes to the data source
when the buffer accumulates n transactions.

Note that if you set n to a smaller number, fewer transactions are processed between
checkpoints. This causes FOCUS to perform more input/output operations, thereby
decreasing efficiency.

Modifying Data Sources With MODIFY

10-206 Information Builders

If the system does fail while you are modifying a FOCUS data source, enter the ? FILE
query when the system comes back. Look at the number in the bottom row in the
right-most column. This is the number of transactions written to the data source by the
MODIFY request that was executing when the system came down. You can have the
request start processing the transaction data source at the next transaction by using the
START command, described in Reading Selected Portions of Transaction Data Sources:
The START and STOP Statements on page 10-56.

The following MODIFY request sets the checkpoint at every tenth transaction:

MODIFY FILE EMPLOYEE
CHECK 10
MATCH EMP_ID
PROMPT EMP_ID CURR_SAL

ON MATCH UPDATE CURR_SAL
ON NOMATCH REJECT

DATA

Safeguarding FOCUS Data Sources: Absolute File Integrity
The Absolute File integrity feature completely safeguards the integrity of a FOCUS data
source that you are modifying, even if the system experiences hardware or software
failure. When you are using this feature, FOCUS does not overwrite the data source on
disk; rather, it writes the changes to another section of the disk. If the request finishes
normally, the new section of the disk becomes part of the data source. If the system fails,
the original data source is preserved.

Safeguarding Transactions: COMMIT and ROLLBACK
Subcommands
To use COMMIT and ROLLBACK you must use Absolute File Integrity (see Managing
MODIFY Transactions: COMMIT and ROLLBACK on page 10-211). Unlike the CHECK
statement, COMMIT gives you control over the content of data source changes and
ROLLBACK enables you to cancel changes before they have been written to the data
source. In case of system failure, COMMIT and ROLLBACK ensure that either all or no
transactions are processed.

You can use either COMMIT and ROLLBACK, or the CHECK statement in your
MODIFY procedures. If the MODIFY procedure uses COMMIT and ROLLBACK,
CHECK processing is not used (see Managing MODIFY Transactions: COMMIT and
ROLLBACK on page 10-211).

 Advanced Facilities

Maintaining Databases 10-207

Displaying MODIFY Request Logic: The ECHO Facility
The ECHO facility displays the logical structure of MODIFY requests. This is a good
debugging tool for analyzing a MODIFY request, especially if the logic is complex and
MATCH and NEXT defaults are being used.

Each ECHO display lists:

• The cases, if case logic is used.

• The MODIFY statements used, such as COMPUTE, VALIDATE, TYPE, GOTO,
and IF.

• Each segment modified or used to establish a current position.

• The actions the request takes for ON MATCH, ON NOMATCH, ON NEXT, and
ON NONEXT conditions when it is modifying the segment, whether these actions are
specified by the request or are by default. Default actions are discussed in The
MATCH Statement on page 10-58.

• The number of data source fields, the total number of fields (including internal
fields), and the total size of the field areas.

To use the ECHO facility, first allocate the ECHO terminal output to ddname HLIPRINT.
Then, begin the MODIFY command this way

MODIFY FILE file ECHO

where file is the name of the data source. When you execute the request, the request does
not modify the data source; rather, the ECHO facility displays the listing at the terminal.

The ECHO facility can store the listing in a file rather than display it on the screen. to do
this, allocate the file to ddname HLIPRINT. A record length of 80 bytes is sufficient.

Modifying Data Sources With MODIFY

10-208 Information Builders

The listing has the form

MODIFY ECHO FACILITY
ECHO OF PROCEDURE: focexec

CASE casename

statements

SEGMENT: segname

ON MATCH ON NOMATCH
-------- ----------
match-actions nomatch-actions0

NUMBER OF DATABASE FIELDS : n
TOTAL NUMBER OF FIELDS : n
TOTAL SIZE OF FIELD AREAS : n

where:

focexec

Is the name of the procedure that the request is stored in. If you entered the request
from a terminal, this line is omitted.

casename

Is the name of the case, if the request uses Case Logic.

statements

Are the MODIFY statements used. (Note: MATCH statements are shown
separately.)

segname

Is the name of the segment being modified or used to establish a current position.

match-actions

Are actions taken on an ON MATCH or ON NEXT condition, including default
actions.

nomatch-actions

Are actions taken on an ON NOMARCH or ON NONEXT condition, including
default actions.

n

Is an integer.

NUMBER OF DATABASE FIELDS

Is the number of fields described by the Master File, including fields in
cross-referenced segments.

 Advanced Facilities

Maintaining Databases 10-209

TOTAL NUMBER OF FIELDS

Is the sum of the number of data source fields in the Master File and temporary fields
in the MODIFY request. This includes fields automatically created by FOCUS (these
fields are listed in Computing Values: The COMPUTE Statement on page 10-90).

TOTAL SIZE OF FIELD AREAS

Is the sum of the sizes of data source fields in the Master File and temporary fields in
the MODIFY request, measured in bytes.

If you are executing a no-case procedure, the ECHO display lists the names of all
segments in the data source. Those segments that you did not use in your request are
listed with both MATCH and NOMATCH conditions as REJECT.

A sample request running the ECHO facility is shown below:

MODIFY FILE EMPLOYEE ECHO
PROMPT EMP_ID
GOTO SALENTRY

CASE SALENTRY
MATCH EMP_ID

ON MATCH PROMPT CURR_SAL
ON MATCH VALIDATE

SALTEST = IF CURR_SAL GT 50000 THEN 0 ELSE 1;
ON INVALID TYPE

"SALARY TOO HIGH. PLEASE REENTER THE SALARY"
ON INVALID GOTO SALENTRY

ON MATCH UPDATE CURR_SAL
ENDCASE
DATA

Modifying Data Sources With MODIFY

10-210 Information Builders

When you execute this request, the following display appears. Note that although the
request did not specify an ON NOMATCH phrase in the SALENTRY case, the ECHO
display lists the REJECT action under the ON NOMATCH column for the SALENTRY
case, because REJECT is the default action for an ON NOMATCH condition.

EMPLOYEE FOCUS A1 ON 07/18/98 AT 10.48.21

MODIFY ECHO FACILITY
ECHO OF PROCEDURE: MOD76

CASE TOP

PROMPT
GOTO SALENTRY

CASE SALENTRY

SEGMENT: EMPINFO

MATCH NOMATCH
----- -------
PROMPT REJECT
VALIDATE
INVALID TYPE
INVALID GOTO SALENTRY
UPDATE

END OF ECHO:

NUMBER OF DATABASE FIELDS : 34
TOTAL NUMBER OF FIELDS : 36
TOTAL SIZE OF FIELD AREAS : 383

Dialogue Manager Statistical Variables
After you execute a FOCUS request, FOCUS automatically records statistics about the
execution in specially designated Dialogue Manager variables. Since these variables do
not receive values until after execution is completed, they are not useful in the requests
themselves. However, you may use them in procedures after execution (that is, after the
Dialogue Manager -RUN control statement).

The variables that pertain to MODIFY requests are:

&TRANS Number of transactions processed.

&ACCEPTS Number of transactions accepted into the data source.

&INPUT Number of segment instances added to the data source.

&CHNGD Number of segment instances updated.

&DELTD Number of segment instances deleted.

 Advanced Facilities

Maintaining Databases 10-211

&DUPLS Number of transactions rejected because of an ON MATCH
REJECT condition.

&NOMATCH Number of transactions rejected because of an ON NOMATCH
REJECT condition.

&INVALID Number of transactions rejected because transaction values failed
validation tests.

&FORMAT Number of transactions rejected because of format errors.

&REJECT Number of transactions rejected for other reasons.

For instructions on how to use Dialogue Manager variables to build procedures, see the
Developing Applications manual.

MODIFY Query Commands
Four query commands display information regarding the MODIFY command and the
maintenance of FOCUS data sources. These are:

? COMBINE Displays information on combined structures (see Modifying
Multiple Data Sources in One Request: The COMBINE Command
on page 10-188).

? FDT Displays information regarding the physical attributes of FOCUS
data sources (see the Developing Applications manual).

? FILE Displays information regarding the number of segment instances in
FOCUS data sources and the dates and times the data sources were
last modified (see the Developing Applications manual).

? STAT Displays statistics regarding the last execution of a request (see the
Developing Applications manual).

Managing MODIFY Transactions: COMMIT and ROLLBACK
COMMIT and ROLLBACK are two MODIFY subcommands. COMMIT gives you
control over the content of data source changes and ROLLBACK enables you to undo
changes before they become permanent..

The COMMIT subcommand safeguards transactions in case of a system failure and
provides greater control (than the MODIFY Checkpoint facility) over which transactions
are written to the data source.

The MODIFY CHECK statement only enables you to control the number of transactions
that must occur before changes are written to the data source. When using CHECK, you
cannot change the checkpoint setting once the MODIFY request begins execution.
Similarly, changes cannot be canceled (see Safeguarding Transactions: The Checkpoint
Facility on page 10-205 for more information on the CHECK statement).

Modifying Data Sources With MODIFY

10-212 Information Builders

COMMIT enables you to make changes based on the content of the transactions as well
as the number. Changes you do not want to make can be canceled with ROLLBACK,
unless a COMMIT has been issued for those changes. Should the system fail, either all or
none of your transactions will be processed.

Absolute File Integrity is required in order to use COMMIT and ROLLBACK. Absolute
File Integrity is provided automatically by CMS for all data sources, except those that
have an A6 file mode. Absolute File Integrity for data sources with an A6 file mode is
provided by the FOCUS Shadow Writing Facility. Absolute File Integrity for data sources
in MVS/TSO is provided solely by the FOCUS Shadow Writing Facility.

The COMMIT and ROLLBACK Subcommands
The COMMIT and ROLLBACK subcommands are automatically activated in FOCUS
and cannot be deactivated. Therefore, unless you omit these subcommands from your
code, COMMIT and ROLLBACK processing takes place. If you would rather use
CHECK processing, make sure you do not include COMMIT and ROLLBACK
subcommands because they will take precedence over CHECK processing.

Coding With COMMIT and ROLLBACK
COMMIT and ROLLBACK each processes a logical transaction. A logical transaction is
a group of data source changes in the MODIFY environment that you want to treat as one.
For example, you can handle multiple records displayed on a CRTFORM and then
processed via the REPEAT command as a single transaction. A logical transaction is
terminated by either COMMIT or ROLLBACK. COMMIT and ROLLBACK also can be
used for single-record processing.

When COMMIT ends a logical transaction, it writes all changes to the data source.
COMMIT can be coded as a global subcommand or as part of MATCH or NEXT logic.
The possible MATCH and NEXT statements are:

COMMIT
ON MATCH COMMIT
ON NOMATCH COMMIT
ON MATCH/NOMATCH COMMIT
ON NEXT COMMIT
ON NONEXT COMMIT

When ROLLBACK ends a logical transaction, it does not write changes to the data
source. The ROLLBACK subcommand cancels changes made since the last COMMIT.
ROLLBACK cannot cancel changes once a COMMIT has been issued for them.

 Advanced Facilities

Maintaining Databases 10-213

ROLLBACK can also be coded as a global subcommand or as part of MATCH or NEXT
logic. Possible MATCH and NEXT statements are:

ROLLBACK
ON MATCH ROLLBACK
ON NOMATCH ROLLBACK
ON MATCH/NOMATCH ROLLBACK
ON NEXT ROLLBACK
ON NONEXT ROLLBACK

If the COMMIT fails for any reason (for example, system failure, lack of disk space), no
changes are made to the data source. In this way, COMMIT is an all-or-nothing feature
that ensures data source integrity.

In the following example, a user may COMMIT or ROLLBACK changes after each
group of three records has been processed or delay the COMMIT subcommand until later
by selecting the option to add more records. Changes are stored permanently in the data
source when the user chooses to commit the changes or when the procedure is terminated
without issuing a ROLLBACK subcommand.

Modifying Data Sources With MODIFY

10-214 Information Builders

Note: In the following example the COMMIT and ROLLBACK subcommands are
included in Case COMM and Case ROLL, respectively.

MODIFY FILE EMPLOYEE
COMPUTE ANSWER/A1=;
CRTFORM LINE 1
"ENTER UP TO 3 NEW EMPLOYEES"
" "
" EMPLOYEE ID LAST NAME FIRST NAME"
"1. <EMP_ID(1) <LAST_NAME(1) <FIRST_NAME(1)"
"2. <EMP_ID(2) <LAST_NAME(2) <FIRST_NAME(2)"
"3. <EMP_ID(3) <LAST_NAME(3) <FIRST_NAME(3)"
GOTO MATCHIT

CASE MATCHIT
REPEAT 3

MATCH EMP_ID
ON NOMATCH INCLUDE
ON MATCH REJECT

ENDREPEAT
GOTO DECIDE
ENDCASE

CASE DECIDE
CRTFORM LINE 10
"WHAT WOULD YOU LIKE TO DO NOW? <ANSWER"
" C TO COMMIT CHANGES SO FAR"
" R TO ROLLBACK CHANGES"
" A TO ADD MORE EMPLOYEES"
IF ANSWER EQ 'C' PERFORM COMM

ELSE IF ANSWER EQ 'R' PERFORM ROLL
ELSE IF ANSWER EQ 'A' GOTO TOP
ELSE PERFORM BADCHOICE;

GOTO TOP
ENDCASE

CASE COMM
COMMIT
ENDCASE

CASE ROLL
ROLLBACK
ENDCASE

CASE BADCHOICE
TYPE "PLEASE ENTER C, R, OR A."
GOTO DECIDE
ENDCASE

DATA
END

 MODIFY Syntax Summary

Maintaining Databases 10-215

MODIFY Syntax Summary
This section presents a summary of MODIFY command syntax. The syntax of each
statement is shown as part of a MODIFY request. The rest of the summary shows:

• The syntax of the transaction statements FIXFORM, FREEFORM, and PROMPT.
The syntax of the CRTFORM statement is shown in Chapter 11, Designing Screens
With FIDEL.

• The actions you can use in MATCH and NEXT statements.

MODIFY Request Syntax
The following is the syntax of MODIFY requests:

MODIFY FILE filename [ECHO|TRACE]

TYPE [ON ddname] [AT START|AT END]

"text"

COMPUTE
field/format=;

****** transaction subcommand ********

VALIDATE
field=expression;

ON INVALID �GOTO ... �
�PERFORM ... �
�TYPE [ON ddname]�

"text"

COMPUTE
field/format = expression;

MATCH � * [KEYS] [SEG.n] �
�[WITH-UNIQUES] keyfield(s) [field ... field]�
� �

ON MATCH action
ON MATCH action
.
.
ON NOMATCH action
ON NOMATCH action
.
.
ON MATCH/NOMATCH action

Modifying Data Sources With MODIFY

10-216 Information Builders

REPEAT [*|number] [TIMES] [MAX maximum] [NOHOLD]

statements
HOLD [SEG.]field [field ... field]

ENDREPEAT

ACTIVATE [RETAIN|MOVE] [SEG.]field ... field

DEACTIVATE �[RETAIN] [SEG.] field ... field�
�[RETAIN] ALL �
�COMPUTES �
�INVALID �

CASE casename

GOTO �TOP �
�ENDCASE �
�ENDREPEAT�
�casename �
�variable �
�EXIT �

PERFORM �TOP �
�ENDCASE �
�ENDREPEAT�
�casename �
�variable �
�EXIT �

IF expression [THEN] �GOTO � TOP ELSE �GOTO � TOP
�PERFORM� ENDCASE �PERFORM� ENDCASE
� � ENDREPEAT � � ENDREPEAT

casename casename
variable variable
EXIT EXIT

HOLD [SEG.]field [field ... field]

GETHOLD

NEXT field
ON NEXT action
ON NEXT action
.
.
ON NONEXT action
ON NONEXT action
.
.

ENDCASE

COMMIT
ROLLBACK

 MODIFY Syntax Summary

Maintaining Databases 10-217

LOG �TRANS � [ON ddname] �MSG �ON �	
�ACCEPTS�
 �OFF��
�DUPL � � � �
�NOMATCH�
�INVALID�
�FORMAT �
� �

CHECK �ON �
�OFF�
�n �

START n

STOP n

DATA �ON ddname 	
�VIA progname

[END]

Transaction Statement Syntax
The following is the syntax for three transaction statements: FIXFORM, FREEFORM,
and PROMPT. For CRTFORM syntax, see Chapter 11, Designing Screens With FIDEL.

The syntax of the FIXFORM statement:

FIXFORM �FROM master �
�[ON ddname] field/[C]format field/[C]format ... [Xn] [X-n]�
� �

The syntax of the FREEFORM statement:

FREEFORM [ON ddname] field field field ...

The syntax of the PROMPT statement:

PROMPT {*|field[.text.] field[,text,] . . .}

Modifying Data Sources With MODIFY

10-218 Information Builders

MATCH and NEXT Statement Actions
This section lists the actions that can be taken by MATCH and NEXT statements. They
are placed in ON MATCH, ON NOMATCH, ON NEXT, and ON NONEXT phrases.
These actions are:

ACTIVATE
COMMIT
COMPUTE
CONTINUE (ON MATCH and ON NEXT only)
CONTINUE TO (ON MATCH and ON NEXT only)
CRTFORM
DEACTIVATE
DELETE (ON MATCH and ON NEXT only)
FIXFORM
FREEFORM
GOTO
HOLD
IF
INCLUDE
PERFORM
PROMPT
REJECT
REPEAT (ON MATCH and ON NEXT only)
ROLLBACK
TED (ON MATCH and ON NOMATCH ON NEXT and ON
NONEXT)
TYPE
UPDATE (ON MATCH and ON NEXT only)
VALIDATE

The following actions can be used in ON MATCH/NOMATCH phrases:

ACTIVATE
COMMIT
CRTFORM
DEACTIVATE
GOTO
HOLD
IF
PERFORM
PROMPT
ROLLBACK
TED

The following actions can be used in ON INVALID phrases:

GOTO
PERFORM
TYPE

Maintaining Databases 11-1

CHAPTER 11

Designing Screens With FIDEL

Topics:

• Introduction

• Describing the CRT Screen

• Using FIDEL in MODIFY

• Using FIDEL in Dialogue Manager

• Using the FOCUS Screen Painter

FIDEL, the FOCUS Interactive Data Entry Language, enables
you to design full-screen forms for data entry and application
development. You use FIDEL both with MODIFY for building
data maintenance and inquiry screens, and with Dialogue
Manager for building applications that accept values for
variables at run time.

Designing Screens With FIDEL

11-2 Information Builders

Introduction
Describing the CRT Screen on page 11-7 describes the facilities of FIDEL that are
common to both MODIFY and Dialogue Manager. The Introduction on page 11-2
explains how MODIFY facilities and FIDEL interact, and describes the FIDEL facilities
that are specific to MODIFY. Using FIDEL With Dialogue Manager on page 11-4
describes the interaction between Dialogue Manager and FIDEL.

From the FOCUS TED editor, you can also use the FOCUS Screen Painter with both
MODIFY and Dialogue Manager to interactively build and view screens online. With the
Screen Painter, you design the layout of the form and the Screen Painter automatically
generates the FIDEL code to build it. The FOCUS Screen Painter is described in Using
the FOCUS Screen Painter on page 11-83.

The two simple examples on the following pages demonstrate how to generate a screen
form by using the CRTFORM and -CRTFORM syntax. Note how closely FIDEL syntax
resembles TABLE syntax for creating headings.

Using FIDEL With MODIFY
The following example of a simple MODIFY CRTFORM illustrates the use of FIDEL
with the resulting screen (the numbers refer to the explanation and are not part of the
code):

MODIFY FILE EMPLOYEE
1. CRTFORM
2. "EMPLOYEE UPDATE"
3. "EMPLOYEE ID #: <EMP_ID LAST NAME: <LAST_NAME"
4. "DEPARTMENT: <DEPARTMENT SALARY: <CURR_SAL"

5. MATCH EMP_ID
ON NOMATCH REJECT
ON MATCH UPDATE LAST_NAME DEPARTMENT CURR_SAL

6. DATA
END

This request sets up a form to update the last name, department and current salary.
Processing is as follows:

1. CRTFORM generates the visual form and invokes FIDEL. The form begins on line
one of the screen unless specified otherwise with the LINE option (see Using
Multiple CRTFORMs: LINE on page 11-52).

2. Each line on the screen begins and ends with double quotation marks. This is a line
of text that serves as a title. Note the close correspondence to the syntax used to
create headings in a TABLE request.

 Introduction

Maintaining Databases 11-3

3. The second screen line specifies two data fields: EMP_ID and LAST_NAME. A data
entry field is indicated by a left caret, followed by the field name or alias from the
Master File. The text, EMPLOYEE ID #: and LAST NAME: identifies each field on
the screen. This informs the operator where to enter the data.

4. This is the last line within double quotation marks. It signals the end of the
CRTFORM. In this case it identifies and defines two more data fields:
DEPARTMENT and CURR_SAL. When you execute the MODIFY request, the
form instantly appears on the screen:

EMPLOYEE UPDATE
EMPLOYEE ID #: LAST NAME:
DEPARTMENT: SALARY:

 The number of characters allotted for each data entry field on the screen defaults to
the display format for that particular field in the Master File. You can optionally
specify a format for screen display that is shorter than the default.

 The operator can now fill in the data entry areas with the appropriate information.

5. The request continues with MODIFY MATCH logic.

6. This line tells FOCUS that the incoming data is from the terminal. In conjunction
with CRTFORM, it implies full-screen data input. You can also use DATA VIA
FIDEL or, in CMS, DATA VIA FI3270.

When you use FIDEL with MODIFY, you are setting up full-screen forms for the
maintenance of data source fields. Most MODIFY features such as conditional and
non-conditional fields, automatic application generation, Case Logic, multiple record
processing, error handling, validation tests, logging transactions, and typing messages to
the terminal work with FIDEL.

With MODIFY you also have access to additional screen control options such as clearing
the screen, specifying and changing the size of the screen, and designating the particular
line on which the form starts.

Designing Screens With FIDEL

11-4 Information Builders

Using FIDEL With Dialogue Manager
The following example of a simple -CRTFORM illustrates the use of FIDEL in Dialogue
Manager and the resulting screen (the numbers refer to the explanation and are not part of
the code):

1. -CRTFORM
2. -"MONTHLY SALES REPORT FOR <&CITY/10"
3. -"BEGINNING PRODUCT CODE IS: <&CODE1/3"

-"ENDING PRODUCT CODE IS: <&CODE2/3"
4. -"REGIONAL SUPERVISOR IS: <®IONMGR/5"

TABLE FILE SALES
HEADING CENTER
"MONTHLY REPORT FOR &CITY"
"PRODUCT CODES FROM &CODE1 TO &CODE2"
" "
SUM UNIT_SOLD AND RETURNS AND COMPUTE
RATIO/D5.2 = 100 * RETURNS/UNIT_SOLD;
BY PROD_CODE
IF PROD_CODE IS-FROM &CODE1 TO &CODE2
FOOTING CENTER
"REGIONAL SUPERVISOR: ®IONMGR"
END

The procedure sets up a form for gathering run-time variables for a TABLE request:
&CITY, the city for the report; &CODE1 and &CODE2, a range of product codes; and
®IONMGR, the regional supervisor. Processing is as follows:

1. -CRTFORM generates the visual form, invokes FIDEL, and clears the screen.

2. Each line on the screen begins with a dash and double quotation marks (-“), and ends
with double quotation marks. Note this first line of the screen form contains text and
a variable field, &CITY, which has a length of 10. This specifies ten spaces on the
screen for entering the value. The data entry field is indicated by the left caret.

3. The next few lines of the screen form contain both text and variable fields with
formats.

4. The last line within double quotation marks signals the end of the -CRTFORM.
When the FOCEXEC executes, the screen displays the following form:

MONTHLY SALES REPORT FOR
BEGINNING PRODUCT CODE IS:
ENDING PRODUCT CODE IS:
REGIONAL SUPERVISOR IS:

The operator can now fill in values for the run-time variables. After the operator
transmits the screen by pressing Enter, the values entered on the screen are sent to the
variables. The regular FOCUS commands are stacked and executed when the end of
the procedure is reached.

 Introduction

Maintaining Databases 11-5

When you use FIDEL with Dialogue Manager, you can define input fields as amper
variables that receive values at run time to adjust to specific processing requirements.
Because they are not data fields and are not part of the Master File, they do not
automatically have a format. You must allocate space for them on the screen. You can do
this directly on the
-CRTFORM as in the previous example or through a -SET statement.

Dialogue Manager supports two additional control statements: -CRTFORM BEGIN and
-CRTFORM END. The statement -CRTFORM BEGIN signals the beginning of the
screen form. You can then enter screen lines as well as other Dialogue Manager control
statements. You then signal the end of the screen form with the statement -CRTFORM
END. This allows you to use Dialogue Manager statements between screen lines while
building the form.

Screen Management Concepts and Facilities
The following briefly outlines the FIDEL capabilities that are common to both MODIFY
and Dialogue Manager and defines the common terminology:

• The MODIFY CRTFORM statement and the Dialogue Manager -CRTFORM control
statement both automatically invoke FIDEL. All succeeding lines placed within
double quotations make up the actual screen form. Note the common syntax between
TABLE headings (see the Creating Reports manual) and CRTFORM screen lines.

• You can combine a CRTFORM and a -CRTFORM in one procedure. However, they
must remain within their own environments. The MODIFY CRTFORM contains data
source fields, whereas the Dialogue Manager -CRTFORM contains amper variables.

• The term field in this chapter refers to either a data source field name in conjunction
with MODIFY or an amper variable in conjunction with Dialogue Manager.

• You can define a CRTFORM in MODIFY or a -CRTFORM in Dialogue Manager
that has more lines than on your CRT screen. FIDEL provides scrolling capabilities.

• It is important to note the difference between the physical screen on the terminal and
the logical CRTFORM or form. A form generated by one CRTFORM or
-CRTFORM statement can take up many screens or less than one screen.

Designing Screens With FIDEL

11-6 Information Builders

• You can specify three types of fields on the screen: input, display only, and
turnaround (both display and update). Data entry and turnaround fields are
considered unprotected areas on the screen because you may input values or replace
what is there. Display values are considered protected areas on the screen because
you cannot alter what is there (see Data Entry, Display and Turnaround Fields on
page 11-14).

• You can set PF key controls and specify cursor positioning. You can specify screen
attributes such as background effects, highlighting, and color to enhance readability
of the screen. You can also change screen attributes depending on the outcome of
various tests (see Controlling the Use of PF Keys on page 11-20 through Using
Labeled Fields on page 11-28).

Note: This chapter is written specifically for the IBM 3270 terminal, which supports PF
key and cursor control, scrolling and screen attributes. Examples use the program syntax
for the CMS operating system.

Using FIDEL Screens: Operating Conventions
The following procedures apply for filling in all FIDEL screens:

• To move from field to field, press the Tab key. You can also move the cursor around
the screen using the arrow keys.

• When filling in values on the screen, you may use any of the keys on the keyboard.
Some terminals automatically prevent the entry of a non-numeric character in a field
identified as computational.

• To scroll forward or backward through a long CRTFORM (from screen to screen)
press the PF8 or PF7 key, respectively (or PF20, PF19).

• To transmit the screen, press the Enter key.

• If you make an error, the transaction may not be transmitted and an error message
may appear at the bottom of the screen. You can correct the error and retransmit the
screen.

• To signal the end of data entry, press the PF3 or PF15 key or type END in an
unprotected area. In MODIFY, this terminates the request. In Dialogue Manager, this
terminates the FOCEXEC procedure.

The following operating procedures are specific to MODIFY:

• To return to the first screen without transmitting the current screen, press the PF2 key
or the key set to QUIT.

• If the screen clears at any time, press the Enter key to bring it back.

Note: The PF key settings referred to here are the default settings. Any PF key can be
redefined using the SET statement.

 Describing the CRT Screen

Maintaining Databases 11-7

Describing the CRT Screen
The MODIFY statement CRTFORM or the Dialogue Manager control statement
-CRTFORM, followed by the screen layout, generates a form. Within one MODIFY
procedure you can use an unlimited number of screen lines (within memory constraints).
Each screen line can contain a maximum of 78 characters of text and data.

In MODIFY, you can use up to 255 CRTFORM statements in a procedure. In Dialogue
Manager, there is no limit to the number of -CRTFORM statements that you may use in
one procedure.

All the basic options described here can be used with both MODIFY and Dialogue
Manager. Options that are specific to MODIFY are discussed in Using FIDEL in
MODIFY on page 11-41 and those specific to Dialogue Manager are discussed in Using
FIDEL in Dialogue Manager on page 11-77.

The following example shows the syntax of a simple MODIFY CRTFORM using the
LOWER case option, followed by two screen lines containing various screen elements:
text, a spot marker, and a field (numbers refer to the explanation; they are not part of the
code):

1. CRTFORM LOWER
2. "PLEASE FILL IN THE EMPLOYEE ID # </1"
3. "EMPLOYEE ID #: <EMP_ID"

MATCH EMP_ID
.
.
.

Processing is as follows:

1. CRTFORM invokes FIDEL and generates the form. The LOWER case option
specifies that what is entered from the terminal in lowercase will remain in lowercase.

2. The first line of the screen contains descriptive text.

</1 is a spot marker which skips one blank line.

3. The last line of the screen contains two screen elements: descriptive text that
identifies the field and the data source field EMP_ID. The last line between quotation
marks signals the end of the CRTFORM.

The form generated appears as follows:

PLEASE FILL IN THE EMPLOYEE ID #

EMPLOYEE ID #:

Designing Screens With FIDEL

11-8 Information Builders

Specifying Elements of the CRTFORM
To create the visual form, you enter the screen lines one after the other within double
quotation marks. For each screen line, you can specify various screen elements such as
descriptive text and fields. A left caret (<) followed by the name of the field generates the
position where data is to be entered onto the screen.

You may need to use two FOCEXEC lines to describe one physical CRTFORM line.
Simply omit the double quotation marks (“) at the end of the first line and omit them at
the beginning of the next line as well. Everything between the set of double quotation
marks will read as one screen line on the CRTFORM.

Invoking FIDEL: CRTFORM and -CRTFORM
The following is a summary of the complete syntax for generating a CRTFORM in
MODIFY or a -CRTFORM in Dialogue Manager. The individual options and screen
elements are described in detail in specific sections later in the chapter

[-]CRTFORM [option option...]
[-]"screen element [screen element....]"

where:

[-]CRTFORM

Automatically invokes FIDEL and sets up the visual form. Subsequent lines describe
the screen.

option option...

Refers to screen control options. (See Using FIDEL in MODIFY on page 11-41 and
Using FIDEL in Dialogue Manager on page 11-77.)

[-]"screen element.."

Can be user-defined text, fields, or spot markers. Spot markers define the next place
on the screen where a screen element will appear. Both spot markers and fields are
preceded by a left caret and optionally closed by a right caret (see Specifying
Elements of the CRTFORM on page 11-8).

 Describing the CRT Screen

Maintaining Databases 11-9

Note:

• You can create simple screen forms by typing the FIDEL code into your procedures
with your text editor. However, it is easier to build more complex forms using many
screen attributes and field labels using the FOCUS Screen Painter.

• You can use the asterisk (*) with CRTFORM in FIDEL to generate a CRTFORM
containing all of the data source’s fields automatically (that is, without specifying
individual fields). See Generating Automatic CRTFORMs on page 11-47 for
information on CRTFORM *, its syntax and variations.

• Do not begin any field used in a CRTFORM or FIXFORM statement with Xn, where
n is any numeric value. This applies to fields in the Master File and computed fields.

Defining a Field
Labels, prefixes, attributes, and formats are parts of the definition of a particular field. In
Dialogue Manager, the first character is an ampersand, which signals an amper variable.
(The entire definition is preceded by a left caret and optionally closed by a right caret.)

Note: Fields with a text (TX) format cannot be used in CRTFORM or -CRTFORM.
However, they can be entered interactively using TED (see Chapter 10, Modifying Data
Sources With MODIFY for using text fields in MODIFY).

The syntax for defining a field is as follows.

In MODIFY:

<[:label.][prefix.][attribute.]field[/length][>]

In Dialogue Manager:

<[&:label.][prefix.][attribute.]&variable[/length][>]

where:

:label.|&:label.

Is a user-defined label of up to 12 characters associated with a field. It may not
contain embedded blanks (see Using Labeled Fields on page 11-28).

prefix.

Refers to D. or T., which designate a display or turnaround field, respectively (see
Data Entry, Display and Turnaround Fields on page 11-14).

attribute.

Is the abbreviation or full name of a screen attribute (see Specifying Screen Attributes
on page 11-25).

field

Is the name of the field or variable being defined.

Designing Screens With FIDEL

11-10 Information Builders

&variable

Is for data entry. Can be a data source field or a temporary field.

/length

Is the length of the field as it appears on the screen. In MODIFY, you need to define
a length, only if you want the screen length to be different from the format length that
is defined in the MASTER or COMPUTE. In Dialogue Manager, you need to define
a length only if not previously defined.

Note: When you use the abbreviations for attributes, you do not need to use the dot
separator between attributes or between a prefix and an attribute (see Specifying Screen
Attributes on page 11-25).

The following is an example of the syntax of a Dialogue Manager screen line defining the
variable field &CITY:

-CRTFORM
-"<&:L01.T.HIGH.&CITY/7"

.

.

.

The elements on the second line which define the variable field &CITY are:

1. The left caret generates a place for the variable on the screen.

2. &:L01 is a label that identifies the data entry area on the screen (see Using Labeled
Fields on page 11-28).

3. T. is a prefix that defines the variable as a turnaround field. If the variable has been
given a value within the FOCEXEC, it is displayed. Otherwise a default value is
displayed. The operator can then change the value.

4. .HIGH. is a screen attribute specifying that the contents of the field will be
highlighted.

5. &CITY/7 is the name of the variable field with a length specification. The specified
length is seven characters. That is, the space that will be allotted on the screen for
input of data is seven characters long.

Prefixes, labels, and screen attributes are explained fully in Data Entry, Display and
Turnaround Fields on page 11-14, Specifying Screen Attributes on page 11-25, and Using
Labeled Fields on page 11-28.

 Describing the CRT Screen

Maintaining Databases 11-11

The following chart outlines the similarities and differences of FIDEL when used with
MODIFY and Dialogue Manager:

MODIFY Dialogue Manager

CRTFORM [options] -CRTFORM [options]

UPPER/LOWER

CLEAR/NOCLEAR

WIDTH/HEIGHT

TYPE

LINE

UPPER/LOWER

BEGIN/END

TYPE

"screen elements"

text

<spot marker[>]**

<field/length[>]*

prefix.(D. or T.)***

attribute.

:label.

"screen elements"

text

<spot marker[>]**

<field/length[>]**

prefix.(D. or T.)***

attribute

&:label.

* The right caret denotes a non-conditional field.

** The right caret has no meaning, but may be used for increased clarity.

*** Prefixes, attributes and labels are part of the definition of the field on the screen.
They do not stand alone.

Designing Screens With FIDEL

11-12 Information Builders

Using Spot Markers for Text and Field Positioning
Because the lengths of fields vary, text does not automatically align uniformly on the
screen. Spot markers are available to help you position both text and fields. Please note
that a spot marker is essential to eliminate trailing blanks at the end of the first line, if
your screen line description takes up two FOCEXEC lines.

The syntax and usage of the different spot markers are shown in the following chart:

Marker Example Usage

<n or <n> <50 Positions the next character in column 50.

<+n or <+n> <+4 Positions the next character four columns from the last
non-blank character.

<-n or <-n> <-1 Positions the next character one column to the left of the
last character. This marker’s function is to suppress or
write over the attribute byte at the beginning and the end
of a field.

</n or </n> </2 Positions the next character at the beginning of the line
that is two lines from the last (skips two lines). Note:
The last line is blank and is created when a double
quotation mark (“) is encountered.

<0X or <0X> <0X Positions the next character immediately to the right of
the last character (skip zero columns). This is used to
help position data on a FIDEL screen when a single
screen line is coded as two lines in a FOCEXEC. No
spaces are inserted between the spot marker and the start
of a continuation line (see Note 3 in the following
example).

Note: You can optionally use the right caret >. This is useful when the next character in
the line is a left caret. It also enhances readability.

 Describing the CRT Screen

Maintaining Databases 11-13

Suppose you want the various input data fields arranged across the screen in vertical
sections, left justified, and in horizontal segments marked off with lines. Using spot
markers, you can create the desired screen as shown in the following example:

MODIFY FILE EMPLOYEE
CRTFORM

"EMPLOYEE UPDATE"
1. "</1"

"---"
"EMPLOYEE ID #: <EMP_ID LAST NAME: <LAST_NAME"

2. "</1"
3. "DEPARTMENT: <DEPARTMENT <+3 CURRENT SALARY:<0X>

<CURR_SAL"
"---"
"BANK: <BANK_NAME"
"---"

MATCH EMP_ID
.
.
.

DATA
END

The spot markers in the example perform the following functions:

1/2. </1 generates two blank lines.

3. <+3 moves the word CURRENT three spaces to the right of the last letter in the word
DEPARTMENT. <0X> skips no spaces. No extra spaces are inserted between this
and the next word (<CURR_SAL) on the continuation line. There is, in fact, one
space before the field which is an attribute byte that marks the start of a field.

The screen appears as:

EMPLOYEE UPDATE

--
EMPLOYEE ID #:LAST NAME:

DEPARTMENT: CURRENT SALARY:
--
BANK:
--

Designing Screens With FIDEL

11-14 Information Builders

Specifying Lowercase Entry: UPPER/LOWER
All text that is entered from the terminal is normally translated to uppercase letters. You
can override this default and preserve both uppercase and lowercase text by using the
lowercase option. The syntax is

[-]CRTFORM [UPPER|LOWER]

where:

UPPER

Translates all characters to uppercase. This is the default.

LOWER

Reads lowercase data from the screen. Once you specify LOWER, every screen
thereafter is a lowercase screen until you specify UPPER.

Note: In MODIFY, when you use multiple CRTFORMs on the same screen (using LINE
n), you can mix UPPER and LOWER among the forms.

Data Entry, Display and Turnaround Fields
There are three types of data or variable fields that can be specified on the CRTFORM:
data entry, display, and turnaround.

You can also compute data fields (see Chapter 10, Modifying Data Sources With
MODIFY, for rules about computing data fields) and specify them as entry, display, or
turnaround on the CRTFORM. You can convert a turnaround field to a display field
dynamically.

In MODIFY, fields can also be designated as conditional or unconditional (see
Conditional and Non-Conditional Fields on page 11-42). We recommend that for data
entry, you use conditional fields (left caret only) so that the values in your data source are
not replaced by a blank or a zero if you do not enter data for the field.

For most turnaround fields, we recommend that you use non-conditional fields (both
carets). A non-conditional turnaround field remains active whether you enter data or not.
Because the value in the data source is displayed in the field, that value remains in the
data source if you do not change it. Because the field remains active, the values for your
VALIDATEs and COMPUTEs are then accurate (see Conditional and Non-Conditional
Fields on page 11-42 for a complete explanation of the use of conditional and
non-conditional fields in MODIFY).

 Describing the CRT Screen

Maintaining Databases 11-15

The following outlines the rules for specification of different types of fields.

Data entry (for data entry only):

In MODIFY the syntax is
<field[/length][>]

where:

<field[>]

Is the name of the field. Reserves space on the screen for data entry into that field and
does not display the current value of the field.

In MODIFY, if only the left caret is used, data entry is conditional. If both carets are
used, the field is non-conditional (see Conditional and Non-Conditional Fields on page
11-42).

In Dialogue Manager the syntax is
<&variable[/length][>]

where:

<&variable[>]

Is the name of the variable field. Reserves space on the screen for data entry into that
field and does not display the current value of the field.

In Dialogue Manager, the option of the right caret is meaningless. Usually for the
FOCEXEC to execute, you must supply a value for each variable. If you do not, FOCUS
assumes a blank or a 0 for that value.

Display (for information only):

Data is displayed in a protected area and cannot be altered. The syntax is

In MODIFY: <D.field[/length]

In Dialogue Manager: <D.&variable[/length]

where:

D.

Is the prefix placed in front of a field, indicating that the data or value is to be
displayed. The current value of the field appears on the screen, but in a protected area
which cannot be changed.

Note that the right caret is meaningless for display fields.

Designing Screens With FIDEL

11-16 Information Builders

Turn-around field (for display and change):

Data is displayed in an unprotected area and can be altered. The syntax is

In MODIFY: <T.field[/length][>]

In Dialogue Manager: <T.&variable[/length][>]

where:

T.

Is the prefix placed in front of a field to indicate that it is a turnaround field. The
current value of the field is displayed on the screen. However, the operator may
change the value, as it is not in a protected area.

In MODIFY, if only the left caret is present, the T. field is treated as conditional. If the
right caret is used, the field is non-conditional, and the value is treated as present, even if
unchanged (see Conditional and Non-Conditional Fields on page 11-42).

In Dialogue Manager, the changed value for the turnaround variable field will substitute
everywhere in the FOCEXEC where it is subsequently encountered.

Note: In MODIFY, in order to display data from a data source field or present it for
turnaround, a position in the data source must first be established through the use of a
MATCH or NEXT statement or value must be assigned in a COMPUTE. A computed
field cannot be set and displayed in the TOP case because in the TOP case, data entry is
processed prior to computations. For example, one of the phrases

ON MATCH CRTFORM
ON NEXT CRTFORM

must be used. A position is thus established in the data source, and the values of the fields
in existing records are now available for display as protected or unprotected fields.

You can also match on a key field and go to a case (see CRTFORMs and Case Logic on
page 11-58) in which you display a CRTFORM using display and turnaround fields.

 Describing the CRT Screen

Maintaining Databases 11-17

The following example combines two CRTFORMs in a single MODIFY request and
shows the use of entry, display and turnaround fields (numbers refer to the explanation
below; they are not part of the code):

MODIFY FILE EMPLOYEE
1. CRTFORM

"ENTER EMPLOYEE ID#: <EMP_ID"
"PRESS ENTER"
"</2"

2. MATCH EMP_ID
ON NOMATCH REJECT

2. ON MATCH CRTFORM
" "
"REVISE DATA FOR SALARY AND DEPARTMENT"
"ENTER NEW DATA FOR EDUCATION HOURS"
" "

3. "EMPLOYEE ID #: <D.EMP_ID LAST_NAME: <D.LAST_NAME"
" "

4. "SALARY: <T.CURR_SAL>"
"DEPARTMENT: <T.DEPARTMENT>"

5. "EDUCATION HOURS: <ED_HRS>"
ON MATCH UPDATE CURR_SAL DEPARTMENT ED_HRS

DATA
END

The procedure matches the employee ID, displays both the ID and the last name, and then
displays the current salary and department for turnaround. Education hours is a data entry
field.

Note that when the procedure executes, both CRTFORMs are displayed immediately.
However, the display and turnaround fields in the second CRTFORM do not display data
until the operator fills in the first form and presses Enter. We therefore recommend you
use the LINE option.

When a FORMAT ERROR occurs, all data entered up to that point is processed and
cannot be changed in the course of your transaction.

Designing Screens With FIDEL

11-18 Information Builders

The processing is as follows:

1. CRTFORM generates the first form which begins on line 1 (the second CRTFORM
is displayed, but without values):

ENTER EMPLOYEE ID #:
PRESS ENTER

REVISE DATA FOR SALARY AND DEPARTMENT
ENTER NEW DATA FOR EDUCATION HOURS

EMPLOYEE ID #: LAST NAME:
SALARY:
DEPARTMENT:
EDUCATION HOURS:

2. The procedure continues with the MATCH logic. If the ID number that is input
matches an ID in the data source, the display and turnaround fields on the second
CRTFORM display the data. Assume the operator enters 818692173 and presses
Enter.

 The following is displayed:

ENTER EMPLOYEE ID #: 818692173
PRESS ENTER

REVISE DATA FOR SALARY AND DEPARTMENT
ENTER NEW DATA FOR EDUCATION HOURS

EMPLOYEE ID #: 818692173 LAST NAME: CROSS
SALARY: 27062.00
DEPARTMENT: MIS
EDUCATION HOURS:

3. This screen line contains two display fields.

4. The next two screen lines contain turnaround fields.

5. The last line is a data entry field.

 Describing the CRT Screen

Maintaining Databases 11-19

Note: To display fields from a unique segment, the ON MATCH CONTINUE TO, ON
NEXT, or MATCH WITH-UNIQUES phrase must have been executed (see Chapter 10,
Modifying Data Sources With MODIFY).

In Dialogue Manager, in order to display values with D. or T., a value must have been
supplied for the variable prior to the initiation of the -CRTFORM. System variables are
an exception to this rule, as the system automatically supplies their values.

Computed fields in both MODIFY and Dialogue Manager can be displayed in any kind of
CRTFORM.

The following example illustrates the use of D. fields and system variables in a Dialogue
Manager -CRTFORM:

1. -SET &CITY = STAMFORD;
-*

2. -CRTFORM
3. -"YEARLY SALES REPORT FOR <T.&CITY/10"
4. -"DATE: <D.&DATE TIME: <D.&DATEMDYY"

-" "
-"ENTER BEGINNING PRODUCT CODE RANGE: <&BEGCODE/3"
-"ENTER ENDING PRODUCT CODE RANGE: <&ENDCODE/3"
-"ENTER NAME OF REGIONAL SUPERVISOR: <®IONMGR/15"

TABLE FILE SALES
HEADING CENTER
"YEARLY REPORT FOR &CITY"
"PRODUCT CODES FROM &BEGCODE TO &ENDCODE"
" "
SUM UNIT_SOLD AND RETURNS AND COMPUTE
RATIO/D5.2 = 100 * RETURNS/UNIT_SOLD;
BY PROD_CODE
IF PROD_CODE IS-FROM &BEGCODE TO &ENDCODE
IF CITY EQ &CITY
FOOTING CENTER
"REGION MANAGER: ®IONMGR"
"CALCULATED AS OF &DATE"
END

Designing Screens With FIDEL

11-20 Information Builders

The example processes as follows:

1. The -SET sets a default value for &CITY:

FOR WHICH CITY DO YOU WANT A REPORT?

2. -CRTFORM generates the screen form:

YEARLY SALES REPORT FOR STAMFORD
DATE: 02/22/1999 TIME: 13.42.38

ENTER BEGINNING PRODUCT CODE RANGE:
ENTER ENDING PRODUCT CODE RANGE:
ENTER NAME OF REGIONAL SUPERVISOR:

3. The transaction value for &CITY is Stamford, the value that was previously supplied
in the -SET statement.

4. Note that the variables &DATE and &DATEMDYY are system variables. The
values are supplied by the system and displayed on the form.

Controlling the Use of PF Keys
The terminal operator can use certain PF keys to control the execution of a FIDEL
application. Normally the following keys are used:

• PF3 and PF15 mean END and terminate execution.

• PF2 means Cancel and cancels the transaction in MODIFY.

• PF7 and PF8 page Backward and Forward respectively.

Note: All other keys return the value of the PF key when pressed.

Several facilities are available to assist you in controlling various screen operations:

• You can reset PF key functions. You can also set PF keys to branch to particular
cases in MODIFY or labels in Dialogue Manager.

• You can set the cursor on a specified position on the screen (see Specifying Cursor
Position on page 11-33).

• You can use the cursor position on the screen to perform a branch or action based on
a test (see Determining Current Cursor Position for Branching Purposes on page 11-
36).

 Describing the CRT Screen

Maintaining Databases 11-21

Default Settings for PF Keys

The default PF key settings are as follows:

PF Key Function

PF01 HX

PF02 CANCEL

PF03, PF15 END

PF04, PF16 RETURN

PF05, PF17 RETURN

PF06, PF18 RETURN

PF07, PF19 BACKWARD

PF08, PF20 FORWARD

PF09, PF21 RETURN

PF10, PF22 RETURN

PF11, PF23 RETURN

PF13 RETURN

PF12, PF24 UNDO

PF14 RETURN

You can display the current PF key settings by issuing the FOCUS query command:

? PFKEY

This displays a formatted table of all the current values.

Designing Screens With FIDEL

11-22 Information Builders

Resetting PF Key Controls
You can reset PF key functions in FIDEL for both CRTFORMs and -CRTFORMs using
the FOCUS SET command with the following syntax

SET PFxx = function

where:
xx

Is a one or two-digit PF key number.

function

Is one of the following:
END in MODIFY, exits the procedure; in Dialogue Manager, is equivalent to QUIT.
That is, END exits the procedure.
CANCEL in MODIFY, cancels the transaction and returns to the TOP case. Do not use
the CANCEL setting in Dialogue Manager.
FORWARD pages forward.
BACKWARD pages backward.
RETURN has no specific screen action. Returns the PF key name in the PFKEY field
because it is not yet defined. To set the PFKEY field, use COMPUTE in MODIFY or
-SET in Dialogue Manager.
HELP displays text supplied with the HELPMESSAGE attribute for any field on the
MODIFY CRTFORM. Position the cursor on the data entry area of the desired field,
and press the PF key you have defined for HELP. If no help message exists for that
field, the following message is displayed:

NO HELP AVAILABLE FOR THIS FIELD.

The following example sets the PF03 key for paging backward and the PF04 key for
paging forward:

SET PF03=BACKWARD,PF04=FORWARD

Note: When changing PF key settings, make sure that at least one key is set to END. If
you set a PF key to FORWARD, you should also set one to BACKWARD.

 Describing the CRT Screen

Maintaining Databases 11-23

Setting PF Key Fields for Branching Purposes
You can create a menu of processing options. The operator can then indicate a choice by
pressing a particular PF key. To assign a specific processing function to a PF key, you
must specify a field named PFKEY. Which PF key the operator presses determines the
value of the PFKEY field.

You can use the PF keys designated as Return keys, as well as the Enter key. You define a
variable called PFKEY (in MODIFY) or &PFKEY (in Dialogue Manager) and then test
its value after the CRTFORM is displayed. Which branch takes place depends on which
PFKEY the operator presses.

In MODIFY, the syntax is

COMPUTE
PFKEY/A4=;

where:

PFKEY/A4

Is a four-character field, whose value is determined by which key the operator presses
at run time.

In Dialogue Manager, the syntax is

-SET &PFKEY=' ';

where:

&PFKEY

Is a four-character field, whose value is determined by which key the operator presses
at run time.

=' ';

Is the allocation of four character spaces for the field.

Designing Screens With FIDEL

11-24 Information Builders

The following example shows how PF keys can be tested in MODIFY:

1. COMPUTE
PFKEY/A4=;

2. CRTFORM
"SELECT OPTION"
"INPUT PRESS PF4"
"UPDATE PRESS PF5"
"DELETE PRESS PF6"

3. IF PFKEY EQ 'PF04' GOTO INCASE
ELSE IF PFKEY EQ 'PF05' GOTO UPCASE
ELSE IF PFKEY EQ 'PF06' GOTO DELCASE
ELSE GOTO TOP;

.

.

.

The example processes as follows:

1. The COMPUTE statement specifies a four-character field PFKEY.

2. CRTFORM generates the form which supplies the operator with three options:

SELECT OPTION
INPUT PRESS PF4
UPDATE PRESS PF5
DELETE PRESS PF6

3. The IF test determines what case to branch to depending on the value of the PFKEY
field. For example, if the operator presses PF4, the value for PFKEY is PF04, and the
request branches to an input case INCASE.

 Describing the CRT Screen

Maintaining Databases 11-25

Specifying Screen Attributes
Screen attributes (such as highlighting, colors, etc.) can be applied to the fields on the
CRTFORM and the -CRTFORM. They can also be used as background effects and can
be applied to the fields depending on the result of tests.

The following attributes are available on 3270 IBM terminals:

Function Abbreviation Short Name

Flash or Blink F FLAS or BLIN

Underline U UNDE

Invert or Reverse Video I INVE or REVV

Clear* C CLEA

Blue B BLUE

Red R RED

Pink P PINK

Green G GREE

Aqua A AQUA

Turquoise T TURQ

Yellow Y YELL

White W WHIT

Nodisplay* N NODI

Return to default $ $

Highlight or Intensify* H HIGH or INTE

Note:

• *Clear, Nodisplay, and Highlight or Intensify can be used on all terminals. Clear also
sets the highlight off for entry and turnaround fields. Nodisplay is not supported for
D. or T. fields. The remaining attributes are also known in the FOCUS community as
extended attributes.

• Use of abbreviations is recommended, except for TURQ.

When an attribute is unsupported on a particular terminal or is specific to a version of
FOCUS under another operating system, the attribute is ignored. Therefore, there is no
need for code changes between terminals and/or operating systems.

Designing Screens With FIDEL

11-26 Information Builders

To use the screen attributes other than C, N, and H you must notify FOCUS that your
terminal is equipped to display them. Issue the FOCUS SET command:

SET EXTTERM=ON

This allows a procedure to be operated on a variety of terminals. FOCUS automatically
detects a 3279 model terminal and sets EXTTERM to ON by default.

If your terminal does not properly recognize extended attributes, due to a “terminfo”
compatibility problem, stray characters will appear on your screen. You may turn off
extended attribute recognition with the command:

SET EXTTERM=OFF

Programs with extended attributes and EXTTERM=OFF will run as if extended attributes
had not been coded in the program.

Make sure that your terminal has the extended attribute options needed before you turn
EXTTERM on. There are many different IBM 3270 models. Generally, the color
terminals in the 3279 series have most of the options. However, even if a terminal has the
physical capability to support all of the attributes, it may be defined to the operating
system as a lower grade terminal. In such cases, you must ascertain whether or not all the
attributes can be used.

The syntax for defining screen attributes is

In MODIFY: <[:label][.attribute.]field[>]

In Dialogue Manager: <[&:label][.attribute.]&variable[>]

where:

.attribute.

Is one or more of the attributes. Note the dots (periods) before and after each
attribute or entry in an attribute list.

field

Names the field to which the attributes apply.

&variable

Names the variable field to which the attributes apply.

Note: Labels and their use are discussed in Using Labeled Fields on page 11-28.

 Describing the CRT Screen

Maintaining Databases 11-27

The following chart shows you how to use these attributes in conjunction with prefixes
(D. and T.), where X is the name of a field or variable:

<.HT.X Highlighted T.

<.CT.&X Unhighlighted T.

<.N.X Nodisplay entry, (for example, for passwords)

<.H.&X Highlighted entry

<.C.X Unhighlighted entry

<.HD.X Highlighted D.

The following usage considerations apply when using screen attributes:

• An attribute stays in effect until another attribute changes it.

• A list of attributes may be composed entirely of abbreviations in any order. If
abbreviations only are used, you do not need the dot separator between attributes.

• The last mentioned option in a group of mutually exclusive attributes will be taken.

• A color or flash overrides a highlight, clear or Nodisplay.

• If short names are used, the first four letters identify the attribute. Each name must be
separated by a dot. Either abbreviations or short names can be used but they cannot
be mixed without a dot separator.

• Full names may be used as well. Each must be delimited by a dot.

• You can change screen attributes during the course of a terminal session by using
labeled fields.

Note the following examples:

<.AID. Aqua inverted display field.

<.RED.FLASH. Red flashing field.

<.RED.FLAS. Red flashing field.

<.PIN. Inverted pink field (color overrides).

<I.YELL. Inverted yellow field.

Designing Screens With FIDEL

11-28 Information Builders

Using Background Effects
If a field is absent, the attribute affects the protected portion of the screen; that is, the text.
Both a beginning and ending dot as well as a space between the attribute and the text are
needed. For example:

"<.RED. ENTER EMP_ID:"

This will print the words ENTER EMP_ID: in red. Note the space between .RED. and
ENTER EMP_ID:. A right caret may also be inserted for clarity.

The line:

"<.INVE.RED. <.CLEAR.EMP_ID"

will turn the background color to red. CLEAR changes the background for the input field
EMP_ID back to black.

An attribute stays in effect until another attribute changes it on a physical screen.
Therefore, if <.INVE.RED. is in the upper left corner, the entire screen will be in inverse
red unless some other background attribute is provided later. In the example above, the
<.CLEAR is used to limit the effect to one area.

Note: .CLEAR. and .HIGH. only work when they are used in conjunction with a field.
They do not work alone or simply with text.

Using Labeled Fields
You can use labels to identify a specific field on the screen. They are necessary to
perform the following functions:

• Dynamically change screen attributes during processing depending on the results of
tests.

• Position the cursor on the screen, or read the position of the cursor on the screen,
where there is no pre-existing field.

The syntax for a labeled field is

In MODIFY: <:label.field

In Dialogue Manager: <&:label.&variable

where:

<[&]:label.

Is a user-defined label. It starts with a colon (:) and may be up to 66 characters long
including the colon. You may not use embedded blanks.

field

Is any field on the CRTFORM. It can be a field created specifically for appending a
label.

 Describing the CRT Screen

Maintaining Databases 11-29

&variable

Is any variable field on the CRTFORM. It can be a field created specifically for
appending a label.

The following rules apply:

• A label cannot occur by itself. It must be used with a field.

• A label must be declared via a COMPUTE, -SET, or -DEFAULTS statement.

• Setting a label to $ returns its field to the default attribute.

For example, in MODIFY:

COMPUTE
:ONE/A6=' ';
CRTFORM
"<:ONE.EMP_ID"

The label :ONE is set to a format of A6 and is the identifier of the field EMP_ID.

For example, in Dialogue Manager:

-SET &:ONE=' ';
-CRTFORM
-"<&:ONE.&CITY/10"

In this Dialogue Manager example, the label &:ONE is set to a format of A4 and is the
identifier of the field &CITY.

Note: When you are dealing with many complex labels and attributes, we advise you to
use the FOCUS Screen Painter which allows you to do everything without learning the
detailed syntax (see Using the FOCUS Screen Painter on page 11-83).

Designing Screens With FIDEL

11-30 Information Builders

Dynamically Changing Screen Attributes
The screen attributes in a FIDEL form can be changed during the course of the terminal
session in which they are defined. This allows you to design easy-to-read and easy-to-use
procedures. For instance, after an error you can turn a specific field into flashing red to
alert the operator.

The mechanism for changing the attribute is to put a label before the field. Then, issue a
COMPUTE in MODIFY, or a -SET in Dialogue Manager, to assign the label new
attribute values. When the screen is next displayed, it takes on the characteristics of the
provided attributes.

The following example shows how to use a COMPUTE in MODIFY to dynamically
change an attribute value:

COMPUTE
:ATTRIB/A12=IF CURR_SAL GT 50000 THEN 'FLASH' ELSE '$';

CRTFORM
"AMOUNT <:ATTRIB.T.CURR_SAL>"

IF CURR_SAL GT 50000 GOTO TOP ELSE GOTO OTHER;
.
.
.

This generates an attribute value for the label ATTRIB. If the CURR_SAL is greater than
50,000, the field will flash; otherwise, it observes the default setting.

The following example shows the use of a -SET statement to assign an attribute value in
Dialogue Manager:

-SET &AMOUNT=0;
-SET &:ATTRIB=' ';
-TOP
-CRTFORM
-"AMOUNT: <&:ATTRIB.T.&AMOUNT>"
-SET &:ATTRIB=IF &AMOUNT GT 100 THEN 'FLASH' ELSE '$';
-IF &AMOUNT GT 100 GOTO TOP;

.

.

.

This generates an attribute value for the label &:ATTRIB, changing &AMOUNT to
flashing if the value is greater than 100. Be sure to use -SET to establish the label in the
beginning of the procedure.

Note: When you use CRTFORMs in either MODIFY or Dialogue Manager, the labels
you assign must precede the fields with which they are associated; labels cannot occur by
themselves. Use COMPUTE statements to dynamically change screen text attributes,
setting the label equal to the COMPUTE (see previous example).

 Describing the CRT Screen

Maintaining Databases 11-31

You can convert a T. field to a D. field dynamically; however, you cannot convert a D.
field to a T. field. The method for changing turnaround fields to display fields is the same
as that for changing screen attributes dynamically.

MODIFY FILE EMPLOYEE
1. CRTFORM
2. "SALARY UPDATE"
3. " "
4. "EMPLOYEE ID #: <.INVE.EMP_ID LAST NAME: <0X

<.CLEAR.D.LAST_NAME"
5. MATCH EMP_ID

ON NOMATCH REJECT
6. ON MATCH CRTFORM LINE 10
7. "ENTER SALARY"

" "
"SALARY: <:HERE.T.CURR_SAL>"

8. COMPUTE
:HERE/A12=IF CURR_SAL GT 100000 THEN 'D' ELSE 'T';
IF CURR_SAL GT 100000 GOTO TOP;
ON MATCH UPDATE CURR_SAL

DATA
END

This procedure constructs a form to update salaries. It processes as follows:

1. CRTFORM generates the screen form and invokes FIDEL.

2/3. Provide text for the CRTFORM; empty quotation marks indicate a blank line on the
form.

4. The next two lines contain the following screen elements:

EMPLOYEE ID #:

Is text describing the conditional data field EMP_ID.

.INVE.

Is a screen attribute that displays the field EMP_ID in reverse video.

LAST NAME:

Is text describing the field LAST_NAME.

.CLEAR.

Is a screen attribute that clears the .INVE. attribute, returning the D.
(display-only) field LAST_NAME to the default display.

5. The request continues with MODIFY MATCH logic.

6. If EMP_ID matches, another CRTFORM is generated on line 10 of the same screen.

Designing Screens With FIDEL

11-32 Information Builders

7. The next three lines contain the following screen elements:

ENTER SALARY:

Is text describing the CURR_SAL field.

" "

Generates a blank line.

:HERE

Is a label identifying the CURR_SAL field.

8. This COMPUTE evaluates the field CURR_SAL and defines it as a turnaround (T.)
field or a display (D.) field, depending on the value of CURR_SAL. If the salary is
greater than 100,000, the field is a display field (and thus cannot be updated); if the
salary is less than 100,000 the field is a turnaround field (and can be updated).

The resulting CRTFORM is as follows:

SALARY UPDATE

EMPLOYEE ID #: LAST NAME:

ENTER SALARY

SALARY:

 Describing the CRT Screen

Maintaining Databases 11-33

Specifying Cursor Position
To specify cursor position you simply specify the field where you want the cursor
positioned. You may specify the field by its field name or by its label. You can set the
cursor at a specific place on the screen by computing or setting the value of the field
CURSOR (in MODIFY) or &CURSOR (in Dialogue Manager).

The syntax for the field which controls the cursor position in MODIFY is

COMPUTE
CURSOR/A66= expression;

where:

CURSOR/A66

Is a 66-character alphanumeric field.

expression

Is terminated with a semicolon and can be anything, including the full field name, its
full alias, or a unique truncation of either, or the label itself. This determines the
position of the cursor.

For example:

COMPUTE
CURSOR/A66=IF TESTNAME GT 100 THEN 'EMP_ID'
ELSE 'LAST_NAME';

The position of the cursor will be on the field EMP_ID if the value of test name is greater
than 100, or it will be on the field LAST_NAME if test name is less than or equal to 100.

You may also position the cursor using a field label. For example:

COMPUTE
CURSOR/A66=IF TESTNAME GT 100 THEN ':ONE'
ELSE ':TWO';

Note: If the field name is not unique, FIDEL uses the first occurrence of the field name
(going from left to right across each line and then down to the next line) to set or test the
cursor position.

Designing Screens With FIDEL

11-34 Information Builders

In MODIFY, the variable CURSORINDEX can also be used to compute the position of
the cursor at a particular record when there are multiple indexed records displayed in a
single CRTFORM. A common use of this feature is for placing the cursor on invalid
fields after VALIDATE statements. The syntax is

COMPUTE
CURSORINDEX/I5=expression;

where:

CURSORINDEX/I5

Is a five-digit integer field. Refers to the current value of the subscript being
processed from the CRTFORM.

expression

May be any expression, but in most applications will be set equal to
REPEATCOUNT.

Note: See Annotated Example: Case Logic, Groups, CURSORINDEX and VALIDATE on
page 11-65 for a full example of the use of CURSORINDEX using Case Logic, multiple
fields and the VALIDATE subcommand. Also, multiple record processing is discussed in
full in Chapter 10, Modifying Data Sources With MODIFY.

In Dialogue Manager, the syntax for positioning the cursor is

-SET &CURSOR=expression;

where:

&CURSOR

Is a variable specifically referring to the position of the cursor.

expression

Is terminated with a semicolon and can be any valid expression including the field
name or label itself. It determines the position of the cursor.

The following example illustrates the positioning of the cursor on the screen in Dialogue
Manager using labeled fields:

1. -SET &:AAA = ' ';
-SET &:BBB = ' ';

2. -PROMPT &YR.PLEASE ENTER YEAR NEEDED.
3. -SET &CURSOR = IF &YR GT 1984 THEN ':AAA' ELSE ':BBB';

-*
4. -CRTFORM

-"MONTHLY REPORT FOR THE CITY <&:AAA.&CITY/10"
-"YEARLY REPORT FOR THE AREA <&:BBB.&AREA/1"

.

.

.

 Describing the CRT Screen

Maintaining Databases 11-35

This processes as follows:

1. Two -SET statements declare the labels, which are themselves variables.

2. The -PROMPT statement prompts the operator for a value for &YR.

3. The -SET statement sets an IF test as the value for the variable &CURSOR. If the
value of &YR is greater than 1984, the position of the cursor is set to the label :AAA;
otherwise, it is set to the label :BBB.

4. If the operator supplies the value 85 for &YR, the visual form generated is as follows
and the cursor is positioned at the variable &CITY:

MONTHLY REPORT FOR THE CITY
YEARLY REPORT FOR THE AREA

The remainder of the FOCEXEC might then branch to a TABLE request for a monthly
report for that city. Had the year been earlier than 84, the cursor would have been
positioned on AREA. The branch might then be to a TABLE request for a yearly report
for that area.

Caution:

In Dialogue Manager, be sure to set &CURSOR to the label name without the &
(ampersand). Use :AAA, not &:AAA.

Designing Screens With FIDEL

11-36 Information Builders

Determining Current Cursor Position for Branching Purposes
Rather than having the operator type a response, you can create a menu on which you list
options. To select an option, the operator moves the cursor to the correct line on the
screen and presses the Enter key. FOCUS senses the cursor position and takes action
based upon it (such as branching to a particular case or field).

To do this, you must specify a 66 character field that contains the current cursor position,
CURSORAT. You may identify a field on the screen by a label or by its field name.

The syntax that defines the field used to read the cursor position in MODIFY is

COMPUTE
CURSORAT/A66=;

where:

CURSORAT/A66

Is the field whose value is determined by the field name or label of the field on which
the cursor is positioned when the operator presses Enter.

In Dialogue Manager, the syntax is

-SET &CURSORAT=' ';

where:

&CURSORAT

Is a variable whose value is determined by the field name or label of the field on
which the cursor is positioned when the operator presses Enter.

If the actual cursor position is not on any field, the value of CURSORAT is the nearest
preceding field. If there are no preceding fields, the value of CURSORAT is the TOP of
the CRTFORM. That is, the value is at the very beginning of the CRTFORM.

 Describing the CRT Screen

Maintaining Databases 11-37

In the following example, field XYZ is a computed field for the purpose of creating a
labeled field wherever necessary on the CRTFORM:

MODIFY FILE EMPLOYEE
1. COMPUTE

CURSORAT/A66=;
2. :ADD/A1=;

:UPP/A1=;
3. XYZ/A1=;
4. CRTFORM

"POSITION CURSOR NEXT TO OPTION DESIRED"
"THEN PRESS ENTER"
" "
"<:ADD.XYZ ADD RECORDS"
"<:UPP.XYZ UPDATE RECORDS"

5. IF CURSORAT EQ ':ADD' GOTO ADD ELSE
IF CURSORAT EQ ':UPP' GOTO UPP ELSE GOTO TOP;

CASE ADD
CRTFORM LINE 1

"THIS CRTFORM ADDS RECORDS"
" "
"EMPLOYEE ID #: <EMP_ID"
"LAST NAME:<LAST_NAME"
"FIRST NAME: <FIRST_NAME"
"HIRE DATE:<HIRE_DATE"
"DEPARTMENT: <DEPARTMENT"

MATCH EMP_ID
ON MATCH REJECT
ON NOMATCH INCLUDE

ENDCASE

CASE UPP
CRTFORM LINE 1

"THIS CRTFORM UPDATES RECORDS"
" "
"EMPLOYEE ID #: <EMP_ID"
"DEPARTMENT: <DEPARTMENT"
"JOB CODE: <CURR_JOBCODE"
"SALARY: <CURR_SAL"

MATCH EMP_ID
ON NOMATCH REJECT
ON MATCH UPDATE DEPARTMENT CURR_JOBCODE CURR_SAL

ENDCASE
DATA
END

Designing Screens With FIDEL

11-38 Information Builders

This example processes as follows:

1. The COMPUTE establishes the field CURSORAT.

2. The second and third COMPUTEs declare the labels :ADD and :UPP.

3. The third COMPUTE establishes a field XYZ for the purpose of using labels.

4. CRTFORM generates the following visual form beginning on the first line of the
screen:

POSITION CURSOR NEXT TO OPTION DESIRED
THEN PRESS ENTER

ADD RECORDS
UPDATE RECORDS

5. An IF phrase tests the value of the field CURSORAT. If the operator places the
cursor next to ADD RECORDS, the value of CURSORAT is :ADD and a branch to
Case ADD will be performed. If the operator places the cursor next to UPDATE
RECORDS, the value of CURSORAT is :UPP and Case UPP will be performed.

Annotated Example: MODIFY
The following example illustrates the syntax for a MODIFY CRTFORM using
dynamically changing attributes:

MODIFY FILE EMPLOYEE
1. CRTFORM
2. "EMPLOYEE UPDATE"
3. "</1"
4. "EMPLOYEE ID #: <.INVE.EMP_ID"

GOTO UPDATE

CASE UPDATE
5. MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH CRTFORM LINE 1

" "
7. "LAST NAME: <.INVE.T.LAST_NAME"

"DEPARTMENT: <.CLEAR.T.DEPARTMENT>"
"SALARY: <:ATTRIB.T.CURR_SAL>"

8. ON MATCH COMPUTE
:ATTRIB/A12 = IF CURR_SAL GT 50000

THEN 'FLASH.INVE';
ON MATCH TYPE "PLEASE REENTER"
ON MATCH IF CURR_SAL GT 50000 GOTO UPDATE;
ON MATCH UPDATE LAST_NAME DEPARTMENT CURR_SAL

ENDCASE
DATA
END

 Describing the CRT Screen

Maintaining Databases 11-39

This procedure sets up a form to update the department and current salary. It processes as
follows:

1. CRTFORM generates the visual form and invokes FIDEL.

2. This line contains a screen element set between double quotations marks. It is a line
of descriptive text.

3. This line contains another screen element which is a spot marker that skips one line.

4. These lines contain four screen elements—‘EMPLOYEE ID #:’ is text describing the
field; the field EMP_ID is described as a conditional data entry field. The contents
will be displayed in reverse video because .INVE. is a screen attribute defining the
field.

 The visual form generated is as follows:

EMPLOYEE UPDATE

EMPLOYEE ID #: (reverse video)

5. The request continues with MODIFY MATCH logic.

6. If the EMP_ID matches, another CRTFORM is generated. It is placed on LINE 1 and
thus replaces the previous CRTFORM on the screen.

7. The CRTFORM defines three turnaround fields:

 The LAST_NAME field. The .INVE. attribute displays the field in reverse video.

 The DEPARTMENT field. The .CLEAR. attribute displays the field in regular video.

 The CURR_SAL field. The appearance of the field value depends on the value of the
:ATTRIB field. When the CURR_SAL value first appears, the :ATTRIB field is
empty and the value appears in regular video. If you enter a CURR_SAL value
greater than 50,000, the :ATTRIB field receives the attribute FLASH.INVE,
displaying the CURR_SAL value in flashing inverse (or reverse) video. The
CRTFORM appears as follows:

LAST NAME: CROSS
DEPARTMENT:MIS
SALARY: 27062.00

8. If the CURR_SAL field value is greater than 50,000 when you press Enter, the
COMPUTE statement assigns the :ATTRIB label the FLASH.INVE attribute.

9. If the CURR_SAL field value is greater than 50,000 when you press Enter, the IF
statement branches back to the CASE UPDATE statement. This displays the second
CRTFORM with the CURR_SAL value in reverse video.

Designing Screens With FIDEL

11-40 Information Builders

Annotated Example: Dialogue Manager
The following is an example of a -CRTFORM to illustrate the syntax for dynamic control
of attributes in Dialogue Manager:

1. -PROMPT &CITY.FOR WHICH CITY DO YOU WANT A REPORT?.
2. -SET &:ATTRIB = IF &CITY EQ STAMFORD THEN 'INVE' ELSE 'CLEAR';

-*
3. -CRTFORM
4. -"MONTHLY SALES REPORT"
5. -"Date: <D.&DATE Time: <D.&TOD"
6. -"Beginning Code is: <&:ATTRIB.&BEGCODE/3"

-"Ending Code is: <&:ATTRIB.&ENDCODE/3"
-"Regional Supervisor is: <&:ATTRIB.®IONMGR/15"
TABLE FILE SALES
HEADING CENTER
"MONTHLY REPORT FOR &CITY"
"PRODUCT CODES FROM &BEGCODE TO &ENDCODE"
" "
SUM UNIT_SOLD AND RETURNS AND COMPUTE
RATIO/D5.2 = 100 * RETURNS/UNIT_SOLD;
BY PROD_CODE
IF PROD_CODE IS-FROM &BEGCODE TO &ENDCODE
IF CITY EQ &CITY
FOOTING CENTER
"REGION MANAGER: ®IONMGR"
"CALCULATED AS OF &DATE"

7. END

The example processes as follows:

1. The -PROMPT prompts the operator for a value for &CITY.

2. The -SET statement sets the label :ATTRIB to INVE if the city is Stamford, causing
each field labeled :ATTRIB in the remainder of the -CRTFORM to be displayed in
reverse video.

3. -CRTFORM generates the visual form and invokes FIDEL.

4. The first line of the screen form contains text.

5. The second line contains the current date and time as display fields. Since they are in
protected areas of the screen, they cannot be altered.

 Using FIDEL in MODIFY

Maintaining Databases 11-41

6. Each of the next three lines contains descriptive text and one field. Each field has a
label which displays the field in reverse video if the city is Stamford.

 The screen displays the following -CRTFORM:

MONTHLY SALES REPORT
Date: 01/08/97 Time: 10:50:16
Beginning Code is:
Ending Code is:
Regional Supervisor is:

7. After the operator presses Enter, the values entered in the screen form are sent to the
variables. The TABLE request executes when END is encountered.

Using FIDEL in MODIFY
The following standard MODIFY functions and concepts work with FIDEL in the
building of CRTFORMs (for additional information on these functions):.

• Conditional and non-conditional field specification (see Conditional and
Non-Conditional Fields on page 11-42).

• The FIXFORM statement which can be used before the first CRTFORM. This
enables you to mix data sources (see Using FIXFORM and FIDEL in a Single
MODIFY on page 11-46).

• Automatic application generation which enables you to use several simple statements
to generate automatic data management procedures and CRTFORMs (see Generating
Automatic CRTFORMs on page 11-47).

• Multiple CRTFORMs for different processing options. The additional FIDEL facility
of the LINE option helps you organize the use of multiple CRTFORMs (see Using
Multiple CRTFORMs: LINE on page 11-52).

• Case Logic which enables you to divide the processing into logical subdivisions for
particular sets of circumstances (see Chapter 10, Modifying Data Sources With
MODIFY, and CRTFORMs and Case Logic on page 11-58).

• Groups of fields (see Specifying Groups of Fields on page 11-60).

• VALIDATES and various error handling formats (see Handling Errors on page 11-
68).

• Log files that preserve a record of all data that is entered onto the screen (see
Logging Transactions on page 11-72).

Designing Screens With FIDEL

11-42 Information Builders

MODIFY also has additional screen control options such as clearing the screen, setting
the height and width parameters, and changing the default size of the TYPE message area
in order to enlarge the CRTFORM (see Additional Screen Control Options on page 11-
73).

Conditional and Non-Conditional Fields
When you execute a MODIFY request, FOCUS keeps track of which transaction fields
are active or inactive during execution. In order to add, update, and delete segment
instances, the fields must be active (see Chapter 10, Modifying Data Sources With
MODIFY, for a full discussion of active and inactive fields).

You can define data entry and turnaround fields as either conditional or non-conditional.
A conditional field is conditionally active. That is, it becomes active only if there is
incoming data present for the field. Otherwise, it remains inactive. A non-conditional field
is always active whether there is incoming data present or not.

When you are performing update operations, there are several important points to keep in
mind when you choose whether to specify a field as conditional or non-conditional:

• If data is entered or changed, the data source value is always updated and the field
always becomes active. This is true whether the field is conditional or
non-conditional.

• If data is not entered or changed, what happens to the data source value is dependent
on whether the field is conditional or non-conditional as well as program logic. The
following table outlines this.

Type of Field Active/Inactive Data Source Value

Conditional Entry Inactive Remains. Display value
ignored.

Conditional Turnaround Inactive Remains. Display value
ignored.

Non-Conditional Entry Active Displayed value replaces
data source value (blank or
0).

Non-Conditional
Turnaround

Active Displayed value replaces
data source value (same
value).

 Using FIDEL in MODIFY

Maintaining Databases 11-43

• If a field is active, the displayed value always becomes the new data source value. In
turnaround fields, this is by definition the same value.

• If a field is inactive, the displayed value is always ignored.

• If you compute a data source field and then display it on the CRTFORM with a D. or
a T., the field must still be active to get the computed value displayed on the screen.
Otherwise, you get a blank or a 0.

• When you use a VALIDATE for a field, the field must be active. Otherwise you do
not get the accurate data source value validated; instead, you get a blank or 0.

Note: You can make a field active or inactive by using the ACTIVATE or
DEACTIVATE statement respectively.

Annotated Example: Conditional and Non-Conditional
Display and Turnaround Fields
The following example illustrates the display and turnaround field features as well as the
use of a non-conditional turnaround field (both carets). The first CRTFORM asks for a
key field value, in this case EMP_ID. If a matching record is obtained, then some data
source values are displayed and others are shown for turnaround update.

Note how the non-conditional turnaround field functions in the following example.
Whether the displayed value is changed or not, the value in the data source is active. The
VALIDATE uses the display value, whether it was changed or not.

MODIFY FILE EMPLOYEE
1. CRTFORM

"ENTER EMPLOYEE ID#: <EMP_ID"
"PRESS ENTER BEFORE CONTINUING"
"--"

MATCH EMP_ID
ON NOMATCH TYPE

"EMPLOYEE ID NOT IN DATABASE. PLEASE REENTER."
ON NOMATCH REJECT

2. ON MATCH CRTFORM LINE 4
" "
"EMPLOYEE ID #: <D.EMP_ID"
"LAST NAME: <D.LAST_NAME"
"HIRE DATE: <D.HIRE_DATE"
"SALARY: <T.CURR_SAL>"
"DEPARTMENT: <T.DEPARTMENT>"

3. ON MATCH VALIDATE
SALTEST = IF CURR_SAL GT 0 THEN 1 ELSE 0;
ON INVALID TYPE

"SALARY MUST BE GREATER THAN 0"
"CORRECT SALARY AND PRESS ENTER TWICE"

ON MATCH UPDATE CURR_SAL DEPARTMENT
DATA
END

Designing Screens With FIDEL

11-44 Information Builders

The example processes as follows:

1. When the procedure executes, the top part of the CRTFORM appears as follows:

ENTER EMPLOYEE ID #:
PRESS ENTER BEFORE CONTINUING

If the employee ID entered does not match an ID in the data source, the transaction is
rejected and a TYPE statement appears at the bottom of the screen. Assume the
operator enters the following employee ID:

ENTER EMPLOYEE ID #: 818692173
PRESS ENTER BEFORE CONTINUING

2. If the ID entered matches an ID in the data source, FOCUS successfully retrieves a
record. The ON MATCH CRTFORM causes a second CRTFORM to be displayed
on line 4. This CRTFORM contains both display and turnaround fields. The data
source values of the fields appear on the second CRTFORM, and the cursor is
positioned at the start of the CURR_SAL field which is the first unprotected field.
Note that both CURR_SAL and DEPARTMENT are automatically highlighted for
turnaround:

ENTER EMPLOYEE ID #: 818692173
PRESS ENTER BEFORE CONTINUING

EMPLOYEE ID #: 818692173
LAST NAME: CROSS
HIRE DATE: 811102
SALARY: 27062.00
DEPARTMENT: MIS

 Using FIDEL in MODIFY

Maintaining Databases 11-45

Assume the operator updates DEPARTMENT, does not change CURR_SAL, and
transmits the CRTFORM:

ENTER EMPLOYEE ID #: 818692173
PRESS ENTER BEFORE CONTINUING

EMPLOYEE ID #: 818692173
LAST NAME: CROSS
HIRE DATE 811102
SALARY: 27062.00
DEPARTMENT: ois

3. When the operator presses Enter, the transaction is processed. If the value of
CURR_SAL is greater than 0, the VALIDATE will evaluate as 1 (true) and
processing continues. Although a value was not entered for CURR_SAL, the field is
active because it is specified as a non-conditional field. Thus, the VALIDATE reads
the current value in the T. field (27062.00), and validates the field. The transaction is
then processed.

If you specify the turnaround field as conditional (only the left caret), the field is inactive
if no data is entered. Assume the same transaction as above. The operator updates the
DEPARTMENT and does not enter new data for the CURR_SAL field. The VALIDATE
does not read the T. value because the field is inactive and instead reads a 0. The field is
invalidated and the following error message occurs:

ENTER EMPLOYEE ID #: 818692173
PRESS ENTER BEFORE CONTINUING

EMPLOYEE ID #: 818692173
LAST NAME: CROSS
HIRE DATE: 811102
SALARY: 27062.00
DEPARTMENT: ois

(FOC421)TRANS 1 REJECTED INVALID SALTEST
INVALID SALARY
SALARY MUST BE GREATER THAN 0

Designing Screens With FIDEL

11-46 Information Builders

Using FIXFORM and FIDEL in a Single MODIFY
A MODIFY procedure can mix data sources from CRTFORMs and FIXFORMs.

The rules are:

• You can have only one FIXFORM statement and you must specify the name of the
transaction data source. For example:

FIXFORM ON filename

• The FIXFORM statement must precede the CRTFORM statement.

• START and STOP do not apply (see Chapter 10, Modifying Data Sources With
MODIFY).

This feature is useful in situations where a known set of records is wanted and the keys
for these records reside on an external fixed format data source. (The data source may
have been produced by a prior TABLE and SAVE or HOLD command.) The procedure
first reads a key, fetches the matching record, and displays it on the CRTFORM specified.

This is also convenient when the FIXFORM is included in a START case.

The following is an example of using FIXFORM with FIDEL. To run this example on
your machine, you must first create a sequential data source with data. To do so, execute
this TABLE request:

TABLE FILE EMPLOYEE
PRINT EMP_ID PAY_DATE
IF PAY_DATE GE 820730
ON TABLE SAVE AS PAYTRANS
END

This creates the transaction data source PAYTRANS. Then execute the following
MODIFY request:

MODIFY FILE EMPLOYEE
1. FIXFORM ON PAYTRANS EMP_ID/9 PAY_DATE/6
2. MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH CONTINUE

MATCH PAY_DATE
3. ON MATCH/NOMATCH CRTFORM

"EMPLOYEE ID #: <D.EMP_ID"
"PAY DATE: <D.PAY_DATE"
"MONTHLY GROSS: <T.GROSS>"

ON NOMATCH INCLUDE
ON MATCH UPDATE GROSS

DATA
END

 Using FIDEL in MODIFY

Maintaining Databases 11-47

The example processes as follows:

1. First the data is read in from the sequential data source PAYTRANS.

2. The EMP_ID from PAYTRANS is matched against EMP_IDs in the EMPLOYEE
data source. If it matches, PAY_DATE is matched.

3. The CRTFORM is displayed with display values for EMP_ID and PAY_DATE. If
there is a match on PAY_DATE, GROSS is displayed as a turnaround field and the
operator can update it. If there is no match on PAY_DATE, both PAY_DATE and
GROSS are included:

EMPLOYEE ID #: 071382660
PAY_DATE: 820831
MONTHLY GROSS: 916.67

The procedure ends when there are no more transactions on the external data source to
read. It can also be terminated by the operator pressing the PF1 or PF3 key.

Generating Automatic CRTFORMs
You can use several simple but powerful statements with the FOCUS MODIFY facility to
allow immediate generation of data management requests. You do not need to learn the
complete FOCUS MODIFY language. Without mentioning field names, you can write
general-purpose requests and customize them for more detailed situations.

The statements can be used with multi-segment data sources as well as simple data
sources. They can also be used from the Screen Painter (see Generating CRTFORMs
Automatically on page 11-93). These statements automatically specify conditional fields.
They include:

CRTFORM * [SEG n] Design screen for all real data fields in segment n, where
n is either the segment name or number.

CRTFORM * KEYS [SEG n] Design screen for all key fields in segment n.

CRTFORM * NONKEYS [SEG n] Design screen for all non-key fields in segment n.

CRTFORM T.* [SEG n] Design screen using T.fields in segment n.

CRTFORM D.* [SEG n] Design screen using D.fields in segment n.

Note: The use of CRTFORM * on a COMBINE data source name is illogical and may
produce unpredictable results.

Designing Screens With FIDEL

11-48 Information Builders

Note that you can optionally specify the segment name or number for each of the
CRTFORMs. To obtain the segment names and numbers, enter the following command
where file is the name of the data source:

CHECK FILE file PICTURE

The names and numbers appear on the top of each segment in the diagram. You may also
list segment names and numbers by entering the command:

? FDT filename

See the Describing Data manual and the Developing Applications manual for more
information on the CHECK FILE command and ? FDT query.

If you are modifying all the segments in the data source (except for unique segments), you
can write the request without using Case Logic. The following example adds and
maintains data for the EMPLOYEE data source. The segments are as follows:

• Segment 1 contains basic employee data (names, jobs, salaries, etc.).

• Segment 3 contains employee salary histories.

• Segment 7 stores employees’ home addresses and information on their bank
accounts.

• Segment 8 stores employee monthly pay.

• Segment 9 stores monthly deductions.

(Segment 2 is a unique segment. Segments 4, 5, and 6 are cross-referenced segments that
are not part of the EMPLOYEE data source.)

 Using FIDEL in MODIFY

Maintaining Databases 11-49

The request is:

MODIFY FILE EMPLOYEE
CRTFORM

"THIS PROCEDURE ADDS NEW RECORDS AND UPDATES EXISTING RECORDS </1"
"INSTRUCTIONS"
"1. ENTER DATA FOR EACH FIELD"
"2. USE TAB KEY TO MOVE CURSOR"
"3. PRESS ENTER WHEN FINISHED"
"4. WHEN YOU FINISH ALL RECORDS, PRESS PF1 </1"

CRTFORM * KEYS
MATCH * KEYS SEG 01

ON MATCH/NOMATCH CRTFORM T.* NONKEYS SEG 01
ON MATCH UPDATE * SEG 01
ON NOMATCH INCLUDE

MATCH * KEYS SEG 03
ON MATCH/NOMATCH CRTFORM T.* NONKEYS SEG 03
ON MATCH UPDATE * SEG 03
ON NOMATCH INCLUDE

MATCH * KEYS SEG 07
ON MATCH/NOMATCH CRTFORM T.* NONKEYS SEG 07
ON MATCH UPDATE * SEG 07
ON NOMATCH INCLUDE

MATCH * KEYS SEG 08
ON MATCH/NOMATCH CRTFORM T.* NONKEYS SEG 08
ON MATCH UPDATE * SEG 08
ON NOMATCH INCLUDE

MATCH * KEYS SEG 09
ON MATCH/NOMATCH CRTFORM T.* NONKEYS SEG 09
ON MATCH UPDATE * SEG 09
ON NOMATCH INCLUDE

DATA
END

Designing Screens With FIDEL

11-50 Information Builders

When the procedure executes, the screen appears as follows:

THIS PROCEDURE ADDS NEW RECORDS AND UPDATES EXISTING RECORDS

INSTRUCTIONS
1. ENTER DATA FOR EACH FIELD
2. USE TAB KEY TO MOVE CURSOR
3. PRESS ENTER WHEN FINISHED
4. WHEN YOU FINISH ALL RECORDS, PRESS PF1

EMP_ID : :
DAT_INC : :
TYPE : :
PAY_DATE : :
DED_CODE : :

LAST_NAME : : FIRST_NAME : :
HIRE_DATE : : DEPARTMENT : :
CURR_SAL : : CURR_JOBCODE : :
ED_HRS : :

PCT_INC : : SALARY : :
JOBCODE : :

ADDRESS_LN1 : :
ADDRESS_LN2 : :
ADDRESS_LN3 : :

ACCTNUMBER : :

GROSS : :

Notice that the fields are divided into five groups. The first group consists of all the key
fields in the data source. Each subsequent group consists of all non-key fields in a
particular segment. Fill in each group from top to bottom and press Enter before filling in
the next group. When you do this the request uses the values to match on the segments
specified later in the request.

The first CRTFORM statement generates the first group of fields, which are all the key
fields in the data source:

CRTFORM * KEYS

The MATCH statements in the request modify each of the segments in the data source.
Each statement contains a CRTFORM phrase that prompts for all non-key fields in the
segment:

CRTFORM T.* NONKEYS SEG xx

Note that the CRTFORM phrase displays the fields as turnaround fields. After you fill in
the fields in the group and press Enter, FOCUS uses the field values to update the
segment.

 Using FIDEL in MODIFY

Maintaining Databases 11-51

You can add the following enhancements to the request:

• The LINE option on each CRTFORM statement.

• Explanatory text after each CRTFORM statement.

• A separate CRTFORM containing explanatory text at the beginning of the request.

If you want to modify some but not all segments in the data source, use Case Logic to
write the request. Place each MATCH statement in a separate case. For example, this
request modifies data in Segments 1, 3, and 7:

MODIFY FILE EMPLOYEE
CRTFORM

"THIS PROCEDURE MAINTAINS EMPLOYEE"
"JOB DATA, SALARY HISTORIES, AND ADDRESSES"
" "

CRTFORM * KEYS
"FILL IN EMP_ID, DAT_INC, AND TYPE FIELDS"
"THEN PRESS ENTER"

GOTO EMPLOYEE

CASE EMPLOYEE
MATCH * KEYS SEG 01

ON NOMATCH REJECT
ON MATCH CRTFORM T.* NONKEYS SEG 01 LINE 10
ON MATCH UPDATE * SEG 01
ON MATCH GOTO MONTHPAY

ENDCASE

CASE MONTHPAY
MATCH * KEYS SEG 03

ON MATCH/NOMATCH CRTFORM T.* NONKEYS SEG 03 LINE 10
ON MATCH UPDATE * SEG 03
ON MATCH GOTO DEDUCT
ON NOMATCH INCLUDE
ON NOMATCH GOTO DEDUCT

ENDCASE

CASE DEDUCT
MATCH * KEYS SEG 07

ON MATCH/NOMATCH CRTFORM T.* NONKEYS SEG 07 LINE 10
ON MATCH UPDATE * SEG 07
ON NOMATCH INCLUDE

ENDCASE
DATA
END

Designing Screens With FIDEL

11-52 Information Builders

Using Multiple CRTFORMs: LINE
You can choose what screen line the CRTFORM will begin on by using the LINE option.
By default, the first CRTFORM begins on line 1. The next CRTFORM in the procedure
begins on the line following the end of the previous CRTFORM. For example, if one
screen uses 12 lines, the next CRTFORM automatically begins on the 13th line.

In the following example there are two logical forms: EMPLOYEE UPDATE and FUND
TRANSFER INFORMATION UPDATE. It illustrates the placement of CRTFORMs
when the default is in effect (that is, the LINE option is not used):

MODIFY FILE EMPLOYEE
1. CRTFORM

"EMPLOYEE UPDATE"
" "
"---"
"EMPLOYEE ID #: <EMP_ID LAST_NAME: <LAST_NAME"
" "
"DEPARTMENT: <DEPARTMENT <28 SALARY: <CURR_SAL"
" "
"BANK: <BANK_NAME"
" "
"FILL IN THE ABOVE FORM AND PRESS ENTER"
"---"

MATCH EMP_ID
ON NOMATCH REJECT
ON MATCH UPDATE LAST_NAME DEPARTMENT CURR_SAL
ON MATCH CONTINUE TO BANK_NAME

ON NOMATCH INCLUDE
2. ON MATCH/NOMATCH CRTFORM

"</1"
"FUND TRANSFER INFORMATION UPDATE"
" "
"---"
"BANK: <D.BN ACCT #: <T.BA"
" "
"BANK CODE: <T.BC <30 START DATE: <T.EDATE"
"---"

ON MATCH UPDATE BA BC EDATE
DATA
END

 Using FIDEL in MODIFY

Maintaining Databases 11-53

This produces the following screen when the request is executed:

EMPLOYEE UPDATE

EMPLOYEE ID #: LAST_NAME:

DEPARTMENT: SALARY:

BANK:

FILL IN THE ABOVE FORM AND PRESS ENTER

FUND TRANSFER INFORMATION UPDATE

BANK: ACCT #:

BANK CODE: START DATE:

Note that when the default is in effect, each logical form is displayed one after the other
on the screen, the instant the MODIFY procedure is executed. That is, all the distinct
CRTFORMs are concatenated into one visual form.

The LINE option enables you to control both the placement of a CRTFORM on the
screen and the timing with which it appears on the screen. Using LINE gives you the
following options:

• You can have one logical form replace another after each transaction by having
subsequent CRTFORMs begin on the same line.

• You can build mixed screens by saving lines from a previous CRTFORM on the
screen while executing a subsequent CRTFORM. In other words, the first
CRTFORM is displayed, the operator transmits the data, and the next CRTFORM is
displayed while the previous one remains on the screen.

The syntax is

CRTFORM [LINE nn]

where:

nn

Is the starting line number for the CRTFORM.

Designing Screens With FIDEL

11-54 Information Builders

To completely replace one screen with the next, both CRTFORMs must start on the same
line. Note the following change in the previous example:

MODIFY FILE EMPLOYEE
1. CRTFORM

"EMPLOYEE UPDATE"
" "
"---"
"EMPLOYEE ID #: <EMP_ID LAST_NAME: <LAST_NAME"
" "
"DEPARTMENT: <DEPARTMENT <30 SALARY: <CURR_SAL"
" "
"BANK: <BANK_NAME"
" "
"FILL IN THE ABOVE FORM AND PRESS ENTER"
"---"

MATCH EMP_ID
ON NOMATCH REJECT
ON MATCH UPDATE LAST_NAME DEPARTMENT CURR_SAL
ON MATCH CONTINUE TO BANK_NAME
ON NOMATCH INCLUDE

2. ON MATCH/NOMATCH CRTFORM LINE 1
"</1"
"FUND TRANSFER INFORMATION UPDATE"
" "
"---"
"BANK: <D.BN ACCT #: <T.BA"
" "
"BANK CODE: <T.BC <30 START DATE: <T.EDATE"
"---"
ON MATCH UPDATE BA BC EDATE

DATA
END

1. When the MODIFY procedure is executed, the following screen is displayed:

EMPLOYEE UPDATE

--
EMPLOYEE ID #: LAST_NAME:

DEPARTMENT: SALARY:

BANK:

FILL IN THE ABOVE FORM AND PRESS ENTER
--

 Using FIDEL in MODIFY

Maintaining Databases 11-55

2. After the operator enters and transmits the data, the next CRTFORM replaces the
previous one on the screen:

FUND TRANSFER INFORMATION UPDATE

--
BANK: ACCT #:

BANK CODE: START DATE:
--

Generally, it is a good practice to put LINE 1 on all CRTFORMs that start a new case
(see CRTFORMs and Case Logic on page 11-58) unless a specific screen pattern is
wanted.

A combination of two or more individual CRTFORMs can occupy specific lines on one
screen. To obtain a mixed screen, place the desired starting line number with the
CRTFORM statement. For instance:

MODIFY FILE EMPLOYEE
1. CRTFORM

"EMPLOYEE UPDATE"
" "
"---"
"EMPLOYEE ID #: <EMP_ID LAST_NAME: <LAST_NAME"
" "
"DEPARTMENT: <DEPARTMENT <30 SALARY: <CURR_SAL"
" "
"BANK: <BANK_NAME"
" "
"FILL IN THE ABOVE FORM AND PRESS ENTER"
"---"

MATCH EMP_ID
ON NOMATCH REJECT
ON MATCH UPDATE LAST_NAME DEPARTMENT CURR_SAL
ON MATCH CONTINUE TO BANK_NAME
ON NOMATCH INCLUDE

2. ON MATCH/NOMATCH CRTFORM LINE 12
"</1"
"FUND TRANSFER INFORMATION UPDATE"
" "
"---"
"BANK: <D.BN ACCT #: <T.BA"
" "
"BANK CODE: <T.BC <30 START DATE: <T.EDATE"
"---"
ON MATCH UPDATE BA BC EDATE

DATA
END

Designing Screens With FIDEL

11-56 Information Builders

Processing occurs as follows:

1. Like the preceding examples, this produces the first screen. Assume the operator
enters and transmits the following data:

EMPLOYEE UPDATE

--
EMPLOYEE ID #: 117593129 LAST_NAME: JONES

DEPARTMENT: MIS SALARY: 18480

BANK: STATE

FILL IN THE ABOVE FORM AND PRESS ENTER
--

2. The first CRTFORM remains on the screen while the next CRTFORM is displayed
on
line 12:

EMPLOYEE UPDATE

--
EMPLOYEE ID #: 117593129 LAST_NAME: JONES

DEPARTMENT: MIS CURRENT SALARY: 18480

BANK: STATE
--

FUND TRANSFER INFORMATION AND UPDATE
--
BANK: STATE ACCT #:

BANK CODE: START DATE:
--

 Using FIDEL in MODIFY

Maintaining Databases 11-57

You can save certain lines from the preceding CRTFORM while you discard others. In
the previous example, if you begin the second CRTFORM on line 6, the EMP_ID and the
LAST_NAME remain and the next line is the beginning of the FUND TRANSFER
INFORMATION AND UPDATE.

1. Assume the operator enters and transmits data on the first CRTFORM. Part of the
first logical form disappears and the second form is displayed. Thus, a new visual
form is created:

EMPLOYEE UPDATE

--
EMPLOYEE ID #: 117593129 LAST_NAME: JONES

FUND TRANSFER INFORMATION AND UPDATE

--
BANK: STATE ACCT #: 40950036

BANK CODE: 510271 START DATE: 821101
--

You can create mixed screens using the LINE option, in a variety of ways, depending on
the need of the application.

Designing Screens With FIDEL

11-58 Information Builders

CRTFORMs and Case Logic
Case Logic, described in Chapter 10, Modifying Data Sources With MODIFY, enables
you to perform separate complete MODIFY processes in one procedure. Each of these is
a case, and the procedure contains directions about which case to execute under various
circumstances.

When you use the Case Logic option of the MODIFY command, you can create a pattern
of many CRTFORMs.

When there are multiple CRTFORMs in a single MODIFY request, use the LINE option
to specify where each CRTFORM will be displayed. With Case Logic, generally, we
recommend that you use LINE 1 to replace one screen with another.

The following example illustrates the use of Case Logic with the CRTFORM:

MODIFY FILE EMPLOYEE
COMPUTE

PFKEY/A4= ;
CRTFORM

"TO INPUT A NEW RECORD, PRESS PF4"
"TO UPDATE AN EXISTING RECORD, PRESS PF5"

IF PFKEY EQ 'PF04' GOTO ADD ELSE
IF PFKEY EQ 'PF05' GOTO UPP ELSE GOTO TOP;

CASE ADD
CRTFORM LINE 1

"EMPLOYEE ID #: <EMP_ID"
"LAST NAME:<LAST_NAME FIRST NAME: <FIRST_NAME"
"HIRE DATE:<HIRE_DATE"
"DEPARTMENT: <DEPARTMENT"

MATCH EMP_ID
ON MATCH REJECT
ON NOMATCH INCLUDE

ENDCASE

CASE UPP
CRTFORM LINE 1

"EMPLOYEE ID #: <EMP_ID"
"DEPARTMENT: <DEPARTMENT"
"JOB CODE: <CURR_JOBCODE"
"SALARY: <CURR_SAL"
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH UPDATE DEPARTMENT CURR_JOBCODE CURR_SAL

ENDCASE
DATA
END

 Using FIDEL in MODIFY

Maintaining Databases 11-59

The first CRTFORM appears as:

TO INPUT A NEW RECORD, PRESS PF4
TO UPDATE AN EXISTING RECORD, PRESS PF5

If the operator presses PF4, the following is displayed:

EMPLOYEE ID #:
LAST NAME: FIRST NAME:
HIRE DATE:
DEPARTMENT:

If the operator presses PF5, the following is displayed:

EMPLOYEE ID #:
DEPARTMENT:
JOB CODE:
SALARY:

Note: At the end of a MODIFY procedure, control defaults to the TOP Case.

Designing Screens With FIDEL

11-60 Information Builders

Specifying Groups of Fields
Groups of fields (that is, more than one occurrence of the same field) can be specified on
the CRTFORM in two ways:

• Specifying a field more than once on a CRTFORM.

• Using REPEAT syntax.

You can use Case Logic to process groups of fields.

Specifying Groups of Fields for Input
A group of fields may repeat on the form. For example:

"EMPLOYEE ID DEPARTMENT SALARY"
"<EMP_ID <DPT <CURR_SAL"
"<EMP_ID <DPT <CURR_SAL"
"<EMP_ID <DPT <CURR_SAL"

This reads the same data as the FIXFORM statement:

FIXFORM 3(EMP_ID/C9 DPT/C10 CURR_SAL/C14)

The following example shows the use of repeating groups for a single employee ID:

MODIFY FILE EMPLOYEE
CRTFORM

"ENTER EMPLOYEE ID #: <EMP_ID"
" "
"ENTER PAY DATE AND GROSS PAY FOR ABOVE EMPLOYEE"
" "
"PAY DATE: <PAY_DATE GROSS: <GROSS"
"PAY DATE: <PAY_DATE GROSS: <GROSS"
"PAY DATE: <PAY_DATE GROSS: <GROSS"

MATCH EMP_ID
ON NOMATCH REJECT
ON MATCH CONTINUE

MATCH PAY_DATE
ON MATCH REJECT
ON NOMATCH INCLUDE

DATA
END

Note: A group of repeated data fields cannot be specified on a MATCH or NOMATCH
CRTFORM. They must be presented on a primary CRTFORM (that is, one not generated
as a result of a MATCH or NOMATCH command).

 Using FIDEL in MODIFY

Maintaining Databases 11-61

This procedure processes as follows:

ENTER EMPLOYEE ID #: 818692173

ENTER PAY DATE AND GROSS AMOUNT FOR ABOVE EMPLOYEE

PAY DATE: 850405 GROSS: 3000.00
PAY DATE: 850412 GROSS: 4000.00
PAY DATE: 850418 GROSS: 2500.00

When the operator presses Enter, the transaction processes. Processing continues until a
line with no data is found or all lines are completed, whichever comes first.

Using REPEAT to Display Multiple Records
You can display multiple segment instances on the screen by directing FIDEL to read and
display the contents of a HOLD buffer. You can use a subscript value to identify a
particular instance in the HOLD buffer with the following syntax

field(n)

where:

field

Is the name of a previously held field.

(n)

Is the integer subscript that identifies the number of the instance in the HOLD buffer
containing the field to be displayed. n must be in integer format or the report group
will be ignored.

The variable SCREENINDEX allows you to display and modify selected groups of
records from the HOLD buffer.

Designing Screens With FIDEL

11-62 Information Builders

Consider the following example, which uses the REPEAT statement to retrieve up to a set
number (in this case, six) of multiple instances, saves them in the HOLD buffer, and then
displays the instances on the CRTFORM:

MODIFY FILE EMPLOYEE
1. CRTFORM

"PAY HISTORY UPDATE"
" "
"ENTER EMPLOYEE ID#: <EMP_ID"

MATCH EMP_ID
ON NOMATCH REJECT
ON MATCH GOTO COLLECT

CASE COLLECT
���� REPEAT 6 TIMES

2.���� NEXT PAY_DATE
���� ON NEXT HOLD PAY_DATE GROSS
����

3.���� ON NONEXT GOTO DISPLAY
���� ENDREPEAT
GOTO DISPLAY
ENDCASE

CASE DISPLAY
IF HOLDCOUNT EQ 0 GOTO TOP;

4. COMPUTE
BUFFNUMBER/I5 = HOLDCOUNT;

5. CRTFORM LINE 5
"FILL IN GROSS AMOUNT FOR EACH PAY DATE"
" "
"PAY DATE GROSS AMOUNT"
"-------- ------------"
"<D.PAY_DATE(1) <T.GROSS(1)>"
"<D.PAY_DATE(2) <T.GROSS(2)>"
"<D.PAY_DATE(3) <T.GROSS(3)>"
"<D.PAY_DATE(4) <T.GROSS(4)>"
"<D.PAY_DATE(5) <T.GROSS(5)>"
"<D.PAY_DATE(6) <T.GROSS(6)>"

GOTO UPDATE
ENDCASE

CASE UPDATE
6. REPEAT BUFFNUMBER

MATCH PAY_DATE
ON NOMATCH REJECT
ON MATCH UPDATE GROSS

ENDREPEAT
GOTO COLLECT
ENDCASE

DATA
END

 Using FIDEL in MODIFY

Maintaining Databases 11-63

The procedure processes as follows:

1. When the procedure is executed, the first CRTFORM is displayed:

PAY HISTORY UPDATE

ENTER EMPLOYEE ID #:

2. Assume the operator enters the following ID and transmits the data:

ENTER EMPLOYEE ID #: 071382660

If there is a match, the instruction is to REPEAT the logic six times. That is, up until
six times, find a PAY_DATE and hold the PAY_DATE and the GROSS in the
HOLD buffer.

3. When there are no more PAY_DATE fields or six of them have been held, the
procedure branches to CASE DISPLAY.

4. The procedure stores the number of records that are in the HOLD buffer in the
variable BUFFNUMBER.

Designing Screens With FIDEL

11-64 Information Builders

5. The procedure displays the following CRTFORM:

PAY HISTORY UPDATE

ENTER EMPLOYEE ID #: 071382660

FILL IN GROSS AMOUNT FOR EACH PAY DATE

PAY DATE GROSS AMOUNT
820831 916.67
820730 916.67
820630 916.67
820528 916.67
820430 916.67
820331 916.67

The operator makes changes to the fields in the GROSS AMOUNT column and
presses Enter. All changes for all records are transmitted simultaneously as shown:

PAY HISTORY UPDATE

ENTER EMPLOYEE ID #: 071382660

FILL IN GROSS AMOUNT FOR EACH PAY DATE

PAY DATE GROSS AMOUNT
820831 816.67
820730 816.67
820630 816.67
820528 916.67
820430 916.67
820331 916.67

6. The REPEAT statement instructs FOCUS to perform the MODIFY logic on all
segment instances.

Note: If a CRTFORM screen with subscripted variables is rejected with a FORMAT
ERROR, you may not alter any records on the screen prior to the record rejected, as
FOCUS has already held them.

 Using FIDEL in MODIFY

Maintaining Databases 11-65

Using Groups of Fields With Case Logic
When you use Case Logic to process a group of fields, some important rules apply:

• Each time the procedure enters the case, the next group of fields is processed.
FOCUS keeps track internally of which groups have been processed.

• If the CRTFORM with the group of fields is not in the TOP case, you must create
your own branching logic to process all the groups before going back to the TOP.
This normally needs some kind of counting mechanism. Once the procedure goes
back to the TOP case, all unprocessed data on the CRTFORM or in a lower case is
lost.

Annotated Example: Case Logic, Groups, CURSORINDEX and
VALIDATE
The following is an example of using Case Logic with groups of fields. In addition, it
shows the CURSORINDEX (see Specifying Cursor Position on page 11-33) being used
in conjunction with a VALIDATE:

MODIFY FILE EMPLOYEE
1. CRTFORM

"EMPLOYEE SALARY AND DEPARTMENT UPDATE"
" "
"PRESS ENTER"

GOTO COLLECT

CASE COLLECT
2. REPEAT 6 TIMES

NEXT EMP_ID
ON NEXT HOLD EMP_ID CURR_SAL DEPARTMENT
ON NONEXT GOTO DISPLAY

ENDREPEAT
GOTO DISPLAY
ENDCASE

Designing Screens With FIDEL

11-66 Information Builders

CASE DISPLAY
3. IF HOLDCOUNT EQ O GOTO EXIT;
4. COMPUTE

BUFFNUMBER/I5 = HOLDCOUNT;
5. CRTFORM LINE 7

"EMPLOYEE SALARY DEPARTMENT"
"-------- ------ ----------"
"<D.EMP_ID(1) <:AAA.T.CSAL(1)> <:BBB.T.DPT(1)>"
"<D.EMP_ID(2) <:AAA.T.CSAL(2)> <:BBB.T.DPT(2)>"
"<D.EMP_ID(3) <:AAA.T.CSAL(3)> <:BBB.T.DPT(3)>"
"<D.EMP_ID(4) <:AAA.T.CSAL(4)> <:BBB.T.DPT(4)>"
"<D.EMP_ID(5) <:AAA.T.CSAL(5)> <:BBB.T.DPT(5)>"
"<D.EMP_ID(6) <:AAA.T.CSAL(6)> <:BBB.T.DPT(6)>"

6. REPEAT 6 TIMES
COMPUTE

CURSOR/A66 = ':AAA';
CURSORINDEX/I5=REPEATCOUNT;

VALIDATE
SALTEST = IF CSAL GT 50000 THEN 0 ELSE 1;
ON INVALID TYPE "SALARY MUST BE LESS THAN $50,000"
ON INVALID GOTO DISPLAY

ENDREPEAT
GOTO UPDATE
ENDCASE

CASE UPDATE
7. REPEAT BUFFNUMBER

MATCH EMP_ID
ON NOMATCH REJECT
ON MATCH UPDATE CURR_SAL DEPARTMENT

ENDREPEAT
GOTO COLLECT
ENDCASE
DATA
END

The example processes as follows:

1. The first CRTFORM requests the operator to press Enter without typing anything.

2. The REPEAT statement retrieves six employee IDs, salaries, and department
assignments and places them in a buffer.

3. If there are no records in the buffer, the procedure terminates.

4. The COMPUTE statement stores the number of records in the buffer in the variable
BUFFNUMBER.

 Using FIDEL in MODIFY

Maintaining Databases 11-67

5. The second CRTFORM retrieves the IDs, salaries, and department assignments from
the buffer and displays them together on the screen. Note the field labels:

 The label :AAA on the CURR_SAL (CSAL) field.

 The label :BBB on the DEPARTMENT (DPT) field.

 Assume that the operator changes the values to the following:

EMPLOYEE SALARY AND DEPARTMENT UPDATE

PRESS ENTER

EMPLOYEE SALARY DEPARTMENT
-------- ------ ----------
071382660 35000.00 PRODUCTION
112847612 23200.00 MIS
117593129 75480.00 MIS
119265415 19500.00 PRODUCTION
119329144 39700.00 PRODUCTION
123764317 36862.00 PRODUCTION

6. The second REPEAT statement operates on each of the six records displayed by the
second CRTFORM, in order of display, performing the following tasks:

Sets the CURSOR variable to the label :AAA.

Sets the CURSORINDEX variable to the number of the record it's processing (1
through 6).

Validates the CURR_SAL field value. If the CURR_SAL value is $50,000 or more,
the procedure branches back to the beginning of Case DISPLAY. The procedure
displays the second CRTFORM again, with the CURSOR and CURSORINDEX
variables positioning the cursor on the invalid salary.

Designing Screens With FIDEL

11-68 Information Builders

In the example, the procedure positions the cursor on the third CURR_SAL value:

EMPLOYEE SALARY AND DEPARTMENT UPDATE

PRESS ENTER

EMPLOYEE SALARY DEPARTMENT
-------- ------ ----------
071382660 35000.00 PRODUCTION
112847612 23200.00 MIS
117593129 _75480.00 MIS
119265415 19500.00 PRODUCTION
119329144 39700.00 PRODUCTION
123764317 36862.00 PRODUCTION

(FOC421)TRANS 2 REJECTED INVALID SALTEST
SALARY MUST BE LESS THAN $50,000

7. If all values are valid, the third REPEAT statement updates the employee’s salary
and department for each record in the buffer. The procedure then branches to Case
COLLECT to update six more records in the data source.

Handling Errors
It is important to know how various errors are handled by FIDEL so that proper
instructions can be given to terminal operators. Following are several kinds of errors that
can cause a transaction or screen of data to be rejected:

• A format error caused by entering non-numeric data for a numeric field.

• A validation error caused by entering an incoming value that failed a VALIDATE
test coded in the MODIFY.

• A NOMATCH condition caused by entering data for a key field that did not match
any record in the data source.

• A DUPLICATE condition caused by key field values that matched records on data
source.

• An ACCEPT error caused by entering a value for a data source field which failed the
ACCEPT test.

Note: Error messages are discussed in detail in Chapter 10, Modifying Data Sources With
MODIFY.

 Using FIDEL in MODIFY

Maintaining Databases 11-69

Handling Format Errors
If the operator enters a non-numeric character into a field defined as numeric, an error
message is displayed and the screen is not processed (processing stops). The error
message indicates the line number and field name in error and the cursor is automatically
positioned on that field. Additionally, if the operator enters a value that fails an ACCEPT
test for a field an error message is displayed and the screen is not processed. Any message
specified for that field with the HELPMESSAGE attribute will also be displayed.

The operator can retype the data and press the Enter key to retransmit the screen.
Alternatively, the operator may press the PF2 key to cancel the transaction. The error
prevents anything on the screen from being processed. When the operator corrects the
error and transmits the screen, processing resumes.

There are two exceptions to this rule. When there are repeating groups, all complete
transactions up to the error will be processed. Also, in REPEAT/HOLD loops, the data
prior to the format error may not be altered.

VALIDATE and CRTFORM Display Logic
When the operator enters a value that is invalid, the transaction is rejected and an error
message is displayed on the screen. By default, control returns to the first CRTFORM in
the TOP case. However, you can use an ON INVALID GOTO statement to transfer
control to any other case in the request.

If the NOCLEAR or blank option in the CRTFORM statement (see Additional Screen
Control Options on page 11-73) is in effect, the screen will not be cleared. The operator
can change the data in the offending transaction and retransmit the screen.

When you use validations, you can divide the tests into different cases and repeat a case if
it fails the test. The advantage of this is that the operator can change the invalid data and
retransmit the screen before other sections are processed. An ON INVALID TYPE phrase
can be used to send an informative message to the operator on the screen. The following
example shows the use of these options:

CASE TRY
CRTFORM

"EMPLOYEE ID #: <EMP_ID NAME: <LAST_NAME"
"CURRENT SALARY: <CURR_SAL"

VALIDATE
GOODSAL= CURR_SAL GT 10000 AND CURR_SAL LT 1000000;
ON INVALID TYPE
"THE CURRENT SALARY CANNOT BE LARGER THAN 1000000 OR"
"LESS THAN 10000"
ON INVALID GOTO TRY
.
.
.

Designing Screens With FIDEL

11-70 Information Builders

All messages appear on the bottom four lines of the screen, unless you specify the TYPE
option on the CRTFORM statement (see Additional Screen Control Options on page 11-
73).

Handling Errors With Repeating Groups
If old style repeating groups (those without subscripts) are present and there is an error,
processing continues to the next transaction on the screen. This means that if the operator
changes the offending transaction and retransmits the screen, the other transactions on the
screen become duplicates. It is important when using repeating groups to reject duplicates
and turn the duplicate message off (LOG DUPL MSG OFF).

Alternatively, avoid using VALIDATE with repeating groups. Use COMPUTE instead
and branch to a case that displays the erroneous data in a lower portion of the screen.

The following is an example of this technique. A test field is computed in Case TEST,
using DECODE. This test field checks that the department value is a valid one. If the
operator inputs a department value that is invalid, control branches to a case that displays
the erroneous data (CASE BADDPT).

MODIFY FILE EMPLOYEE
1. CRTFORM

"FILL IN THE FOLLOWING CHART WITH THE SALARIES"
"AND DEPARTMENT ASSIGNMENTS OF FOUR NEW EMPLOYEES"
" "
" EMPLOYEE ID DEPARTMENT SALARY"
" ----------- ---------- ------"
"PERSON 1 <EMP_ID <DEPARTMENT <CURR_SAL"
"PERSON 2 <EMP_ID <DEPARTMENT <CURR_SAL"
"PERSON 3 <EMP_ID <DEPARTMENT <CURR_SAL"
"PERSON 4 <EMP_ID <DEPARTMENT <CURR_SAL"
GOTTO TEST

2. CASE TEST
IF EMP_ID IS ' ' GOTO TOP;
COMPUTE

TEST/I1 = DECODE DEPARTMENT (MIS 1 PRODUCTION 1 ELSE 0);
IF TEST IS 0 GOTO BADDEPT ELSE GOTO ADD;
ENDCASE

3. CASE ADD
MATCH EMP_ID

ON NOMATCH INCLUDE
ON MATCH REJECT

ENDCASE

 Using FIDEL in MODIFY

Maintaining Databases 11-71

4. CASE BADDEPT
COMPUTE

XEMP/A9 = EMP_ID;
XDEPT/A10 = DEPARTMENT;

CRTFORM LINE 12
"INVALID ENTRY: DEPARTMENT MUST BE MIS OR PRODUCTION"
"CORRECT THE ENTRY BELOW"
" "
"EMPLOYEE ID: <D.XEMP DEPARTMENT: <T.XDEPT"

COMPUTE
DEPARTMENT=XDEPT;

GOTO TEST
ENDCASE

DATA
END

The request processes as follows:

1. This is the first and TOP case and contains a CRTFORM that displays four instances
of repeating groups. Assume the operator fills in values and transmits the screen.
Control transfers to Case TEST.

2. Case TEST contains a computed field that uses DECODE to make sure that the
values that have been input for DEPARTMENT are either MIS or PRODUCTION.
When a DEPARTMENT value does not match this list, TEST is returned a code of
0, in which case control transfers to Case BADDEPT.

3. Case BADDEPT first computes two fields, XEMP and XDEPT, to have the values of
EMP_ID and DEPARTMENT at the time the error occurred. Next, BADDEPT
displays a CRTFORM containing a message to the operator and the two computed
fields. The XDEPT field, which contains the invalid DEPARTMENT value, is a
turnaround field so that the operator can see the invalid value and change it. Next, the
COMPUTE is reversed and the new values are returned to their respective fields.
Control transfers back to Case TEST where the DEPARTMENT values will continue
to be tested until they are all valid. At that point, control transfers to Case ADD.

4. Case ADD contains the MATCH logic necessary to include new employees into the
EMPLOYEE data source. The transaction including all the repeating groups is
processed at one time.

Designing Screens With FIDEL

11-72 Information Builders

Rejecting NOMATCH or Duplicate Data
When the request directs that transactions be rejected, an error message is displayed on
the screen. It is a good idea, when the major keys do not repeat, to use a split CRTFORM
and give the keys in the first CRTFORM. Once the keys are accepted, the rest of the data
may be entered. For example:

MODIFY FILE EMPLOYEE
CRTFORM

"ENTER EMPLOYEE ID#: <EMP_ID"
"THEN PRESS ENTER"

MATCH EMP_ID
ON NOMATCH TYPE

"ID NOT IN DATABASE PLEASE REENTER"
ON NOMATCH REJECT
ON MATCH CRTFORM LINE 4

"LAST NAME: <T.LAST_NAME"
"DEPARTMENT: <T.DEPARTMENT"
"SALARY: <T.CURR_SAL"

ON MATCH UPDATE LAST_NAME DEPARTMENT CURR_SAL
DATA
END

If the EMP_ID does not match, control returns immediately to the operator with a request
to correct the value. If a match does occur, the operator must then fill in the balance of the
form and transmit it.

If repeating groups are present and no other cases are involved, all of the groups are
processed before control returns to the screen. Thus, splitting screens in this way is
particularly useful when the second CRTFORM contains repeating groups.

Logging Transactions
You can log the data entered on the screen to any log file. Only the data is logged, not the
CRTFORM, so a compact log file is created. For example:

LOG TRANS ON ALLDATA

This will log transactions to a file allocated to the ddname ALLDATA.

The record length of the file must allow space for each field on each CRTFORM in the
procedure, plus one character at the start of each CRTFORM. The record length should
not be longer than this.

 Using FIDEL in MODIFY

Maintaining Databases 11-73

This may be an inconvenient format since it is very long if several CRTFORMs exist.
Instead you can construct a custom log file of your own design using TYPE statements.
This example logs data collected from its preceding CRTFORM to a file allocated to
ddname MYCRT, including a COMPUTE transaction number, TNUM:

CRTFORM
"EMPLOYEE ID #: <EMP_ID NAME <LAST_NAME"
"HIRE DATE: <HIRE_DATE"

COMPUTE
TNUM/I4=TNUM+1;
TYPE ON MYCRT

"<TNUM><EMP_ID><LAST_NAME><HIRE_DATE"

This option is recommended, rather than the standard LOG option, whenever a procedure
contains more than two CRTFORMs, or when text or computed fields need to be captured
on the log file.

Additional Screen Control Options
MODIFY CRTFORMs support several additional screen control options:

• Clearing the screen with CLEAR/NOCLEAR.

• Specifying the screen size with WIDTH/HEIGHT.

• Changing the size of the message area at the bottom of the screen using TYPE. This
increases the length of the screen that can be used for the actual form.

Clearing the Screen: CLEAR/NOCLEAR
Data is transmitted from the CRTFORM to the data source when the operator presses the
Enter key. After each successful screen is processed, the data areas are automatically
cleared. You can override this default by using the NOCLEAR option. Then, after each
data transmission, the screen remains unchanged.

Designing Screens With FIDEL

11-74 Information Builders

This is a useful feature when there is a substantial amount of data that carries over from
one screen to another. The syntax is

CRTFORM action

where:

action

Is one of the following:
blank is the default. Causes the screen to clear after the data is transmitted. If a
transaction is invalid and an error message appears at the bottom of the screen, the
screen will not be cleared.
NOCLEAR causes the data values on the screen to remain as is after data is transmitted.
CLEAR causes the data values on the screen to clear after every data transmission,
even if there is an error. Thus, if CLEAR is specifically used and there is an error,
data must be reentered.

Note: The options chosen may be different from one CRTFORM to the next.

Specifying Screen Size: WIDTH/HEIGHT
FIDEL assumes a default screen size of 24 lines of 80 characters each. The
WIDTH/HEIGHT options allow you to use the full width and height of IBM terminals
that are larger than the usual 3270 screen for the display of CRTFORMs. The following
syntax allows you to override the defaults

CRTFORM [WIDTH nnn] [HEIGHT nnn]

where:

WIDTH nnn

Is the total number of characters across the face of the screen. Acceptable values for
WIDTH are 80 and 132 and cannot exceed the true width of the terminal. FOCUS
verifies that each line of the CRTFORM can be displayed at the current WIDTH
specification. If any line of the CRTFORM exceeds it, you will receive error message
FOC456, and the procedure will not execute.

HEIGHT nnn

Is the total number of lines that each screen supports. It bears no relation to the
number of lines in the CRTFORM. It may not exceed the true height of the terminal,
but it may be less. For example, you can specify HEIGHT 20 for a Model 2 screen
instead of 24 and write a CRTFORM of 32 lines. The first 16 lines appear on one
screen and the next 16 on the subsequent screen. Remember that by default, four
lines are reserved for TYPE messages.

 Using FIDEL in MODIFY

Maintaining Databases 11-75

The following table gives the physical screen sizes for the IBM 3270 series of terminals:

Terminal Type Model Width Height

3270 1 80 24

3277, 3278, 3279, 3178 2 80 24

3278, 3279 3 80 32

3278 4 80 43

3278 5 132 27

FOCUS senses the width and height of the terminal which you are using and attempts to
implement your CRTFORM WIDTH and HEIGHT specifications accordingly. Here are
some rules and facts that apply:

• If your WIDTH or HEIGHT specifications exceed the perceived characteristics of
the terminal, you will receive a FOC491 error message and the procedure will not
execute.

• FOCUS sees the terminal as it is defined to the operating system. For example, a
Model 5 3278 may be defined to the operating system as a Model 2 terminal. That
terminal will appear to FOCUS as a Model 2 (24 lines deep and 80 characters wide).
A WIDTH 132 specification will produce a FOC491 error message.

• The following special considerations apply to the Model 5 terminal, which can
display 80 columns of normal sized characters, or 132 columns of reduced characters
(this choice of character sets is only available under CMS; under MVS, you can only
get the reduced character set):

Due to hardware characteristics, you will always get the reduced character set if you
use more than 24 lines of the screen. In other words, if you specify a HEIGHT
greater than 24, or if you say HEIGHT *, which means 27 lines on the Model 5, you
will get the reduced character set, regardless of the WIDTH setting.

To get the normal sized character set, do not specify HEIGHT or WIDTH. You will
get a 24x80 screen as if you were on a Model 2 terminal. However, if you specify
WIDTH explicitly, FOCUS will automatically use the reduced character set,
regardless of the HEIGHT setting.

Designing Screens With FIDEL

11-76 Information Builders

Changing the Size of the Message Area: TYPE
FOCUS by default reserves the last four lines of the terminal screen for TYPE messages
and text messages specified with the HELPMESSAGE attribute (see Chapter 10,
Modifying Data Sources With MODIFY). You can override this default and determine the
number of lines each CRTFORM reserves with the keyword TYPE. This feature allows
you to increase the number of lines on the screen for CRTFORM display and reduce the
number of lines reserved for messages at the bottom of the screen. The syntax is

CRTFORM TYPE {n|4}

where:

n

Is a number from one to four indicating the number of message lines desired. The
TYPE value setting remains in effect for all subsequent CRTFORMs in the same
procedure until overridden by a new value.

You can expand the actual CRTFORM screen size by specifying a number less than four.
For example, a terminal with a height of 24 lines currently reserves 20 lines for the
CRTFORM and four lines for the TYPE area. If you specify a TYPE area of 2, the
CRTFORM area increases to 22 lines.

If one procedure varies the size of the TYPE area from a larger to a smaller number,
CRTFORM will clear the necessary TYPE statements in order to generate the next
screen. If multiple CRTFORMs are written to the same screen, each CRTFORM should
specify the same TYPE area size. For example:

CRTFORM LINE 1 TYPE 2
:
:
CRTFORM LINE 7 TYPE 2

Messages supplied with the HELPMESSAGE attribute in the Master File for fields on the
MODIFY CRTFORM, are displayed in the TYPE area.

This type of message consists of one line of text which is displayed when:

• The value entered for a data source field is invalid according to the ACCEPT test for
the field, or causes a format error.

• The user places the cursor in the data entry area for a particular field and presses a
predefined PF key. If no message has been specified for that field, the following
message will be displayed:

NO HELP AVAILABLE FOR THIS FIELD

 Using FIDEL in Dialogue Manager

Maintaining Databases 11-77

Using FIDEL in Dialogue Manager
FIDEL works with all the standard Dialogue Manager facilities. However, the following
differences apply when you use FIDEL with Dialogue Manager:

• You must allocate space for the variable field on the -CRTFORM, because in
Dialogue Manager the variable fields are not related to a Master File (see Allocating
Space on the Screen for Variable Fields on page 11-77).

• There are two additional control statements: -CRTFORM BEGIN and -CRTFORM
END. These give you control over when you begin and end the form (see Starting
and Ending CRTFORMS: BEGIN/END on page 11-78). This control allows you to
make use of other Dialogue Manager control statements as you are building your
-CRTFORM.

Allocating Space on the Screen for Variable Fields
You must define the length of variable fields in -CRTFORMs. The length of Dialogue
Manager variables can be defined in one of two ways:

• Directly on the -CRTFORM using the following syntax for allocating space.

<&variable/length

where:

length

Is a number representing the alphanumeric length of the variable.

• By using the -SET command to pre-declare the allocation of space using the syntax

-SET &variable = ' ' ;

where:

' '

Represents the alphanumeric length of the variable.

Note:

• If the variable format has been previously defined in the FOCEXEC procedure, the
length defined directly on the -CRTFORM supersedes the previously defined format
permanently.

• Variables used as label names (&:variable) cannot be automatically defined on the
-CRTFORM. These variables must be defined with -SET statements.

Designing Screens With FIDEL

11-78 Information Builders

Starting and Ending CRTFORMS: BEGIN/END
-CRTFORM BEGIN indicates that the form is being built. This Dialogue Manager
control statement enables you to use other Dialogue Manager control statements between
the screen lines without causing the CRTFORM to end. This is necessary when you are
using indexed variables in a looping procedure.

-CRTFORM END terminates the form and causes the display of the assembled form.

The following is an example of the use of indexed variables in -CRTFORM. The variable
&LINENUM is the indexed variable in the -CRTFORM. The index, &I, is set to
increment by 1 each time a line is written. After the 10th line, the -CRTFORM ends. Note
the use of the Dialogue Manager label, -BUILD and the -SET statement to control the
loop within the form:

1. -SET &I = 0;
2. -CRTFORM BEGIN

-"THE FOLLOWING FORM STORES 10 LINES OF TEXT"
-" "

3. -BUILD
4. -SET &I = &I + 1;
5. -SET &LINENUM.&I = 'LINE ' | &I;
6. -"<D.&LINENUM.&I <&LINE.&I/60"
7. -IF &I LT 10 GOTO BUILD;
8. -CRTFORM END

-*
-TYPE LINE #2 CONTAINS THE FOLLOWING TEXT:
-TYPE

9. -TYPE &LINE2

This example processes as follows:

1. This -SET statement declares a counter, &I, and sets the counter to 0.

2. The -CRTFORM BEGIN statement begins the form.

3. This statement is a Dialogue Manager label, -BUILD. Because we are using the
-CRTFORM BEGIN statement, this label does not end the CRTFORM.

4. This -SET statement sets the counter &I to increment by 1 each time a line is written.
This controls the loop within the form.

5. This -SET statement indexes the variable &LINENUM with the counter &I. Thus,
each time it is encountered in the -CRTFORM it will increment +1.

 Using FIDEL in Dialogue Manager

Maintaining Databases 11-79

6. The -CRTFORM will look like:

THE FOLLOWING FORM STORES 10 LINES OF TEXT

LINE 1
LINE 2
LINE 3
LINE 4
LINE 5
LINE 6
LINE 7
LINE 8
LINE 9
LINE 10

Type in any text you wish onto the lines.

7. The -IF test allows the loop to process until there are 10 lines in the -CRTFORM. At
that point control transfers to the -CRTFORM END statement.

8. -CRTFORM END ends the -CRTFORM and causes it to be displayed.

9. The last TYPE statement shows the contents of line 2.

Clearing the Screen in Dialogue Manager
The statement -CRTFORM both initiates the screen form and automatically clears the
screen. The screen form begins at the top of the screen.

After the operator enters values for the variables and presses Enter, the variables are
supplied with the values and the screen is cleared.

Designing Screens With FIDEL

11-80 Information Builders

Changing the Size of the Message Area: -CRTFORM TYPE
FOCUS by default reserves the last four lines of the Dialogue Manager terminal screen
for TYPE messages. You can change this by using the keyword TYPE to determine the
number of lines each CRTFORM reserves for messages. This feature allows you to
increase the number of lines on the screen for CRTFORM display and reduce the number
of lines reserved for messages at the bottom of the screen. The syntax is

-CRTFORM TYPE {n|4}

where:

n

Is a number from 1 to 4 indicating the number of message lines desired. The TYPE
value setting remains in effect for all subsequent CRTFORMs in the same procedure
until overridden by a new value. The default is 4.

You can expand the CRTFORM screen size by specifying a number less than 4. For
example, a terminal with a height of 24 lines reserves 20 lines for the CRTFORM and
four lines for the TYPE area. If you specify a TYPE area of 2, the CRTFORM area
increases to 22 lines.

 Using FIDEL in Dialogue Manager

Maintaining Databases 11-81

Annotated Example: -CRTFORM
The following FOCEXEC is an example of a TABLE request incorporating the use of
-CRTFORM.

-* Component Of Retail Sales Reporting Module
1. -SET &LIST = 'STAMFORD,UNIONDALE,NEWARK';
2. -PROMPT &CITY.(&LIST).ENTER CITY.:

-*
3. -CRTFORM

-"Monthly Sales Report For <D.&CITY"
-"Date: <D.&DATE Time: <D.&TOD"
-" "
-"Beginning Product Code is: <&BEGCODE/3"
-"Ending Product Code is: <&ENDCODE/3"
-"Regional Supervisor is: <®IONMGR/15"
-"Title For UNIT_SOLD is: <&UNIT_HEAD/10"

4. TABLE FILE SALES
HEADING CENTER
"MONTHLY REPORT FOR &CITY"
"PRODUCT CODES FROM &BEGCODE TO &ENDCODE"
" "
SUM UNIT_SOLD AS &UNIT_HEAD

AND RETURNS AND COMPUTE
RATIO/D5.2 = 100 * RETURNS/UNIT_SOLD;

BY PROD_CODE
IF PROD_CODE IS-FROM &BEGCODE TO &ENDCODE
IF CITY EQ &CITY
FOOTING CENTER
"REGION MANAGER: ®IONMGR"
"CALCULATED AS OF &DATE"

5. END

The following is a sample of the dialogue between the screen and the operator. Operator
entries are in lowercase.

1. The -SET statement sets a value for the variable &LIST. The value is actually a list
of the names of three cities. They are enclosed in single quotation marks because of
the embedded commas.

2. The -PROMPT statement prompts the operator at the terminal for a value for
&CITY. Assume the operator types a city that is not on the list:

ENTER CITY:
boston
PLEASE CHOOSE ONE OF THE FOLLOWING:

STAMFORD,UNIONDALE,NEWARK
ENTER CITY:
stamford

Designing Screens With FIDEL

11-82 Information Builders

3. The statement -CRTFORM initiates a screen form on which you type data:

Monthly Sales Report for STAMFORD
Date: 01/08/99 Time: 13.12.41

Beginning Product Code is: b10
Ending Product Code is: b20
Regional Supervisor is: smith
Title For UNIT_SOLD is: sales

4. The following are the stacked FOCUS commands as they appear on the FOCSTACK
after the values have been entered from the -CRTFORM:

TABLE FILE SALES
HEADING CENTER
"MONTHLY REPORT FOR STAMFORD"
"PRODUCT CODES FROM B10 TO B20"
" "
SUM UNIT_SOLD AS SALES AND RETURNS AND COMPUTE

RATIO/D5.2 = 100 * RETURNS/UNIT_SOLD;
BY PROD_CODE
IF PROD_CODE IS-FROM B10 TO B20
IF CITY EQ STAMFORD
FOOTING CENTER
"REGION MANAGER: SMITH"
"CALCULATED AS OF 01/08/99"
END

5. The report is as follows:

PAGE 1

MONTHLY REPORT FOR STAMFORD
PRODUCT CODES FROM B10 TO B20

PROD_CODE SALES RETURNS RATIO
--------- ----- ------- -----
B10 103 13 12.62
B12 69 4 5.80
B17 49 4 8.16
B20 40 1 2.50

REGION MANAGER: SMITH
CALCULATED AS OF 01/08/99

 Using the FOCUS Screen Painter

Maintaining Databases 11-83

Using the FOCUS Screen Painter
The FOCUS Screen Painter allows you to design a FIDEL full-screen layout by placing
literal text and areas for fields on the screen in any position that you desire. You then
assign these field areas of the screen to data source or computed fields and FOCUS
automatically codes the CRTFORM. You can also color, highlight and/or assign screen
attributes to sections of the screen (text, fields, background or any combination).

The FOCUS Screen Painter also allows you to generate CRTFORMs automatically
without specifying field names (see Generating CRTFORMs Automatically on page 11-
93).

The Screen Painter operates within TED, the FOCUS editor (see the Overview and
Operating Environments manual for more details on TED), and can be used to create both
MODIFY CRTFORMs and Dialogue Manager -CRTFORMs. It is easy to use and makes
the creating of forms simple and visual.

Entering Screen Painter
To create a CRTFORM using the Screen Painter, you first enter the PAINT command
from within TED. You can set up the PAINT screen in the following way:

1. Enter TED by typing TED followed by the name of the file:

In CMS: TED CRTEMP FOCEXEC

In MVS: TED FOCEXEC(CRTEMP)

Either command will bring you into the FOCEXEC called CRTEMP. The
FOCEXEC may or may not already exist.

2. Place a CRTFORM or -CRTFORM statement in the FOCEXEC if it is not already
there. For example:

MODIFY FILE EMPLOYEE
CRTFORM

Designing Screens With FIDEL

11-84 Information Builders

3. When a FOCEXEC is on the screen, enter the PAINT command in the command area
or press PF4. TED searches from the current line down the file until it finds a
CRTFORM statement and makes the following line the current line. (If you use more
than one CRTFORM in the FOCEXEC and you want to create the second
CRTFORM, enter the command PAINT 2.)

 Note: A Master File must be active for the Screen Painter to set the default field
lengths for data source fields.

The following PAINT screen is displayed on your terminal:

...+....1....+....2....+....3....+....4....+....5....+....6....+....7...+...

...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+..

COMMAND:_

01=HELP 03=END 07=BACKWARD 08=FORWARD 09=ASGN-FLD 10=ASSIGN 11=FIDEL 17=BOX

Between the two scale lines are 20 blank lines in which to enter the screen layout.
The cursor is positioned in the command zone in the lower left portion of the screen.
The codes at the bottom of the screen identify some of the PF keys that you can use.

 Using the FOCUS Screen Painter

Maintaining Databases 11-85

These perform the following functions:

PF Key Function

01=HELP Lists all the PF key functions.

03=END Transfers you from the PAINT screen back into TED,
within your file.

07=BACKWARD Scrolls back to the previous screen of the CRTFORM.
When used with ASSIGN, moves the cursor back to the
first field.

08=FORWARD Scrolls forward to the next screen of the CRTFORM. When
used with ASSIGN, moves the cursor to the next field.

09=ASGN-FLD Use on the ASSIGN screen. Transfers you to the particular
field that the cursor is placed on. You can then immediately
assign or change attributes for that field.

10=ASSIGN Transfers you from the PAINT screen to the ASSIGN
screen (see Identifying Fields: ASSIGN on page 11-91).

11=FIDEL Shows you the CRTFORM as it will appear on the screen.

17=BOX Enables you to define a box of text. Move the cursor to the
upper-left corner and press PF17. Select features from the
box menu and then move the cursor to the bottom-right
corner and press PF17.

Note: With the exception of FORWARD, BACKWARD and ASGN-FLD, you can
also accomplish these functions by typing the command name in the command zone.

4. If the CRTFORM already includes fields, and one or more fields are not declared in
the Master File, you may see this message:

(FOC532) LENGTHS OF FIELDS IN THIS CRTFORM CANNOT BE DETERMINED

To continue type IGNore and provide the lengths explicitly, or type ?F filename to
activate the appropriate master. After you follow the message instructions, the
PAINT screen appears.

Designing Screens With FIDEL

11-86 Information Builders

PF Keys in PAINT
You can alter the values of PF keys in PAINT with the command

SET PFnn word

where:

nn

Is a number from 1 to 24 specifying the PF key to be set.

word

Is the new value for the key.

The initial PF key settings in PAINT are:

PF Key Setting

PF1, PF13 : HELP

PF2, PF14 : INSERT

PF3, PF15 : END

PF4 : PAINT

PF5 : TOP

PF6 : BOTTOM

PF7, PF19 : BACKWARD PAGE

PF8, PF20 : FORWARD PAGE

PF9 : ASSIGN FIELD

PF10 : ASSIGN

PF11 : FIDEL

PF12 : DUPLICATE

PF16 : QUIT

PF17 : BOX

PF18 : (currently not used)

PF21 : CRTFORM

PF22 : SET OUTPUT FIDEL

PF23 : SET OUTPUT DIALOGUE

PF24 : (currently not used)

 Using the FOCUS Screen Painter

Maintaining Databases 11-87

Entering Data Onto the Screen
In PAINT, you may enter text, and specify field dimensions. Always use the arrow keys to
designate text and field areas on this screen. Generally, text is entered by positioning the
cursor and typing, but fields require type and width specifications.

To create a field, type

<xx...x

where the total number of x’s equals the width of the field desired. If you do not specify a
width, or if the command you entered is not syntactically correct, or active, PAINT will
automatically default to a width defined in the Master File.

Fields are conditional by default. To specify non-conditional fields, enter

<xx...x>

where the total number of x’s equals the width of the field.

You may enter text descriptions of each field, but do not type the field name after the left
or right caret. Later you will learn how to assign each field a field name and may
designate the field as Entry, Turnaround or Display with the ASSIGN command (see
Identifying Fields: ASSIGN on page 11-91). By default, the fields are conditional. To
specify non-conditional, type a right caret (>) after the x’s that indicate the field. We
recommend that turnaround fields be non-conditional. (See Conditional and
Non-Conditional Fields on page 11-42 for information on conditional and
non-conditional fields.)

Editing Functions
When you are designing your screen, you have editing functions available to you. To use
them, you must enter the command name on the COMMAND line on your PAINT screen
or use the appropriate PF key:

• Inserting Lines: INSERT, PF2, PF14. You can insert lines by moving the cursor to
any character on a line. Press PF2 or PF14 and the new line will be inserted
immediately following the line where the cursor is positioned. If you want to insert
more than one line, type the command (do not press Enter)

I[NSERT] n

where n is the number of new lines to be inserted. Next, move the cursor to the line
where you want the lines inserted. Press Enter and n lines will be inserted beneath the
line where the cursor is currently positioned.

If the insert causes the screen to exceed 20 lines, the message

1,40

will be displayed, indicating that the display starts at line 1 out of a total of 40.

Designing Screens With FIDEL

11-88 Information Builders

• Deleting Lines: DELETE. You can similarly delete lines by typing:

D[ELETE] n

on the command line, where n is the number of lines you want deleted. Next, move
the cursor to the first line you want deleted and press Enter.

• Duplicating Lines: DUPLICATE, PF12. You can duplicate lines by placing the
cursor on the line that you want to duplicate. Press PF12. If you want to duplicate
more than one line, type the command

DU[PLICATE] n

where n is the number of copies you want; then position the cursor on the line you
want to duplicate, and press Enter.

If the line that you are copying contains subscripted fields (for example, “SALES
(1)”), the subscripts will be incremented by one automatically (see Specifying Groups
of Fields on page 11-60). If you want an increment other than 1, enter the command

DUPLICATE n m

where m is the increment number.

Sample PAINT Screen
In the following example, assume that the following FOCEXEC exists:

MODIFY FILE EMPLOYEE
CRTFORM

"ENTER EMPLOYEE ID #: <EMP_ID"
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH CRTFORM

 Using the FOCUS Screen Painter

Maintaining Databases 11-89

To use the Screen Painter to create the second CRTFORM, specify PAINT 2 at the TED
command line (2 indicates second CRTFORM). Then type the following text and fields
on the PAINT screen to create the CRTFORM that will be displayed if there is a match
on EMP_ID.

...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+...

EMPLOYEE UPDATE

EMPLOYEE ID #: <XXXXXXXXX LAST NAME: <XXXXXXXXXXXXXXX

DEPARTMENT: <XXXXXXXXXX> CURRENT SALARY: <XXXXXXXX

BANK: <XXXXXXXXXXXXXXXXXXXX

...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+...
COMMAND:_
01=HELP 03=END 07=BACKWARD 08=FORWARD 09=ASGN-FLD 10=ASSIGN 11=FIDEL 17=BOX

When you finish entering text and indicating areas for fields (the number of X’s
corresponds to the field length), press Enter. The following screen results:

...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+...

EMPLOYEE UPDATE

EMPLOYEE ID #: <111111111 LAST NAME: <22222222222222

DEPARTMENT: <1111111111> CURRENT SALARY: <22222222

BANK: <11111111111111111111

...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+...
COMMAND:
01=HELP 03=END 07=BACKWARD 08=FORWARD 09=ASGN-FLD 10=ASSIGN 11=FIDEL 17=BOX

Note that the X’s are replaced with numbers indicating the relative position of each field
on a line. On the second line, EMPLOYEE ID is number 1 and LAST NAME is number
2.

Note: Labels created in Screen Painter cannot exceed 12 characters.

Designing Screens With FIDEL

11-90 Information Builders

Defining a Box on the Screen
You can define a boxed area of the screen, have it flash, or underline it. Text within the
box assumes the attributes of the box, but fields within the box do not change their
appearance.

To define a box, place the cursor in the upper-left corner of the area you want to enclose
in a box, and press PF17. The following screen and menu appear:

...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+...

EMPLOYEE UPDATE

EMPLOYEE ID #: <111111111 LAST NAME: <22222222222222

DEPARTMENT: <1111111111> CURRENT SALARY: <22222222

BANK: <11111111111111111111

...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+...
Color (W,B,R,P,G,A,Y): Flash /Under/Inv/Off (F,U,I,O):
Please position the cursor at other end of box and hit the key again

Fill in the color and/or attributes that you desire, position the cursor at the lower-right
corner of the area you want to enclose in a box, and press PF17.

To delete the box, move the cursor to the upper-left corner of the box and type O in the
attribute area. Then move the cursor to the lower-right corner of the box and press PF17.
The letter O stands for OFF and deletes the box. Note that you must position the cursor
exactly at the corners.

The BOX feature of Screen Painter will not generate a proper box if the fields cross or
touch the boundary of the box itself. Boxes may not extend past column 77.

If you try to generate a box, but fail, the following message appears:

command.box
(FOC694) INVALID BOX REGION OR CURSOR POSITION DEFINED.

When this happens, press Enter to clear the message, move the cursor to the upper-left
corner, and press PF17 to start over.

If you press PF17 to begin a box and then decide not to define a box, press PF3 to cancel.

 Using the FOCUS Screen Painter

Maintaining Databases 11-91

Identifying Fields: ASSIGN
Until now, you have simply laid out text that describes the fields, designated a display
length (X’s) within the left caret (<), and possibly indicated non-conditional (>) fields.
Now you can assign field names and attributes for the fields. Enter the command ASSIGN
in the command zone or press PF10. The following is displayed on your ASSIGN screen:

...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+...

EMPLOYEE UPDATE

EMPLOYEE ID #: ********* LAST NAME: EEEEEEEEEEEEEEE

DEPARTMENT: EEEEEEEEEE CURRENT SALARY: EEEEEEEE

BANK: EEEEEEEEEEEEEEEEEEEE

...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+...
Field: Entry/Turn Disp (E,T,D): Col (W,B,R,P,G,A,Y):
Field Length: 9(D12.2M) High/Nodis/Inv (H,N,I): Label:

The first field following the descriptive text EMPLOYEE ID #: is highlighted and
replaced by asterisks. All other fields are displayed in low intensity with E’s denoting the
length of the fields. The cursor is positioned in the status entry area at the bottom of the
screen next to FIELD.

Now you can enter and assign field names and attributes for the field appearing in
asterisks. Fill in the appropriate values in the status entry area at the bottom of the screen.
To move from one status area to the next, press TAB. You may leave a blank where you
do not want to use a particular attribute.

FIELD:

Enter the field name for the first field. In this case, enter EMP_ID, which is the name
of the field in the Master File.

ENTRY/TURN/DISP (E,T,D):

You may designate the field as Entry, Turnaround, or Display by specifying E, T, or
D, respectively. The default is Entry. (See Data Entry, Display and Turnaround
Fields on page 11-14 for more information on Entry, Turnaround, and Display
fields.) You specify whether a field is conditional or non-conditional when you enter
the field on the PAINT screen (see Entering Data Onto the Screen on page 11-87).

COL (W,B,R,P,G,A,Y):

You may designate the field with a color by entering one of the color abbreviations in
the COL area. You may choose W, white; B, blue; R, red; P, pink; G, gray; A, aqua;
Y, yellow. If you do not wish to assign a color, leave this area blank.

Designing Screens With FIDEL

11-92 Information Builders

FIELD LENGTH: 9 (A9):

In MODIFY, if a Master File is active while you are assigning attributes, the
LENGTH status will contain two values: the first value is the number of X’s from the
PAINT screen, which is the display value; the value in parentheses is the format
value from the Master File. The display value must be equal to or less than the format
value.

If you want to change the display value on the screen, put a new number in the
FIELD LENGTH area or return to PAINT (PF3) and enter the correct number of
characters following the <.

HIGH/NODISP/INV (H,N,I):

You can choose highlight, nodisplay or inverse video as an attribute for the field by
filling in the appropriate abbreviation.

LABEL:

If you want to enter a label, simply enter its name. The colon and period are
automatically provided on the screen.

In the following example, the current field is LAST_NAME. It is designated a display
field. The remaining attributes are left blank. After you press Enter and move to the next
field, the asterisks turn to D’s (display) as did the EMP_ID field.

...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+...

EMPLOYEE UPDATE

EMPLOYEE ID #: DDDDDDDDD LAST NAME: ***************

DEPARTMENT: EEEEEEEEEE CURRENT SALARY: EEEEEEEEEEEEEEE

BANK: EEEEEEEEEEEEEEEEEEEE

...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+...
FIELD: last_name ENTRY/TURN/DISP (E,T,D): d COL (B,R,P,G,A,Y):
FIELD LENGTH: 15 (A,15) HIGH/NODISP/INV (H,N,I): LABEL:

To move to the next field, press PF8. You may assign a field name, prefix, color, attribute
or label to the remaining fields on the screen. If you need to move to a previous field, to
change something, press PF7. This will return you to the first field. From there you can
use the TAB key to move to the field that you need.

To move to a specific field directly from PAINT or from within ASSIGN, place the
cursor on that field and press PF9, ASGN-FLD.

 Using the FOCUS Screen Painter

Maintaining Databases 11-93

Viewing the Screen: FIDEL
From the PAINT or ASSIGN screen, you can view the exact FIDEL screen that you have
created. Press PF11 or type FIDEL in the command zone. As the following screen shows,
all entry fields are blank and ready to receive data; all turnaround fields contain T’s and
may be typed over; all display fields contain D’s and are protected:

...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+...

EMPLOYEE UPDATE

EMPLOYEE ID #: DDDDDDDDD LAST NAME: DDDDDDDDDDDDDDD

DEPARTMENT: TTTTTTTTTT CURRENT SALARY:

BANK:

FIDEL: Press PF3 or PF15 to return to the PAINT screen.

As indicated on the FIDEL screen, to return to the PAINT screen press PF3 or PF15.

Generating CRTFORMs Automatically
To generate CRTFORMs automatically (that is, without specifying individual fields) from
the FOCUS Screen Painter, use the asterisk (*) with CRTFORM in the PAINT screen
command zone. (See Generating Automatic CRTFORMs on page 11-47 for information
on CRTFORM * variations and syntax.)

The text description identifying field is the field name from the Master File. Key fields
automatically become entry fields and all other fields become turnaround fields. With
multi-segment data sources the CRTFORM * command ignores all segments following
the first cross-reference (segment type KU or KM) described in the Master File.

For example, to generate a CRTFORM containing all fields in the EMPLOYEE Master
File, do the following:

1. Type a MODIFY and a CRTFORM statement in a FOCEXEC.

2. Enter PAINT on the TED command line to invoke the Screen Painter.

3. Type CRTFORM * in the Screen Painter command zone.

Designing Screens With FIDEL

11-94 Information Builders

The following PAINT screen results:

...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+...

EMP_ID :<111111111> :

LAST_NAME :<111111111111111 : FIRST NAME :<2222222222:

HIRE_DATE :<111111 : DEPARTMENT

:<2222222222>:

CURR_SAL :<111111111111 : CUR_JOBCODE :<222 :

ED_HRS :<111111 :

BANK_NAME :<11111111111111111111 :

BANK_CODE :<111111 : BANK_ACCT :<222222222:

EFFECT_DATE :<111111 :

DAT_INC :<111111> :

PCT_INC :<111111 : SALARY

:<222222222222 :

JOBCODE :<111 :

TYPE :<1111> :

ADDRESS_LN1 :<11111111111111111111 :

ADDRESS_LN2 :<11111111111111111111 :

ADDRESS_LN3 :<11111111111111111111 :

ACCTNUMBER :<111111111 :

PAY_DATE :<111111> :

GROSS :<111111111111 :

DED_CODE :<1111> :

PF8=NEXT SCREEN PF7=PREVIOUS SCREEN PF1=OUT

...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+...

COMMAND: 1, 40

01=HELP 03=END 07=BACKWARD 08=FORWARD 09=ASGN-FLD 10=ASSIGN 11=FIDEL 17=BOX

CRTFORM * creates labels (that is, text describing each field) on the CRTFORM of up
to 12 characters. If the field name is shorter than 12 characters, the label is the field name.
If the field name exceeds 12 characters, a caret (>) in the 12th position indicates a longer
field name.

 Using the FOCUS Screen Painter

Maintaining Databases 11-95

Terminating Screen Painter
To return to TED from the PAINT screen, enter the command END in the command zone
or press PF3 until the prompt for TED appears. TED displays the lines as they have been
generated, beginning at the current line, which is ON MATCH CRTFORM:

" <.C. EMPLOYEE UPDATE <0X
" <.C. <0X

<.C."
" <.C. EMPLOYEE ID #: <D.EMP_ID/09 LAST NAME: <0X
<LAST_NAME/15 <.C."
" <.C. <0X

<.C."
" <.C. DEPARTMENT: <T.DEPARTMENT/10> CURRENT SALARY: <0X
<T.CURR_SAL/08 <.C."
" <.C. <0X

<.C."
" <.C. BANK <T.BANK_NAME/20 <.C."
" <.C. <0X
DATA
END

The generated code for the CRTFORM is in the file. Notice that each field is named and
has its length appended to it. Any attributes or labels requested during the ASSIGN
process are also present. If you want to change the layout, you can use the TED editor or
you can return to the PAINT and/or ASSIGN screen to make the changes.

You can add further MATCH logic to the FOCEXEC by using TED. For example:

MODIFY FILE EMPLOYEE
CRTFORM

"ENTER EMPLOYEE ID #: <EMP_ID"
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH CRTFORM

" EMPLOYEE UPDATE"
" "
" EMPLOYEE ID #: <D.EMP_ID/09 LAST NAME: <D.LAST_NAME/15"
" "
" DEPARTMENT: <:FIRST.H.T.DEPARTMENT/10> CURRENT SALARY: <0X
<.C.CURR_SAL/08"
" "
" BANK : <BANK_NAME/20"

ON MATCH UPDATE DEPARTMENT CURR_SAL
ON MATCH CONTINUE TO BANK_NAME
ON NOMATCH INCLUDE
ON MATCH REJECT

DATA
END

Designing Screens With FIDEL

11-96 Information Builders

If you want to add another CRTFORM screen at this point, make sure you are on the
current line, type the CRTFORM or -CRTFORM statement, and reenter PAINT to design
the next screen. Finally, you can exit the PAINT screen, return to TED, and add or change
further logic.

Alternatively, all of the logic of the request could have been entered first and then the
Screen Painter used to create all the FIDEL screens. To create the first screen, enter the
command PAINT or PAINT 1, and to create the second screen enter the command
PAINT 2. PAINT 2 locates the second CRTFORM statement starting from the current
line. You can continue with PAINT 3, etc., for all subsequent CRTFORM statements in
the procedure.

Maintaining Databases 12-1

CHAPTER 12

Creating and Rebuilding Databases

Topics:

• Creating New Databases: The
CREATE Command

• Rebuilding Databases: The REBUILD
Command

• Optimizing File Size: The REBUILD
Subcommand

• Changing Database Structure: The
REORG Subcommand

• Indexing Fields: The INDEX
Subcommand

• Creating an External Index: The
EXTERNAL INDEX Subcommand

• Checking Database Integrity: The
CHECK Subcommand

• Changing the Database Creation
Date and Time: The TIMESTAMP
Subcommand

• Converting Legacy Dates: The DATE
NEW Subcommand

• Migrating to a Fusion Database: The
MIGRATE Subcommand

• Creating a Fusion Multi-Dimensional
Index: The MDINDEX Subcommand

You can create a new database, or reinitialize an existing
database, using the CREATE command.

Once a database exists, you may find it necessary to reorganize
it in order to use disk space more effectively; to change the
contents, index, or structure of the database; to change legacy
date fields to smart date fields; or to convert a FOCUS database
to a Fusion database. You can do all of this and more using the
REBUILD command.

You can use the CREATE and REBUILD commands with
FOCUS and Fusion databases. You can also use CREATE to
create relational tables for which you have the appropriate
Interface.

Creating and Rebuilding Databases

12-2 Information Builders

Creating New Databases: The CREATE Command
You can create a new, empty FOCUS database for a Master File using the CREATE
command. You can also use CREATE to erase the data in an existing FOCUS database.

CREATE also works for Fusion databases and, with the appropriate Interface installed, a
relational table (such as a DB2 or Teradata table). For information, see the documentation
for the relevant FOCUS Interface.

Note that on CMS, CREATE is not the only way to create a new FOCUS or Fusion
database: you can also do so by running a MODIFY request that specifies the Master File
of the database you wish to create.

Syntax How to Use the CREATE Command
The syntax of the CREATE command is

CREATE FILE mastername

where:

mastername

Is the name of the Master File that describes the database.

After you enter the CREATE command, FOCUS displays

NEW FILE fileid ON date AT time

where:

fileid

Is the complete file ID of the new database. For CMS, it is filename filetype
filemode. For MVS, it is the ddname to which the source is allocated.

ON date AT time

Is the date and time at which the database was created or recreated.

When you issue the CREATE command, if the database already exists, FOCUS displays
this message:

(FOC441) WARNING. THE FILE EXISTS ALREADY. CREATE WILL WRITE OVER IT
REPLY :

To erase the database and create a new, empty database, enter Y. To cancel the command
and leave the database intact, enter END, QUIT, or N.

If you wish to give the database absolute File Integrity protection (discussed in the
Developing Applications manual), issue the following command prior to the CREATE
command:

SET SHADOW=ON

Note: IBM no longer guarantees that CMS file mode A6 ensures absolute file integrity.

 Creating New Databases: The CREATE Command

Maintaining Databases 12-3

Note the following when issuing CREATE on MVS:

• If you do not allocate the database prior to issuing the CREATE command, FOCUS
creates the database as temporary data set. To retain the database, copy it to a
permanent data set with the TSO COPY or DYNAM COPY command.

• The CREATE command pre-formats the primary space allocation and initializes the
database entry in the File Directory Table. A Master File must exist for the database
in a PDS allocated to ddname MASTER.

• Issuing MODIFY or Maintain commands against uninitialized databases (those for
which no CREATE was issued) results in a read error.

Example Recreating a FOCUS Database in CMS
To recreate the CAR database, issue the following command:

CREATE FILE CAR

FOCUS responds:

(FOC441) WARNING. THE FILE EXISTS ALREADY. CREATE WILL WRITE OVER IT
REPLY :

You would reply:

YES

FOCUS responds:

NEW FILE CAR FOCUS A1 ON 03/02/1999 AT 15.48.57

The CAR database still exists on disk, but it contains no records.

Example Creating a FOCUS Database in MVS
To create the ADDRESS database, allocate the database and then issue the CREATE
command:

DYNAM ALLOC F(ADDRESS) DA(ADDRESS.FOCUS) NEW SPACE(5,5) CYL
CREATE FILE ADDRESS

FOCUS responds:

NEW FILE ADDRESS ON 03/02/1999 AT 15.16.59

This creates the new FOCUS database ADDRESS.FOCUS allocated to ddname
ADDRESS.

Creating and Rebuilding Databases

12-4 Information Builders

Rebuilding Databases: The REBUILD Command
You can make a structural change to a FOCUS or Fusion database after it has been
created using the REBUILD command. Using REBUILD and one of its nine
subcommands REBUILD, REORG, INDEX, EXTERNAL INDEX, CHECK,
TIMESTAMP, DATE NEW, MDINDEX, and MIGRATE you can:

• Rebuild a disorganized database (REBUILD).

• Delete instances according to a set of screening conditions (REBUILD, or REORG).

• Redesign an existing database. This includes adding and removing segments, adding
and removing data fields, indexing different fields, changing the size of
alphanumeric data fields and more (REORG).

• Index up to seven new fields before rebuilding the database (INDEX).

• Create an external index database that facilitates indexed retrieval when joining or
locating records (EXTERNAL INDEX).

• Check the structural integrity of the database (CHECK). Check when the FOCUS
database was last changed (TIMESTAMP).

• Convert legacy date formats to smart date formats (DATE NEW).

• Build or modify a multi-dimensional index for Fusion databases (MDINDEX).

• Convert FOCUS Master Files and databases to Fusion Master Files and databases
(MIGRATE).

You can use the REBUILD facility:

• Interactively at the screen, by issuing the REBUILD command at the FOCUS
command prompt.

• As a batch procedure, by entering the REBUILD command, the desired
subcommand, and any responses to subcommand prompts on separate lines of a
procedure.

Before using the REBUILD facility, you should be aware of several required and
recommended prerequisites regarding file allocation, security authorization, and backup.

 Rebuilding Databases: The REBUILD Command

Maintaining Databases 12-5

Reference Before You Use REBUILD: Prerequisites
Before you use the REBUILD facility, there are several prerequisites that you need to
consider:

• Partitioning. You can only REBUILD one partition of a partitioned FOCUS data
source at one time. You must explicitly allocate the partition you want to REBUILD.
Alternatively, you can create separate Master Files for each partition. For
information about partitioned FOCUS data sources, see the Describing Data manual.

• Size. To REBUILD a FOCUS data source that is larger than one-gigabyte on MVS,
you must explicitly allocate ddname REBUILD to a temporary file with enough
space to contain the data; on VM you must have enough TEMP space available. It is
strongly recommended that you REBUILD/REORG to a new file, in sections, to
avoid the need to allocate large amounts of space to REBUILD. In the DUMP phase,
use selection criteria to dump a section of the database. In the LOAD phase, make
sure to add each new section after the first. To add to a database in MVS you must
issue the LOAD command with the following syntax:

LOAD NOCREATE

• Allocation. Usually, you do not have to allocate work space prior to using a
REBUILD command; FOCUS issues its own commands for this purpose. (To see if
this is true for your operating system, see the Overview and Operating Environments
manual.) However, adequate work space, such as temporary attached disk storage,
must be available. As a rule of thumb, have space 10 to 20% larger than the size of
the existing file available for the REBUILD and REORG options.

FOCUS always assigns the file name REBUILD to the work space. In the DUMP
phase of the REORG command, the allocation statement is displayed in case you
want to do the LOAD phase at a different time.

• Security authorization. If the database you are rebuilding is protected by a database
administrator, you must be authorized for read and write access in order to perform
any REBUILD activity. For more information on database security, see the
Describing Data manual.

• Backup. Although it is not a requirement, we recommend that you create a backup
copy of the original Master File and database before using any of the REBUILD
subcommands.

Creating and Rebuilding Databases

12-6 Information Builders

Procedure How to Use the REBUILD Facility Interactively
To invoke REBUILD interactively, issue

REBUILD

at the FOCUS command prompt. A menu of subcommands displays. Choose an option
by entering either the subcommand or its corresponding number. If you enter a number,
REBUILD displays the corresponding subcommand name. If you select the wrong
subcommand you can enter QUIT to exit.

Enter option
1. REBUILD (Optimize the database structure)
2. REORG (Alter the database structure)

3. INDEX (Build/modify the database index)
4. EXTERNAL INDEX (Build/modify an external index database)
5. CHECK (Check the database structure)

6. TIMESTAMP (Change the database timestamp)
7. DATE NEW (Convert old date formats to smart date formats)
8. MDINDEX (Build/modify a multidimensional index. FUSION DBs only)

9. MIGRATE (Convert FOCUS masters/DBs to FUSION)

The subsequent prompts depend on the subcommand you selected. Generally, you will
only need to give the name of the database and possibly one or two other items of
information.

 Rebuilding Databases: The REBUILD Command

Maintaining Databases 12-7

Controlling the Frequency of REBUILD Messages
When REBUILD processes a database, it displays status messages periodically (for
example, REFERENCE..AT SEGMENT 1000) to inform you of the progress of the
rebuild. The default display interval is every 1000 segment instances processed during
REBUILD’s database retrieval and load phases. The number of messages displayed is
determined by the number of segment instances in the FOCUS database being rebuilt,
divided by the display interval.

Under CMS, the number of messages displayed for larger FOCUS databases can be
problematic because of limited CMS spool space. You can control the number of
messages displayed by setting the display interval using the SET REBUILDMSG
command.

Syntax How to Control the Frequency of REBUILD Messages
REBUILD displays a message (REFERENCE..AT SEGMENT segnum) at periodic
intervals to inform you of its progress as it processes a database. You can control the
frequency with which REBUILD displays this message by issuing the command

SET REBUILDMSG = {n|1000}

where:

n

Is any integer from 1,000 to 99,999,999.

A setting of less than 1000:

• Generates a warning message that describes the valid values (0 or greater than 999).

• Keeps the current setting. The current setting will either be the default of 1000, or the
last valid integer greater than 999 that REBUILDMSG was set to. A setting of 0
disables the message.

Creating and Rebuilding Databases

12-8 Information Builders

Example Controlling the Display of REBUILD Messages
The following example shows a REBUILD CHECK function where REBUILDMSG has
been set to 4000, and the database contains 19,753 records.

Enter option
1. REBUILD (Optimize the database structure)

2. REORG (Alter the database structure)
3. INDEX (Build/modify the database index)
4. EXTERNAL INDEX (Build/modify an external index database)

5. CHECK (Check the database structure)
6. TIMESTAMP (Change the database timestamp)
7. DATE NEW (Convert old date formats to smart date formats)

8. MDINDEX (Build/modify a multidimensional index. FUSION DBs only)
9. MIGRATE (Convert FOCUS masters/DBs to FUSION)

CHECK

ENTER NAME OF FOCUS/FUSION FILE (FN FT FM)
...
STARTING..

REFERENCE..AT SEGMENT 4000
REFERENCE..AT SEGMENT 8000
REFERENCE..AT SEGMENT 12000

REFERENCE..AT SEGMENT 16000
NUMBER OF SEGMENTS RETRIEVED= 19753
CHECK COMPLETED...

Optimizing File Size: The REBUILD Subcommand
You use the REBUILD subcommand for one of two reasons. Primarily, you use it to
improve data access time and storage efficiency. After many deletions, the physical
structure of your data does not match the logical structure. REBUILD REBUILD dumps
data into a temporary work space and then reloads it, putting instances back in their
proper logical order. A second use of REBUILD REBUILD is to delete segment
instances according to a set of screening conditions.

Normally, you use the REBUILD subcommand as a way of maintaining a clean database.
To check if you need to rebuild your database, enter the ? FILE command (described in
Confirming Structural Integrity Using ? FILE and TABLEF on page 12-36):

? FILE filename

If your database is disorganized, the following message appears:

FILE APPEARS TO NEED THE -REBUILD-UTILITY
REORG PERCENT IS A MEASURE OF FILE DISORGANIZATION
0 PCT IS PERFECT -- 100 PCT IS BAD
REORG PERCENT x%

This message appears whenever the REORG PERCENT measure is more than 30%. The
REORG PERCENT measure indicates the degree to which the physical placement of data
in the database differs from its logical, or apparent, placement.

 Optimizing File Size: The REBUILD Subcommand

Maintaining Databases 12-9

The &FOCDISORG variable can be used immediately after the ? FILE command and
also shows the percentage of disorganization in a database. &FOCDISORG will show a
database’s percentage of disorganization even if it is below 30% (see the Developing
Applications manual).

Procedure How to Use the REBUILD Subcommand
The following steps describe how to use REBUILD’s REBUILD subcommand:

1. At the FOCUS command prompt enter:

REBUILD

FOCUS displays the prompt:

Enter option

1. REBUILD (Optimize the database structure)
2. REORG (Alter the database structure)
3. INDEX (Build/modify the database index)

4. EXTERNAL INDEX (Build/modify an external index database)
5. CHECK (Check the database structure)
6. TIMESTAMP (Change the database timestamp)

7. DATE NEW (Convert old date formats to smartdate formats)
8. MDINDEX (Build/modify a multidimensional index. FUSION DBs only)
9. MIGRATE (Convert FOCUS masters/DBs to FUSION)

2. Select the REBUILD option by entering:

REBUILD or 1

FOCUS prompts you to:

ENTER NAME OF FOCUS/FUSION FILE (FN FT FM)

3. Enter the file ID of the database to be rebuilt:

fileid

FOCUS prompts you:

ANY RECORD SELECTION TESTS? (YES/NO)

Creating and Rebuilding Databases

12-10 Information Builders

4. If you are simply rebuilding the database, enter:

NO

FOCUS will immediately begin the REBUILD procedure (go to step 5).

On the other hand, if you wish to place screening conditions on the REBUILD
subcommand, enter:

YES

FOCUS replies:

ENTER SELECTION TESTS (END LAST LINE WITH ,$)

The syntax for the selection test is the same as for the LOCATE subcommand of the
FOCUS FSCAN facility (see Chapter 14, Directly Editing FOCUS Databases With
FSCAN). Test relations of EQ, NE, LE, GE, LT, GT, CO (contains), and OM (omits)
are permitted. Tests are connected with the word AND, and lists of literals may be
connected with the OR operator. A comma followed by a dollar sign (,$) is required
to terminate any test.

For example, you might enter the following:

A EQ A1 OR A2 AND B LT 100 AND
C GT 400 AND D CO 'CUR',$

5. After the REBUILD procedure begins, you will see a screen similar to the following
when the procedure is complete

STARTING..
FILEDEF REBUILD DISK REBUILD FOCTEMP A4 (LRECL 00088 BLKSIZE 08804
NUMBER OF SEGMENTS RETRIEVED = n
NEW FILE fileid ON date AT time
NUMBER OF SEGMENTS INPUT = m
FILE HAS BEEN REBUILT

where:

n

Is the number of segments retrieved.

fileid

Is the file ID of the database being rebuilt.

date

Is the current date.

time

Is the current time.

m

Is the number of segments input into the rebuilt database.

 Optimizing File Size: The REBUILD Subcommand

Maintaining Databases 12-11

Example Using the REBUILD Subcommand in CMS
rebuild
Enter option
1. REBUILD (Optimize the database structure)

2. REORG (Alter the database structure)
3. INDEX (Build/modify the database index)
4. EXTERNAL INDEX (Build/modify an external index database)

5. CHECK (Check the database structure)
6. TIMESTAMP (Change the database timestamp)
7. DATE NEW (Convert old date formats to smartdate formats)

8. MDINDEX (Build/modify a multidimensional index. FUSION DBs only)
9. MIGRATE (Convert FOCUS masters/DBs to FUSION)

1

REBUILD
ENTER NAME OF FOCUS/FUSION FILE (FN FT FM)
employee focus a

ANY RECORD SELECTION TESTS? (YES/NO)
no
STARTING..

FILEDEF REBUILD DISK REBUILD FOCTEMP A4 (LRECL 00088 BLKSIZE 23940
RECFM VB)
NUMBER OF SEGMENTS RETRIEVED= 582

NEW FILE EMPLOYEEFOCUS A1 ON 05/10/1999 AT 15.49.27
NUMBER OF SEGMENTS INPUT= 582

FILE HAS BEEN REBUILT

Creating and Rebuilding Databases

12-12 Information Builders

Example Using the REBUILD Subcommand in MVS
rebuild

Enter option

1. REBUILD (Optimize the database structure)
2. REORG (Alter the database structure)
3. INDEX (Build/modify the database index)

4. EXTERNAL INDEX (Build/modify an external index database)
5. CHECK (Check the database structure)
6. TIMESTAMP (Change the database timestamp)

7. DATE NEW (Convert old date formats to smartdate formats)
8. MDINDEX (Build/modify a multidimensional index. FUSION DBs only)
9. MIGRATE (Convert FOCUS masters/DBs to FUSION)

rebuild

ENTER NAME OF FOCUS/FUSION FILE
> employee

ANY RECORD SELECTION TESTS? (YES/NO)
> no
STARTING..

DCB USED WITH FILE REBUILD IS DCB=(RECFM=VB,LRECL=00088,BLKSIZE=23940)
NUMBER OF SEGMENTS RETRIEVED= 576
NEW FILE EMPLOYEE ON 05/14/1999 AT 09.31.26

NUMBER OF SEGMENTS INPUT= 576
FILE HAS BEEN REBUILT

 Changing Database Structure: The REORG Subcommand

Maintaining Databases 12-13

Changing Database Structure: The REORG
Subcommand

The REORG subcommand enables you to make a variety of changes to the FOCUS
Master File after data has been entered in the FOCUS database. REBUILD REORG is a
two-step procedure that first dumps FOCUS data into a temporary work space and then
reloads it under a new Master File.

You can use REBUILD REORG to:

• Add new segments as descendants of existing segments.

• Remove segments.

• Add new data fields at the end of existing segments.

Note: The fields must be added after the key fields.

• Remove data fields.

• Change the order of non-key data fields within a segment; key fields may not be
changed.

• Promote fields from unique segments to parent segments.

• Demote fields from parent segments to descendant unique segments.

• Index different fields.

• Increase or decrease the size of an alphanumeric data field.

REBUILD REORG will not enable you to:

• Change field format types (alphanumeric to numeric and vice versa, changing
numeric format types).

• Change the value for SEGNAME attributes.

• Change the value for SEGTYPE attributes.

• Change field names that are indexed.

To accomplish these tasks you must use FIXFORM. See Chapter 10, Modifying Data
Sources With MODIFY, for more information.

Creating and Rebuilding Databases

12-14 Information Builders

Procedure How to Use the REORG Subcommand
The following steps describe how to use REBUILD’s REORG subcommand under CMS:

1. Before making any changes to the original Master File, make a copy of it with
another name.

2. Go into TED, or another editor, and make the desired edits to the copy of the Master
File.

3. At the FOCUS prompt, initiate REBUILD by entering:

REBUILD

FOCUS displays the prompt:

Enter option

1. REBUILD (Optimize the database structure)
2. REORG (Alter the database structure)
3. INDEX (Build/modify the database index)

4. EXTERNAL INDEX (Build/modify an external index database)
5. CHECK (Check the database structure)
6. TIMESTAMP (Change the database timestamp)

7. DATE NEW (Convert old date formats to smartdate formats)
8. MDINDEX (Build/modify a multidimensional index. FUSION DBs only)
9. MIGRATE (Convert FOCUS masters/DBs to FUSION)

4. Select the REORG option by entering:

REORG or 2

FOCUS responds:
Enter option
1. DUMP (DUMP contents of the database)
2. LOAD (LOAD data into the database)

If you want to mount a scratch tape for work space during the DUMP phase, you can
type the name of the tape after the word REORG.

5. Initiate the dump phase of the procedure by entering:

DUMP or 1

FOCUS displays:

DUMP
ENTER NAME OF FOCUS/FUSION FILE (FN FT FM)

6. You are prompted for the file ID of the FOCUS database you wish to dump from. Be
sure to use the name of the original Master File for this phase. Enter:

fileid

 Changing Database Structure: The REORG Subcommand

Maintaining Databases 12-15

7. You are asked if you want selection tests on your data. If you do, answer YES;
FOCUS will dump only data that meets your specifications (See the LOCATE
subcommand in Chapter 14, Directly Editing FOCUS Databases With FSCAN, for
selection test syntax). It is more likely, however, that you will want to dump the
entire database. To do so, answer:

NO

FOCUS displays the following as it dumps

STARTING..
FILEDEF REBUILD DISK REBUILD FOCTEMP A4(LRECL 00088 BLKSIZE 23940
NUMBER OF SEGMENTS RETRIEVED=n

where:

n

Is the number of segments that were successfully dumped.

You should now see the FOCUS prompt:

>

8. You are ready to begin the second phase of REBUILD REORG: LOAD. At the
FOCUS prompt, enter once again:

REBUILD

You will again see the prompt:

Enter option
1. REBUILD (Optimize the database structure)

2. REORG (Alter the database structure)
3. INDEX (Build/modify the database index)
4. EXTERNAL INDEX (Build/modify an external index database)

5. CHECK (Check the database structure)
6. TIMESTAMP (Change the database timestamp)
7. DATE NEW (Convert old date formats to smartdate formats)

8. MDINDEX (Build/modify a multidimensional index. FUSION DBs only)
9. MIGRATE (Convert FOCUS masters/DBs to FUSION)

9. Enter:

REORG or 2

You will see:
Enter option
1. DUMP (DUMP contents of the database)
2. LOAD (LOAD data into the database)

10. Specify the LOAD phase by entering:

LOAD or 2

FOCUS responds:

LOAD
ENTER NAME OF FOCUS/FUSION FILE (FN FT FM)

Creating and Rebuilding Databases

12-16 Information Builders

11. FOCUS is prompting you to enter the file ID of the database you are loading from
the temporary file, REBUILD (see step 7). In most cases, this will be the new
database name

fileid

where:

fileid

Is the name of the new database.

FOCUS responds

STARTING..
NEW FILE fileid ON date AT time
NUMBER OF SEGMENTS INPUT=n

where:

fileid

Is the file ID of the database that has received the data.

date

Is the current date.

time

Is the current time.

n

Is the number of segments successfully loaded.

At this stage, you have loaded the specified data from the original Master File into a new
database with the file ID you specified. It is important to remember that both the Master
File and database for the original Master File remain on your disk. You have three
choices:

• You may want to rename them to prevent possible confusion.

• You may rename the new Master and database to the original name. As a result, any
existing FOCEXECs referencing the original name will run against the new
database.

• You may delete the original Master and database after you verify the new Master and
database are correct and complete.

In CMS, if you enter the name of a database that already exists, (the original Master File)
FOCUS prompts you that you will be appending data to a preexisting database and asks if
you wish to continue.

In MVS, FOCUS doesn’t ask you if you want to append to an existing database, it just
creates the data source. If you want to append, when you issue the LOAD command, say
LOAD NOCREATE.

 Changing Database Structure: The REORG Subcommand

Maintaining Databases 12-17

Enter N to terminate REBUILD execution (do not enter NO). Enter Y to add the records
in the temporary REBUILD file to the original FOCUS database.

If duplicate field names occur in a Master File, REBUILD REORG is not supported.

In MVS, you must issue a CREATE for a new database being loaded.

Example Using the REORG Subcommand in CMS
First make a copy of the database:

cms copy employee focus a oldemp focus a

Now start the DUMP phase:

rebuild

Enter option
1. REBUILD (Optimize the database structure)

2. REORG (Alter the database structure)
3. INDEX (Build/modify the database index)
4. EXTERNAL INDEX (Build/modify an external index database)

5. CHECK (Check the database structure)
6. TIMESTAMP (Change the database timestamp)
7. DATE NEW (Convert old date formats to smartdate formats)

8. MDINDEX (Build/modify a multidimensional index. FUSION DBs only)
9. MIGRATE (Convert FOCUS masters/DBs to FUSION)

2

Enter option

1. DUMP (DUMP contents of the database)
2. LOAD (LOAD data into the database)

dump

DUMP

ENTER NAME OF FOCUS/FUSION FILE (FN FT FM)

employee focus a

ANY RECORD SELECTION TESTS? (YES/NO)

no
STARTING..

FILEDEF REBUILD DISK REBUILD FOCTEMP A4 (LRECL 00088 BLKSIZE 23940
RECFM VB)
NUMBER OF SEGMENTS RETRIEVED= 576

>

Creating and Rebuilding Databases

12-18 Information Builders

Now erase the employee database and start the LOAD phase:

cms erase employee focus a

rebuild

Enter option
1. REBUILD (Optimize the database structure)
2. REORG (Alter the database structure)

3. INDEX (Build/modify the database index)
4. EXTERNAL INDEX (Build/modify an external index database)
5. CHECK (Check the database structure)

6. TIMESTAMP (Change the database timestamp)
7. DATE NEW (Convert old date formats to smartdate formats)
8. MDINDEX (Build/modify a multidimensional index. FUSION DBs only)

9. MIGRATE (Convert FOCUS masters/DBs to FUSION)

reorg

Enter option
1. DUMP (DUMP contents of the database)

2. LOAD (LOAD data into the database)

load

LOAD
ENTER NAME OF FOCUS/FUSION FILE (FN FT FM)

employee focus a
STARTING..

NEW FILE EMPLOYEEFOCUS A ON 05/10/1999 AT 16.34.17
NUMBER OF SEGMENTS INPUT= 576
>

 Changing Database Structure: The REORG Subcommand

Maintaining Databases 12-19

Example Using the REORG Subcommand in MVS
First make a copy of the database:

dynam copy employee.focus oldemp.focus

Now start the DUMP phase:

rebuild

Enter option
1. REBUILD (Optimize the database structure)
2. REORG (Alter the database structure)

3. INDEX (Build/modify the database index)
4. EXTERNAL INDEX (Build/modify an external index database)
5. CHECK (Check the database structure)

6. TIMESTAMP (Change the database timestamp)
7. DATE NEW (Convert old date formats to smartdate formats)
8. MDINDEX (Build/modify a multidimensional index. FUSION DBs only)

9. MIGRATE (Convert FOCUS masters/DBs to FUSION)

reorg

Enter option

1. DUMP (DUMP contents of the database)
2. LOAD (LOAD data into the database)

dump

DUMP

ENTER NAME OF FOCUS/FUSION FILE
> employee

ANY RECORD SELECTION TESTS? (YES/NO)

> no
STARTING..
DCB USED WITH FILE REBUILD IS DCB=(RECFM=VB,LRECL=00088,BLKSIZE=23940)

NUMBER OF SEGMENTS RETRIEVED= 576

Creating and Rebuilding Databases

12-20 Information Builders

Now start the LOAD phase:
> > rebuild

Enter option
1. REBUILD (Optimize the database structure)
2. REORG (Alter the database structure)

3. INDEX (Build/modify the database index)
4. EXTERNAL INDEX (Build/modify an external index database)
5. CHECK (Check the database structure)

6. TIMESTAMP (Change the database timestamp)
7. DATE NEW (Convert old date formats to smartdate formats)
8. MDINDEX (Build/modify a multidimensional index. FUSION DBs only)

9. MIGRATE (Convert FOCUS masters/DBs to FUSION)
> reorg
Enter option

1. DUMP (DUMP contents of the database)
2. LOAD (LOAD data into the database)

LOAD

ENTER NAME OF FOCUS/FUSION FILE
> employee

STARTING..
NEW FILE EMPLOYEE ON 05/14/1999 AT 09.41.37

NUMBER OF SEGMENTS INPUT= 576

> >

 Indexing Fields: The INDEX Subcommand

Maintaining Databases 12-21

Indexing Fields: The INDEX Subcommand
To index a field after you have entered data into the database, use the INDEX
subcommand. You can index up to seven fields in addition to those previously specified
in the Master File or since the last REBUILD or CREATE command. The maximum
number of indexes that a FOCUS database can support is documented in the Describing
Data manual. The only requirement is that each field specified must be described with
the FIELDTYPE=I (or INDEX=I) attribute in the Master File. If you add more than
seven index fields, REBUILD INDEX yields the following diagnostic:

(FOC720) THE NUMBER OF INDEXES ADDED AFTER FILE CREATTION EXCEEDS 7

The INDEX option uses the operating system sort program. You must have disk space to
which you can write. To calculate the amount of space needed, add 8 to the length of the
index field in bytes and multiply the sum by twice the number of segment instances

(LENGTH + 8) * 2n

where:

n

Is the number of segment instances.

You may decide to wait until after loading data to add the FIELDTYPE=I attribute and
index the field. This is because the separate processes of loading data and indexing can be
faster than performing both processes at the same time when creating the database. This
is especially true for large databases.

Sort libraries and work space must be available. The REBUILD allocates default sort
work space in MVS, if you have not already. DDNAMEs SORTIN and SORTOUT must
be allocated prior to issuing a REBUILD INDEX.

In CMS, the following command identifies a specific sort product to FOCUS

SET SORTLIB = sortname

where:

sortname

Can be SYNCSORT, DFSORT, or VMSORT.

A CMS GLOBAL TXTLIB command must be issued prior to REBUILD INDEX to
identify the location of the sort program. If the GLOBAL TXTLIB command and the
SET SORTLIB commands are not issued FOCUS will:

• Look for the sort program in SORTLIB TXTLIB.

• Automatically issue a GLOBAL TXTLIB SORTLIB command.

If SORTLIB TXTLIB is not available to FOCUS at the time of REBUILD INDEX, the
following error occurs:

(FOC263) EXTERNAL FUNCTION OR LOAD MODULE NOT FOUND: SORT

Creating and Rebuilding Databases

12-22 Information Builders

Procedure How to Use the Index Subcommand
To use REORG INDEX, follow these steps:

1. Add the FIELDTYPE=I attribute to the field or fields you are indexing in the Master
File.

2. Begin the REBUILD utility by entering at the FOCUS prompt:

REBUILD

FOCUS responds:

Enter option
1. REBUILD (Optimize the database structure)
2. REORG (Alter the database structure)

3. INDEX (Build/modify the database index)
4. EXTERNAL INDEX (Build/modify an external index database)
5. CHECK (Check the database structure)

6. TIMESTAMP (Change the database timestamp)
7. DATE NEW (Convert old date formats to smartdate formats)
8. MDINDEX (Build/modify a multidimensional index. FUSION DBs only)

9. MIGRATE (Convert FOCUS masters/DBs to FUSION)

3. Invoke the INDEX option by entering:

INDEX or 3

FOCUS displays the following:

ENTER THE NAME OF THE MASTER

4. Enter the name of the Master File in which you will add the INDEX=I or
FIELDTYPE=I attribute:

mastername

FOCUS then prompts you to:

ENTER NAME OF FIELD TO INDEX (OR * FOR ALL)=

 Indexing Fields: The INDEX Subcommand

Maintaining Databases 12-23

5. If you are indexing only one field, enter the name of the field here. If you are
indexing all the fields that have FIELDTYPE=I, enter:

*

FOCUS begins the procedure and displays:

STARTING..

After completing the procedure, it displays

INDEX VALUES RETRIEVED= n
SORT COMPLETE .. RET CODE 0
INDEX INITIALIZED FOR: fieldname
INDEX VALUES INCLUDED= n

where:

fieldname

Is the name of a field that was indexed.

n

Is the number of instances for that field.

Creating and Rebuilding Databases

12-24 Information Builders

Example Using the INDEX Subcommand in CMS
The following example illustrates REBUILD INDEX:

cms global txtlib vmslib

set sortlib = vmsort
rebuild

Enter option

1. REBUILD (Optimize the database structure)
2. REORG (Alter the database structure)
3. INDEX (Build/modify the database index)

4. EXTERNAL INDEX (Build/modify an external index database)
5. CHECK (Check the database structure)
6. TIMESTAMP (Change the database timestamp)

7. DATE NEW (Convert old date formats to smartdate formats)
8. MDINDEX (Build/modify a multidimensional index. FUSION DBs only)
9. MIGRATE (Convert FOCUS masters/DBs to FUSION)

index

ENTER THE NAME OF THE MASTER

employee

ENTER NAME OF FIELD TO INDEX (OR * FOR ALL)

employee

ENTER NAME OF FIELD TO INDEX (OR * FOR ALL)

emp_id

STARTING..

(FOC319) WARNING. THE FIELD IS INDEXED AFTER THE FILE WAS CREATED:

EMP_ID

INDEX VALUES RETRIEVED= 12
SORT COMPLETE .. RET CODE 0

INDEX INITIALIZED FOR: EMP_ID
INDEX VALUES INCLUDED= 12
>

 Indexing Fields: The INDEX Subcommand

Maintaining Databases 12-25

Example Using the INDEX Subcommand in MVS
REBUILD INDEX uses an external sort. FOCUS searches for the system-installed sort
product using its normal search path.

> > tso alloc f(sortin) sp(1 1) tracks
> > tso alloc f(sortout) sp(1 1) tracks

> > tso alloc f(sysout) da(*)
> > rebuild

Enter option
1. REBUILD (Optimize the database structure)
2. REORG (Alter the database structure)

3. INDEX (Build/modify the database index)
4. EXTERNAL INDEX (Build/modify an external index database)
5. CHECK (Check the database structure)

6. TIMESTAMP (Change the database timestamp)
7. DATE NEW (Convert old date formats to smartdate formats)
8. MDINDEX (Build/modify a multidimensional index. FUSION DBs only)

9. MIGRATE (Convert FOCUS masters/DBs to FUSION)
> 3
INDEX

ENTER THE NAME OF THE MASTER
> employee
ENTER NAME OF FIELD TO INDEX (OR * FOR ALL)

> emp_id
STARTING..
(FOC319) WARNING. THE FIELD IS INDEXED AFTER THE FILE WAS CREATED:

EMP_ID
INDEX VALUES RETRIEVED= 12
SORT COMPLETE .. RET CODE 0

INDEX INITIALIZED FOR: EMP_ID
INDEX VALUES INCLUDED= 12

Creating and Rebuilding Databases

12-26 Information Builders

Creating an External Index: The EXTERNAL INDEX
Subcommand

Users with READ access to a local FOCUS database can create an index database that
facilitates indexed retrieval when joining or locating records. An external index is a
FOCUS database that contains index, field, and segment information for one or more
specified FOCUS or Fusion databases. The external index is independent of its associated
FOCUS or Fusion database. External indexes offer equivalent performance to permanent
indexes for retrieval and analysis operations. External indexes enable indexing on
concatenated FOCUS databases, indexing on real and defined fields, and indexing
selected records from WHERE/IF tests. External indexes are created as temporary data
sets unless pre-allocated to a permanent data set. They are not updated as the indexed
data changes.

You create an external index with the REBUILD command. Internally, REBUILD begins
a process which reads the databases that make up the index, gathers the index
information, and creates an index database containing all field, format, segment, and
location information.

You provide information about:

• Whether you want to add new records from a concatenated database to the index
database.

• The name of the external index database that you want to build.

• The name of the database from which the index information is obtained.

• The name of the field from which the index is to be created.

• Whether you want to position the index field within a particular segment.

• Any valid WHERE or IF record selection tests.

Sort libraries and work space must be available. The REBUILD allocates default sort
work space in MVS, if you have not already. DDNAMEs SORTIN and SORTOUT must
be allocated prior to issuing a REBUILD.

 Creating an External Index: The EXTERNAL INDEX Subcommand

Maintaining Databases 12-27

Procedure How to Use the EXTERNAL INDEX Subcommand
To create an external index from a concatenated database, follow these steps:

1. Assume that you have the following USE in effect:

USE CLEAR *
USE
EMPLOYEE
EMP2 AS EMPLOYEE
JOBFILE
EDUCFILE
END

Note that EMPLOYEE and EMP2 are concatenated and can be described by the
EMPLOYEE Master File.

2. At the FOCUS prompt, initiate REBUILD by entering:

REBUILD

FOCUS displays the prompt:

Enter option
1. REBUILD (Optimize the database structure)
2. REORG (Alter the database structure)

3. INDEX (Build/modify the database index)
4. EXTERNAL INDEX (Build/modify an external index database)
5. CHECK (Check the database structure)

6. TIMESTAMP (Change the database timestamp)
7. DATE NEW (Convert old date formats to smartdate formats)
8. MDINDEX (Build/modify a multidimensional index. FUSION DBs only)

9. MIGRATE (Convert FOCUS masters/DBs to FUSION)

3. Select the EXTERNAL INDEX option by entering:

EXTERNAL INDEX or 4

FOCUS responds:

NEW, OR ADD TO EXISTING INDEX DATABASE? (NEW/ADD)

4. For this example, assume you are creating a new index database and respond by
entering:

NEW

FOCUS displays:

ENTER FILENAME OF EXTERNAL INDEX

5. Enter the name of the external index database:

EMPIDX

FOCUS then prompts you to:

ENTER NAME OF FOCUS/FUSION FILE TO INDEX

Creating and Rebuilding Databases

12-28 Information Builders

6. Enter the name of the database from which the index records are obtained:

EMPLOYEE

FOCUS displays the following:

ENTER NAME OF FIELD TO INDEX

7. Enter the name of the field:

CURR_JOBCODE

FOCUS displays the following:

ASSOCIATE INDEX WITH A PARTICULAR FIELD (YES/NO)

8. For this example, enter:

NO

FOCUS displays the following:

ANY RECORD SELECTION TESTS: (YES/NO)

9. For this example, enter:

NO

If you responded YES, FOCUS would display the following:

ENTER IF OR WHERE TESTS (TERMINATE WITH 'END' ON A SEPARATE LINE)

Your record selection tests may span more than one line and must be terminated with
the END command.

10. At this point, the REBUILD process continues and displays a screen similar to the
following when it has completed:

EXTERNAL INDEX FILE: EMPIDX
FULL NAME: EMPIDX.FOCUS
VERSION : 0001
DATE/TIME OF LAST CHANGE: 05/13/99 15.40.46

EXTERNAL INDEX DATABASE PAGES: 00000001
DATABASE INDEXED: EMPLOYEE
FIELD NAME: EMPINFO.CURR
FIELD FORMAT: A3
SEGMENT NAME: EMPINFO
SEGMENT LOCATION: EMPLOYEE

EXTERNAL INDEX DATA COMPONENTS:

EMPLOYEE.FOCUS
EMP2.FOCUS

This output is from the ? FDT query, which is automatically performed at the end of
the REBUILD EXTERNAL INDEX process. This is done in order to validate the
contents of the index database.

 Creating an External Index: The EXTERNAL INDEX Subcommand

Maintaining Databases 12-29

Concatenating Index Databases
The external index feature enables indexed retrieval from concatenated FOCUS
databases. If you wish to concatenate databases that comprise the index, you must issue
the appropriate USE command prior to the REBUILD. The USE must include all
cross-referenced and LOCATION files. REBUILD EXTERNAL INDEX contains an add
function that enables you to append only new index records from a concatenated database
to the index database, eliminating the need to recreate the index database.

The original database from which the index was built may not be in the USE list when
you add index records. If it is, REBUILD EXTERNAL INDEX generates the following
error message:

(FOC999) WARNING. EXTERNAL INDEX COMPONENT REUSED: ddname

Positioning Indexed Fields
The external index feature is useful for positioning retrieval of indexed values for defined
fields within a particular segment in order to enhance retrieval performance. By entering
at a lower segment within the hierarchy, data retrieved for the indexed field is affected, as
the index field is associated with data outside its source segment. This enables the
creation of a relationship between the source and target segments. The source segment is
defined as the segment that contains the indexed field. The target segment is defined as
any segment above or below the source segment within its path.

If the target segment is not within the same path, the following error message is
generated:

(FOC974) EXTERNAL INDEX ERROR. INVALID TARGET SEGMENT

A defined field may not be positioned at a higher segment.

While the source segment can be a cross-referenced or location segment, the target
segment cannot be a cross-referenced segment. If an attempt is made to place the target
on a cross-referenced segment, the following error message is generated:

(FOC1000) INVALID USE OF CROSS REFERENCE FIELD

If you choose not to associate your index with a particular field, the source and target
segments will be the same.

Creating and Rebuilding Databases

12-30 Information Builders

Activating an External Index
After building an external index database, you must associate it with the databases from
which it was created. This is accomplished with the USE command. The syntax is the
same as when USE is issued prior to building the external index database, except the
WITH or INDEX option is required. The syntax is

USE [ADD|REPLACE]
database_name [AS mastername]

index_database_name [WITH|INDEX] mastername
.
.
.

END

where:

ADD

Appends one or more new databases to the present USE list. Without the ADD
option, the existing USE list is cleared and then replaced by the current list of USE
databases.

REPLACE

Replaces an existing database_name in the USE list.

database_name

Is the name of the database. In MVS, it is the ddname allocated to the database. In
CMS, it is the file name, file type, and file mode.
You must include a database name in the USE list for all cross-referenced and
LOCATION files that are specified in the Master File.

AS

Is used with a Master File name to concatenate databases.

mastername

Specifies the FOCUS Master File.

index_database_name

Is the name of the external index database. In MVS, this is the ddname allocated to
the index database. In CMS, this is the file ID (file name, file type, file mode) of the
index database.

WITH|INDEX

Is a keyword that creates the relationship between the component databases and the
index database. INDEX is a synonym for WITH.

 Creating an External Index: The EXTERNAL INDEX Subcommand

Maintaining Databases 12-31

Reference Special Considerations
Consider the following when working with external indexes:

• Up to eight indexes can be activated at one time in a USE list via the WITH
statement. More than eight indexes may be activated in a FOCUS session if you
issue the USE CLEAR command and issue new USE statements.

• Up to 256 concatenated files may be indexed. However, only eight indexes may be
activated at one time.

• Verification of the component files is now done for both the date and time stamp of
file creation. Files with the same date and time stamp that are copied will yield the
following messages:

(FOC995) ERROR. EXTERNAL INDEX DUPLICATE COMPONENT: fn
REBUILD ABORTED

• MODIFY may only use the external index with the FIND or LOOKUP functions.
The external index cannot be used as an entry point, such as:

MODIFY FILE filename.indexfld

• Indexes may not be created on field names longer than twelve characters.

• Text fields may not be used as indexed fields.

• The USE options NEW, READ, ON, LOCAL, and AS master ON userid READ are
not supported for the external index database.

• The external index database need not be allocated since CREATE FILE
automatically does a temporary allocation. If a permanent database is required then
an allocation for the index database ddname must be in place prior to the REBUILD
EXTERNAL INDEX command.

• SORTIN and SORTOUT, work files that the REBUILD EXTERNAL INDEX
process creates, must be allocated with adequate space. In order to estimate the space
needed, the following formula may be used:

bytes = (field_length + 20) * number_of_occurrences

Creating and Rebuilding Databases

12-32 Information Builders

Checking Database Integrity: The CHECK
Subcommand

It is rare for the structural integrity of a FOCUS database to be damaged. Structural
damage will occasionally occur, however, during a disk drive failure or if an incorrect
Master File is used. In this situation, the REBUILD CHECK command performs two
essential tasks:

• It checks pointers in the database.

• Should it encounter an error, it displays a message and attempts to branch around the
offending segment or instance.

Although CHECK is able to report on a good deal of data that would otherwise be lost, it
is important to remember that frequently backing up your FOCUS databases is the best
method of preventing data loss.

CHECK will occasionally fail to uncover structural damage. If you have reason to believe
that there is damage to your database, though CHECK reports otherwise, there is a
second method of checking database integrity. This method entails using the ? FILE and
TABLEF commands. Though this is not a REBUILD function, it is included at the end of
this section because of its relevancy to CHECK.

Procedure How to Use the CHECK Subcommand
To invoke REBUILD CHECK, follow these steps:

1. At the FOCUS prompt enter:

REBUILD

FOCUS prompts you:

Enter option

1. REBUILD (Optimize the database structure)
2. REORG (Alter the database structure)
3. INDEX (Build/modify the database index)

4. EXTERNAL INDEX (Build/modify an external index database)
5. CHECK (Check the database structure)
6. TIMESTAMP (Change the database timestamp)

7. DATE NEW (Convert old date formats to smartdate formats)
8. MDINDEX (Build/modify a multidimensional index. FUSION DBs only)
9. MIGRATE (Convert FOCUS masters/DBs to FUSION)

2. Select the CHECK option by entering:

CHECK or 5

FOCUS displays:

ENTER NAME OF FOCUS/FUSION FILE (FN FT FM)

 Checking Database Integrity: The CHECK Subcommand

Maintaining Databases 12-33

3. Enter the file ID of the database to be checked:

fileid

FOCUS immediately begins examining the database. If it does not find any errors,
you will see the following message

NUMBER OF SEGMENTS RETRIEVED= n
CHECK COMPLETED...

where:

n

Is the number of segment instances examined.

When FOCUS uncovers an error, it lets you know the type and location immediately
using the following syntax

nnnn SEGMENT segname type PTR pppp aaaa

where:

nnnn

Is the number assigned to the segment. This is the same number that appears
after invoking the CHECK command.

segname

Is the name of the segment.

type

Is the type of error:
DELETE indicates that the data has been deleted and should not have been
retrieved.
OFFPAGE indicates that the address of the data is not on a page owned by this
segment.
INVALID indicates that the type of linkage cannot be identified. It may be a
destroyed portion of the database.

pppp

Is the block of data that contains the error.

aaaa

Is the offset of the error in hexadecimal.

Creating and Rebuilding Databases

12-34 Information Builders

Example Using the Check Option (File Undamaged) in CMS
rebuild
Enter option
1. REBUILD (Optimize the database structure)

2. REORG (Alter the database structure)
3. INDEX (Build/modify the database index)
4. EXTERNAL INDEX (Build/modify an external index database)

5. CHECK (Check the database structure)
6. TIMESTAMP (Change the database timestamp)
7. DATE NEW (Convert old date formats to smartdate formats)

8. MDINDEX (Build/modify a multidimensional index. FUSION DBs only)
9. MIGRATE (Convert FOCUS masters/DBs to FUSION)

5

CHECK
ENTER NAME OF FOCUS/FUSION FILE (FN FT FM)
employee focus a

STARTING..
NUMBER OF SEGMENTS RETRIEVED= 576
CHECK COMPLETED...

Example Using the Check Option (File Damaged) in CMS
rebuild

Enter option
1. REBUILD (Optimize the database structure)
2. REORG (Alter the database structure)

3. INDEX (Build/modify the database index)
4. EXTERNAL INDEX (Build/modify an external index database)
5. CHECK (Check the database structure)

6. TIMESTAMP (Change the database timestamp)
7. DATE NEW (Convert old date formats to smartdate formats)
8. MDINDEX (Build/modify a multidimensional index. FUSION DBs only)

9. MIGRATE (Convert FOCUS masters/DBs to FUSION)
5
CHECK

ENTER NAME OF FOCUS/FUSION FILE (FN FT FM)
rbbroken focus i

STARTING..

230 SEGMENT FUNDTRAN INVALID PTR PAGE/ADDR 65536 272
242 SEGMENT FUNDTRAN INVALID PTR PAGE/ADDR 28416 20

358 SEGMENT FUNDTRAN INVALID PTR PAGE/ADDR 65536 272
404 SEGMENT FUNDTRAN OFFPAGE PTR PAGE/ADDR 196608 272
491 SEGMENT FUNDTRAN INVALID PTR PAGE/ADDR 62208 20

NUMBER OF SEGMENTS RETRIEVED= 574
CHECK COMPLETED...

 Checking Database Integrity: The CHECK Subcommand

Maintaining Databases 12-35

Example Using the Check Option (File Undamaged) in MVS
rebuild
Enter option
1. REBUILD (Optimize the database structure)

2. REORG (Alter the database structure)
3. INDEX (Build/modify the database index)
4. EXTERNAL INDEX (Build/modify an external index database)

5. CHECK (Check the database structure)
6. TIMESTAMP (Change the database timestamp)
7. DATE NEW (Convert old date formats to smartdate formats)

8. MDINDEX (Build/modify a multidimensional index. FUSION DBs only)
9. MIGRATE (Convert FOCUS masters/DBs to FUSION)

> 5

CHECK
ENTER NAME OF FOCUS/FUSION FILE
>

> employee
STARTING..
NUMBER OF SEGMENTS RETRIEVED= 576

CHECK COMPLETED...
> >

Creating and Rebuilding Databases

12-36 Information Builders

Confirming Structural Integrity Using ? FILE and TABLEF
When you believe that there is damage to your database, though REBUILD CHECK
reports there is not, use the ? FILE and TABLEF commands to compare the number of
segment instances reported after invoking each command. A disparity indicates a
structural problem.

Procedure How to Verify REBUILD CHECK Using ? FILE and TABLEF
1. At the FOCUS prompt, enter

? FILE filename

where:
filename

Is the name of the FOCUS database you are examining.

A report displays information on the status of the database. The number of instances
for each segment is listed in the ACTIVE COUNT column.

2. To ensure that the TABLEF command in the next step counts all segment instances,
including those in the short paths, issue the command:

SET ALL = ON

3. Enter

TABLEF FILE filename
COUNT field1 field2
END

where:

filename

Is the name of the Master File of the FOCUS database.

field1..

Are the names of fields in the database. Name one field from each segment; it
does not matter which field is named in the segment.

The report produced shows the number of field occurrences for those fields named
and thus the number of segment instances for each segment. These numbers should
match their respective segment instance numbers shown in the ? FILE command
(except for unique segments which the TABLEF command shows to have as many
instances are in the parent segment). If the numbers do not match, or if either the ?
FILE command or TABLEF command ends abnormally, the database is probably
damaged.

 Checking Database Integrity: The CHECK Subcommand

Maintaining Databases 12-37

Example Checking the Integrity of the EMPLOYEE Database
User input is shown in lowercase; computer responses are in uppercase:

STATUS OF FOCUS FILE: EMPLOYEEFOCUS A1 ON 05/13/1999 AT 16.17.32
ACTIVE DELETED DATE OF TIME OF LAST TRANS

SEGNAME COUNT COUNT LAST CHG LAST CHG NUMBER

EMPINFO 12 05/13/1999 16.17.22 448
FUNDTRAN 6 05/13/1999 16.17.22 12
PAYINFO 19 05/13/1999 16.17.22 19
ADDRESS 21 05/13/1999 16.17.22 21
SALINFO 70 05/13/1999 16.17.22 448
DEDUCT 448 05/13/1999 16.17.22 448
TOTAL SEGS 576
TOTAL CHAR 8984
TOTAL PAGES 8
LAST CHANGE 05/13/1999 16.17.22 448
>
set all = on
>
tablef file employee
count emp_id bank_name dat_inc type pay_date ded_code
end

PAGE 1

EMP_ID BANK_NAME DAT_INC TYPE PAY_DATE DED_CODE
COUNT COUNT COUNT COUNT COUNT COUNT
------ --------- ------- ----- -------- --------

12 12 19 21 70 448

NUMBER OF RECORDS IN TABLE= 488 LINES= 1

Note that the BANK_NAME count in the TABLEF report is different than the number of
FUNDTRAN instances reported by the ? FILE query. This is because FUNDTRAN is a
unique segment and is always considered present as an extension of its parent.

Creating and Rebuilding Databases

12-38 Information Builders

Changing the Database Creation Date and Time:
The TIMESTAMP Subcommand

FOCUS updates a FOCUS database’s date and time stamp each time the database is
changed by SCAN, FSCAN, CREATE, REBUILD, HLI, Maintain, or MODIFY. You
can update a database’s date and time stamp without making changes to the database by
using REBUILD’s TIMESTAMP subcommand.

Procedure How to Use the TIMESTAMP Subcommand
To invoke REBUILD TIMESTAMP, follow these steps:

1. At the FOCUS prompt enter:

REBUILD

FOCUS prompts you:

Enter option
1. REBUILD (Optimize the database structure)

2. REORG (Alter the database structure)
3. INDEX (Build/modify the database index)
4. EXTERNAL INDEX (Build/modify an external index database)

5. CHECK (Check the database structure)
6. TIMESTAMP (Change the database timestamp)
7. DATE NEW (Convert old date formats to smartdate formats)

8. MDINDEX (Build/modify a multidimensional index. FUSION DBs only)
9. MIGRATE (Convert FOCUS masters/DBs to FUSION)

2. Select the TIMESTAMP option by entering:

TIMESTAMP or 6

FOCUS displays:

ENTER NAME OF FOCUS/FUSION FILE (FN FT FM)

 Changing the Database Creation Date and Time: The TIMESTAMP Subcommand

Maintaining Databases 12-39

3. Enter the file ID of the database whose date and time stamp is to be updated:

fileid

FOCUS prompts you for the source of the date and time:

ENTER OPTION: TODAY'S DATE (T), SEARCH FILE FOR DATE (D) OR MMDDYY
HHMMSS

where:

TODAY'S DATE (T)

Updates the database’s date and time stamp with the current date and time.

SEARCH FILE FOR DATE (D)

Updates the database’s date and time stamp with the last date and time at which
the database was actually changed. FOCUS scans each page of the database and
applies the most recent date and time recorded for a page to the database. This is
the same as issuing the ? FILE query, and can be time consuming when the
database is very large. This option is used to keep an external index database
synchronized with its component database.

MMDDYY HHMMSS

Is a date and time that you specify, which REBUILD will use to update the
database’s date and time stamp. The date and time that you enter must have the
format mmddyy hhmmss or mmddyyyy hhmmss. There must be a space between
the date and the time. If you use two digits for the year, REBUILD uses the
values for DEFCENT and YRTHRESH to determine the century.

4. Enter your selection (T, D, or a specific date and time).

If you supply an invalid date or time, FOCUS displays the following message:

(FOC961) INVALID DATE INPUT IN REBUILD TIME:

Creating and Rebuilding Databases

12-40 Information Builders

Converting Legacy Dates: The DATE NEW
Subcommand

The REBUILD subcommand DATE NEW converts legacy dates (alphanumeric, integer,
and packed-decimal fields with date display options) to smart dates (fields in date format)
in your FOCUS databases. The utility uses update-in-place technology. It updates your
database and creates a new Master File, yet does not change the structure or size of the
database. You must back up the database before executing REBUILD with the DATE
NEW subcommand. We recommend that you run the utility against the copy and then
replace the original file with the updated backup.

Example Using the DATE NEW Subcommand in CMS
let clear *
set dfc = 19
set yrt = 50

use employee focus f
end
rebuild

Enter option
1. REBUILD (Optimize the database structure)
2. REORG (Alter the database structure)

3. INDEX (Build/modify the database index)
4. EXTERNAL INDEX (Build/modify an external index database)
5. CHECK (Check the database structure)

6. TIMESTAMP (Change the database timestamp)
7. DATE NEW (Convert old date formats to smartdate formats)
8. MDINDEX (Build/modify a multidimensional index. FUSION DBs only)

9. MIGRATE (Convert FOCUS masters/DBs to FUSION)

date new

ENTER THE NAME OF THE MASTER

employee

ENTER THE NEW NAME FOR THE MASTER (FN FT FM)
newemp master a

HAVE YOU BACKED UP THE DATABASE? (YES,NO)
yes

If you answer anything other than YES to HAVE YOU BACKED UP THE
DATABASE, REBUILD does not continue. Backing up your database is critical to this
process.

In CMS, the new Master File is written to the file that you specified in the prompt. The
default filetype is MASTER, and the default file mode is A.

 Converting Legacy Dates: The DATE NEW Subcommand

Maintaining Databases 12-41

Example Using the DATE NEW Subcommand in MVS
rebuild
Enter option
1. REBUILD (Optimize the database structure)

2. REORG (Alter the database structure)
3. INDEX (Build/modify the database index)
4. EXTERNAL INDEX (Build/modify an external index database)

5. CHECK (Check the database structure)
6. TIMESTAMP (Change the database timestamp)
7. DATE NEW (Convert old date formats to smartdate formats)

8. MDINDEX (Build/modify a multidimensional index. FUSION DBs only)
9. MIGRATE (Convert FOCUS masters/DBs to FUSION)

> date new

DATE NEW
ENTER THE NAME OF THE MASTER
> employee

ENTER THE NEW NAME FOR THE MASTER
> newemp
HAVE YOU BACKED UP THE DATABASE? (YES,NO)

> yes
> NUMBER OF ERRORS= 0
NUMBER OF SEGMENTS= 11 (REAL= 6 VIRTUAL= 5)

NUMBER OF FIELDS= 34 INDEXES= 1 FILES= 3
TOTAL LENGTH OF ALL FIELDS= 365

HOLDING...

.

.

.

NUMBER OF SEGMENTS CHANGED= 107

In MVS, the new Master File is written to ddname HOLDMAST. After the new Master
File is created, you should immediately copy it to a permanent data set.

For example:

DYNAM COPYDD HOLDMAST(NEWEMP) MASTER(NEWEMP)

Creating and Rebuilding Databases

12-42 Information Builders

How DATE NEW Converts Legacy Dates
REBUILD’s DATE NEW subcommand overwrites the original legacy date field (an
alphanumeric, integer, or packed-decimal field with date display options) with a smart
date (a field in date format). When the storage size of the legacy date exceeds four bytes
(the storage size of a smart date), a pad field is added to the database following the date
field:

• Formats A6YMD, A6MDY, and A6DMY are changed to formats YMD, MDY, and
DMY, respectively, and have a 2-byte pad field added to the Master File.

• The storage size of integer dates (I6YMD, I6MDY, for example) is 4 bytes, so no
pad field is added.

• All packed fields and A8 dates add a 4-byte pad field.

When a date is a key field (but not the last key for the segment), and it requires a pad
field, the number of keys in the SEGTYPE is increased by one for each date field that
requires padding.

DATE NEW only changes legacy dates to smart dates. The field’s format in the Master
File must be one of the following (month translation edit options T and TR may be
included in the format):
A8YYMD A8MDYY A8DMYY A6YMD A6MDY A6DMY A6YYM A6MYY A4YM A4MY

I8YYMD I8MDYY I8DMYY I6YMD I6MDY I6DMY I6YYM I6MYY I4YM I4MY

P8YYMD P8MDYY P8DMYY P6YMD P6MDY P6DMY P6YYM P6MYY P4YM P4MY

If you have a field that stores date values but does not have one of these formats, DATE
NEW does not change it. If you have a field with one of these formats that you do not
want changed, temporarily remove the date edit options from the format, run REBUILD
DATE NEW, and then restore the edit options to the format.

 Converting Legacy Dates: The DATE NEW Subcommand

Maintaining Databases 12-43

Reference DATE NEW Usage Notes

• The DBA password for the database must be issued prior to issuing REBUILD.

• The original Master File cannot be encrypted.

• All files must be available locally during the REBUILD, including LOCATION
files.

• The Master File cannot have GROUP fields.

• Some error numbers are available in &FOCERRNUM while all error numbers are
available in &&FOCREBUILD. Test both &&FOCREBUILD and &FOCERRNUM
for errors when writing procedures to rebuild your databases.

• To avoid any potential problems, clear all LETs and JOINs before issuing
REBUILD.

• DEFCENT/YRTHRESH are respected at the global, database, and field level.

• Correct all invalid date values in the database before executing REBUILD/DATE
NEW. The utility converts all invalid dates to zero. Invalid dates used as keys may
lead to duplicate keys in the database.

• Adequate workspace, such as temporary attached disk storage, must be available for
the temporary REBUILD file. As a rule of thumb, have space 10 to 20% larger than
the size of the existing file available.

• REBUILD/INDEX is performed automatically if an index exists.

• REBUILD/REBUILD is performed automatically after REBUILD/DATE NEW
when any key is a date.

• Sort libraries and work space must be available (as with REBUILD/INDEX). The
REBUILD allocates default sort work space in MVS, if you have not already.
DDNAMEs SORTIN and SORTOUT must be allocated prior to issuing a
REBUILD.

Creating and Rebuilding Databases

12-44 Information Builders

What DATE NEW Does Not Convert
REBUILD’s DATE NEW subcommand is a remediation tool for your FOCUS databases
and date fields only. It does not remediate:

• DEFINE attributes in the Master File.

• ACCEPT attributes in the Master File.

• DBA restrictions (for example, VALUE restrictions) in the Master File or central
security repository (DBAFILE).

• Cross-references to other date fields in this or other Master Files.

• Any references to date fields in your FOCEXEC.

Using the New Master File Created by DATE NEW
REBUILD’s DATE NEW subcommand creates an updated Master File that reflects the
changes made to the database. Once the database has been rebuilt, the original Master
File can no longer be used against the database. You must use the new Master File
created by the DATE NEW subcommand.

The following procedure is an example of REBUILD DATE NEW in CMS:

USE
EMPLOYEE FOCUS F
END

REBUILD
DATE NEW
EMPLOYEE
NEWEMP
YES

-RUN
-IF (&&FOCREBUILD NE 0)OR(&FOCERRNUM NE 0) GOTO error_case;

USE
EMPLOYEE FOCUS F AS NEWEMP
END

TABLE FILE NEWEMP
PRINT ...
END

 Converting Legacy Dates: The DATE NEW Subcommand

Maintaining Databases 12-45

The new Master File is an updated copy of the original Master File except that:

• The USAGE format for legacy date fields is updated to remove the format and
length. The date edit options are retained. For example, A6YMDTR becomes
YMDTR.

• Padding fields are added for those dates that need them:

FIELDNAME= ,ALIAS= ,FORMAT=An,$ PAD FIELD ADDED BY REBUILD

where n is the padding length (either 2 or 4). Note that the FIELDNAME and ALIAS
are blank.

• The SEGTYPE attribute is updated for segments that have remediated dates as keys
when the date requires padding and the date is not the last field in the key. The
SEGTYPE number will be increased by the number of pad fields added to the key.

• If the SEGTYPE is missing for any segment, the following line is added immediately
prior to the $ terminator for that segment:

SEGTYPE= segtype,$ OMITTED SEGTYPE ADDED BY REBUILD

where segtype is determined by FOCUS.

• If the USAGE attribute for any field—including date fields—is missing, the
following line is added, immediately prior to the $ terminator for that field:

USAGE= fmt,$ OMITTED USAGE ADDED BY REBUILD

where fmt is the format of the previous field in the Master File. FOCUS
automatically assigns the previous field’s format to any field coded without an
explicit USAGE= statement.

Creating and Rebuilding Databases

12-46 Information Builders

Example Sample Master File: Before and After Conversion by DATE NEW
Before Conversion After Conversion
FILE=filename FILE=filename
SEGNAME=segname, SEGTYPE=S2 SEGNAME=segname, SEGTYPE=S3
FIELD=KEY1,,USAGE=A6YMD,$ FIELD=KEY1,,USAGE= YMD,$

FIELD=, ,USAGE=A2,$ PAD FIELD ADDED BY
REBUILD

FIELD=KEY2,,USAGE=I6MDY,$ FIELD=KEY2,,USAGE= MDY,$
FIELD=FIELD3,,USAGE=A8YYMD,$ FIELD=FIELD3,,USAGE= YYMD,$

FIELD=, ,USAGE=A4,$ PAD FIELD ADDED BY
REBUILD

When REBUILD’s DATE NEW subcommand converts this Master File:

• Τhe SEGTYPE changes from an S2 to S3 to incorporate a 2-byte pad field.

• Format A6YMD changes to smart date format YMD.

• A 2-byte pad field with a blank field name and alias is added to the Master File.

• Format I6MDY changes to smart date format MDY (no padding needed).

• Format A8YYMD changes to smart date format YYMD.

• A 4-byte pad field with a blank field name and alias is added to the Master File.

 Migrating to a Fusion Database: The MIGRATE Subcommand

Maintaining Databases 12-47

Action Taken on a Date Field During REBUILD/DATE NEW
A new message has been added after a REBUILD DATE NEW has been performed:
NUMBER OF SEGMENTS CHANGED= n

where:

n

Is the number of segments that have been changed. For example, if there are 10
fields on one segment, and 20 records, then n is 20 (the number of records/segments
changed).

REBUILD/DATE NEW performs a REBUILD/REBUILD or REBUILD/INDEX
automatically when a date field is a key or a date field is indexed. The following chart
shows the action taken on a date field during the REBUILD/DATE NEW process.

Date Is a Key Index Result
No None NUMBER OF SEGMENTS CHANGED = n
No Yes REBUILD/INDEX on date field
Yes None REBUILD/REBUILD is performed.
Yes On any

field
REBUILD/REBUILD is performed.
REBUILD/INDEX is performed for the indexed
fields.

Migrating to a Fusion Database: The MIGRATE
Subcommand

The MIGRATE subcommand is useful for migrating selected portions or an entire
FOCUS database to Fusion. For a more detailed explanation of how to use this
subcommand consult the Fusion User’s Manual for EDA 4.2 and FOCUS 7.0.

Creating a Fusion Multi-Dimensional Index: The
MDINDEX Subcommand

The MDINDEX subcommand is used to create or maintain a multi-dimensional index
within a Fusion database. For a more detailed explanation of how to use this
subcommand consult the Fusion User’s Manual for EDA 4.2 and FOCUS 7.0.

Maintaining Databases 13-1

CHAPTER 13

Directly Editing FOCUS Databases With SCAN

Topics:

• Introduction

• The SCAN Session

• Subcommand Summary

SCAN is an interactive facility used for editing FOCUS
databases. With it, you can edit FOCUS databases using
subcommands similar to those used with text editors.

Directly Editing FOCUS Databases With SCAN

13-2 Information Builders

Introduction
SCAN permits you to:

• Add records to new or existing FOCUS databases.

• Change field values in FOCUS databases. With SCAN you can change the values in
KEY fields (not possible with MODIFY requests).

• Delete records from FOCUS databases.

• Search through FOCUS databases to locate instances of specified character strings or
values.

• Display complete record contents showing all field values, or subsets of the fields in
FOCUS databases.

• Move (relink) record segments and descendant segments from one parent record to
another in FOCUS databases with parent-descendant structures.

In a typical SCAN session you identify a database and locate specific logical records of
interest. Your knowledge of the database’s structure and contents allows you to navigate
from field to field. Within the database you can add or delete instances of data at the
segment level or change data values at the field level.

Note: On databases protected with DBA passwords, SCAN is only available to those who
have the proper password.

As you work in a SCAN session your changes are accumulated in a revised version of
your original database. When you decide to terminate your session, you can either save
the changed version of the database and overwrite the original version with it, or keep the
original version as it was when you started (if you have inadvertently changed the
database).

We recommend that you copy your databases before using SCAN as an additional safety
precaution; SCAN is a powerful tool for manipulating data, but keeps no log of the
change transactions. Using the FOCUS Absolute File Integrity feature (SET
SHADOW=ON) protects you against loss of data due to system crashes. (The SET
SHADOW command is only effective if it has been issued prior to database creation.
Consult the Describing Data manual for information about the Absolute File Integrity
feature. See the Developing Applications manual for more information about SET
parameters.)

 Introduction

Maintaining Databases 13-3

SCAN vs. MODIFY, MAINTAIN, HLI, and FSCAN
FOCUS includes four facilities for maintaining the data in FOCUS databases, and you
should be aware of their differences:

• The SCAN facility is useful for examining the data in FOCUS databases to review or
physically add, change, or delete data fields. Using it, an experienced user can
quickly adjust database contents to correct errors or update fields. To use it
effectively, however, you must know the database’s contents and structure.

Caution:

Because SCAN works directly on the data, there is the potential for corrupting it if
you are unsure of the nature of your database. For example, if a SCAN operation,
such as REPLACE, is issued against a database field such as SALES without
including adequate selection criteria, every legitimate SALES field in the database
might be overwritten by the replacement value and all would have to be reentered.

• MODIFY (see Chapter 10, Modifying Data Sources With MODIFY) is a transaction
processing environment that is used for maintaining FOCUS databases. MODIFY
requests can be developed with elaborate match logic and data validation, as well as
transaction logging. Such procedures, when fully tested, can be run by clerical
personnel with no threat to database security.

• MAINTAIN, Information Builders’ next generation data maintenance language,
surpasses MODIFY, adding the capability to write to FOCUS and non-FOCUS
databases while providing support for record-at-a-time and set-based processing.
MAINTAIN includes a new graphical user interface (the WINFORM Painter), and
greatly enhances facilities for defining FOCUS transaction handling and cooperative
processing operations. For more information about MAINTAIN, see Chapter 1,
Introduction to Maintain.

• Host Language Interface (HLI). This optional Interface allows you to read and edit
FOCUS databases from programs written in other programming languages
(FORTRAN and C). HLI is similar to SCAN in function. HLI is described in a
separate publication.

• The FSCAN facility (see Chapter 14, Directly Editing FOCUS Databases With
FSCAN) is similar to the SCAN facility: You can view, add, change, or delete data in
your FOCUS databases. The FSCAN facility provides full-screen capabilities such as
a prefix area and a command line. It also provides confirmation screens for DELETE
and QUIT operations. Unlike SCAN, the FSCAN facility displays parent instances
that lack descendant instances (short path records) and verifies acceptable test values
defined with ACCEPT parameters. MARK and MOVE subcommands are not
supported.

Directly Editing FOCUS Databases With SCAN

13-4 Information Builders

Current Position Concept
FOCUS databases are not sequential databases with one data record following another,
but consist of segments. Databases can have one or more segments. The segments may
have multiple instances of data (a Monthly Inventory segment holding a date and a
quantity might have six instances in June and twelve in December). The collected data
instances for a particular set of related segments constitute a logical record in the
database.

The concept of a current line pointer (common in most system editors) is replaced in
SCAN by the concept of a current position in the database, which represents a set of data
instances that form a connected path within the database. Instead of processing databases
line-by-line, SCAN achieves a somewhat similar effect by approaching FOCUS databases
in a top-down, left-to-right scanning sequence.

On entering SCAN, you are automatically positioned at the top of the database. You may
move through the entire database, or specify a subset of fields to be edited (called a Show
List or a subtree). Show Lists are created with the SHOW subcommand, and they contain
the fields you name (plus any intermediate segments required by FOCUS to navigate from
one specified field to another). An important concept when specifying Show Lists is that
the data in the selected records must meet all of the criteria specified in the SHOW
subcommand.

Show Lists and Short-Path Records
If some segments lack data, it means that some logical records have missing segment
instances. FOCUS discards short-path records when constructing the Show List.

Consider a subset of the CAR database. The subset has three segments with one field per
segment (COUNTRY, CAR, MODEL). If you name all three fields in a SHOW
subcommand, logical records that lack data in any of the specified fields are not selected
for the subtree (they are short-path records).

The following example illustrates this. To run this example, enter the following
commands as shown below. What you enter is in lowercase; computer responses are in
uppercase.

scan file car
SCAN:
show country car
locate country=france
COUNTRY=FRANCE CAR=PEUGEOT
input car=renault
SCAN:
type
COUNTRY=FRANCE CAR=RENAULT

 Introduction

Maintaining Databases 13-5

The example is as follows. The CAR database contains this data:

Country Car Model

 .

 .

 .

France Peugeot 504 4 DOOR

France Renault

Italy Alfa Romeo 2000 4 Door Berliner

Note that the French car Renault has no instances in the MODEL segment. A SCAN
operation that names all three segments drops the logical record for Renault because
Renault is missing instances in the MODEL segment, as follows.

show country car model
type 6

COUNTRY=ENGLAND CAR=JAGUAR MODEL=V12XKE AUTO
COUNTRY=ENGLAND CAR=JAGUAR MODEL=XJ12L AUTO
COUNTRY=ENGLAND CAR=JENSEN MODEL=INTERCEPTOR III
COUNTRY=ENGLAND CAR=TRIUMPH MODEL=TR7
COUNTRY=FRANCE CAR=PEUGEOT MODEL=504 4 DOOR
COUNTRY=ITALY CAR=ALFA ROMEO MODEL=2000 4 DOOR BERLINER

Note: In all of the examples in this section, user input is shown in lowercase; the FOCUS
response is in uppercase.

To locate short-path records that will be dropped from a Show List, make a test pass
through the database at the short-path level to see what is there before issuing the Show
List for the edit operation. (This is highly recommended when adding new records to a
database.) Thus, for the simple previous example, if you start by making a pass through
the database selecting all records containing values for COUNTRY and CAR, you will
find the Renault car.

show country car
type 6

COUNTRY=ENGLAND CAR=JAGUAR
COUNTRY=ENGLAND CAR=JENSEN
COUNTRY=ENGLAND CAR=TRIUMPH
COUNTRY=FRANCE CAR=PEUGEOT
COUNTRY=FRANCE CAR=RENAULT
COUNTRY=ITALY CAR=ALFA ROMEO

On the next pass, you add the MODEL segment and note that Renault disappears
(obviously due to the short-path). Knowing this, you refrain from adding a potential
duplicate record for France and make a mental note to make another pass to update the
short-path record with data for the MODEL segment.

Directly Editing FOCUS Databases With SCAN

13-6 Information Builders

What You See in SCAN Display Lines
When you display the contents of logical records in SCAN, each data field is identified on
the screen by either its alias or the field name, whichever is shorter (and non-blank).
Given the following Master File, the SCAN operation proceeds as shown below.

FILENAME=CAR,SUFFIX=FOC
SEGNAME=ORIGIN,SEGTYPE=S1

FIELDNAME=COUNTRY,COUNTRY,A10,FIELDTYPE=I,$
SEGNAME=COMP,SEGTYPE=S1,PARENT=ORIGIN

FIELDNAME=CAR,CARS,A16,$
SEGNAME=CARREC,SEGTYPE=S1,PARENT=COMP

FIELDNAME=MODEL,MODEL,A24,$
SEGNAME=BODY,SEGTYPE=S1,PARENT=CARREC

FIELDNAME=BODYTYPE,TYPE,A12,$
FIELDNAME=SEATS,SEAT,I3,$
FIELDNAME=DEALER_COST,DCOST,D7,$
FIELDNAME=RETAIL_COST,RCOST,D7,$
FIELDNAME=SALES,UNITS,I6,$

SEGNAME=SPECS,SEGTYPE=U,PARENT=BODY
FIELDNAME=LENGTH,LEN,D5,$
FIELDNAME=WIDTH,WIDTH,D5,$
FIELDNAME=HEIGHT,HEIGHT,D5,$
FIELDNAME=WEIGHT,WEIGHT,D6,$
FIELDNAME=WHEELBASE,BASE,D6.1,$
FIELDNAME=FUEL_CAP,FUEL,D6.1,$
FIELDNAME=BHP,POWER,D6,$
FIELDNAME=RPM,RPM,I5,$
FIELDNAME=MPG,MILES,D6,$
FIELDNAME=ACCEL,SECONDS,D6,$

SEGNAME=WARENT,SEGTYPE=S1,PARENT=COMP
FIELDNAME=WARRANTY,WARR,A40,$

SEGNAME=EQUIP,SEGTYPE=S1,PARENT=COMP
FIELDNAME=STANDARD,EQUIP,A40,$

scan file car
SCAN:
next
COUNTRY=ENGLAND CAR=JAGUAR MODEL=V12X15E AUTO
TYPE=CONVERTIBLE SEAT= 4 DCOST= 7427 RCOST= 8878 UNITS= 0
LEN= 190 WIDTH= 66 HEIGHT= 48 WEIGHT= 3435 BASE= 105.0
FUEL= 18.0 BHP= 241 RPM= 5750 MPG= 16 ACCEL= 7

Note: SCAN uses ALIAS names instead of field names when aliases are shorter. Use
DISPLAY (or CRTFORM) to display complete field names. Fields WARRANTY and
STANDARD are not shown, because they do not lie on the path.

 Introduction

Maintaining Databases 13-7

Ways to Move Through Databases
In SCAN sessions you can move from one segment instance directly to the next, jump
from a parent segment instance to the first descendant field, or jump directly to a specific
record of interest based on selection criteria specified in your request (Subcommand
Summary on page 13-18 describes each of these techniques).

The examples in this section use the CAR database, mentioned in What You See in SCAN
Display Lines on page 13-6. Enter SCAN, and then the subcommand:

SHOW COUNTRY CAR MODEL

This restricts the Show List to the first three segments of the database, as shown by this
diagram:

COUNTRY

 CAR

 MODEL

Directly Editing FOCUS Databases With SCAN

13-8 Information Builders

The following schematic diagram shows how the data used in the examples is placed
within the FOCUS structure:

2000 4
DOOR

ITALY

ALPHA
ROMEO

2000 GT
VELOCE

2000 SPIDER
VELOCE

DORA 2
DOOR

B210 2
DOOR AUTO

MASERATI DATSUN

JAPAN

There are six subcommands you may use to change the current position:
• TOP

• LOCATE

• TLOCATE

• NEXT

• JUMP

• UP

 Introduction

Maintaining Databases 13-9

TOP
TOP moves the current position to the top of the database.

LOCATE
LOCATE moves the current position to the next record that fulfills certain conditions.
Often, you use LOCATE to find a record with a certain value. For example, if your
current position is near the top of the database and you enter the subcommand

LOCATE CAR=MASERATI

the following record appears:

COUNTRY = ITALY CAR= MASERATI
MODEL = DORA 2 DOOR

If you enter this subcommand again, SCAN searches for the next MASERATI record.
Since there is only one MASERATI record, it moves the current position to the end of the
database.

TLOCATE
TLOCATE moves the current position to the first record in the database that fulfills
certain conditions. Often, you use TLOCATE to find a record with a certain value. For
example, if you enter the subcommand

TLOCATE CAR=ALFA ROMEO

the following record appears regardless of where the current position was in the database:

ITALY ALFA ROMEO 2000 GT VELOCE

Directly Editing FOCUS Databases With SCAN

13-10 Information Builders

NEXT
The NEXT subcommand advances the current position to the next record. That is, it
advances the current position one segment instance in the lowest segment in the Show
List.

Suppose you entered SCAN to edit the CAR database and displayed the first record
belonging to Italy by entering:

TLOCATE COUNTRY=ITALY

SCAN displays the following record:

ITALY ALFA ROMEO 2000 GT VELOCE

You then enter the subcommand NEXT:

NEXT

The lowest segment in this example is the MODEL segment. The MODEL instance in the
record (2000 GT VELOCE) is the first of three instances descended from the car ALFA
ROMEO. The NEXT subcommand moves the current position to the next instance in this
chain, displaying the record:

ITALY ALFA ROMEO 2000 SPIDER VELOCE

If you enter the NEXT subcommand again, SCAN displays:

ITALY ALFA ROMEO 2000 4 DOOR BERLINA

Now you are at the end of the MODEL under the instance ALFA ROMEO. If you enter
the NEXT subcommand again, it moves the current position to the first MODEL chain
under the next instance in the segment CAR. The next CAR instance is MASERATI. The
record displayed is:

ITALY MASERATI DORA 2 DOOR

MASERATI has only one child instance, and it is the last car under the instance ITALY.
If you enter the NEXT subcommand again, it moves the current position to the first
MODEL chain under the next instance in the segment COUNTRY. The record displayed
is:

JAPAN DATSUN B210 2 DOOR AUTO

 Introduction

Maintaining Databases 13-11

JUMP
The JUMP subcommand moves the current position to the next segment instance in the
segment you specify. The segment must have at least one field specified in the Show List.

Move the current position to the first record in the ITALY chain by entering:

TLOCATE COUNTRY=ITALY

This displays the record:

ITALY ALFA ROMEO 2000 GT VELOCE

Move the current position to the next car in the ITALY chain by entering:

JUMP CAR

Note: CAR is a field and not a segment name.

The following record appears:

ITALY MASERATI DORA 2 DOOR

Now return to the first record in the ITALY chain:

TLOCATE COUNTRY=ITALY

Jump to the next country in the database by entering:

JUMP COUNTRY

The following record appears:

JAPAN DATSUN B210 2 DOOR AUTO

UP
The UP subcommand moves the current position to the first instance in the lowest
segment in the Show List descended from the segment that you specify.

Move the current position to the model 2000 SPIDER VELOCE:

TLOCATE MODEL=2000 SPIDER VELOCE

This displays the following record:

ITALY ALFA ROMEO SPIDER VELOCE

Move the current position to the first ALFA ROMEO model by entering:

UP CAR

The following records appears:

ITALY ALFA ROMEO 2000 GT VELOCE

Directly Editing FOCUS Databases With SCAN

13-12 Information Builders

Move the current position to the Maserati car:

LOCATE CAR=MASERATI

Move the current position to the first car in the ITALY chain by entering:

UP COUNTRY

The following record appears:

ITALY ALFA ROMEO 2000 GT VELOCE

The SCAN Session
SCAN sessions consist of some or all of the following activities:

• Entering the SCAN environment.

• Locating records of interest.

• Displaying fields.

• Adding segments.

• Moving segments.

• Changing records.

• Deleting fields and segments.

• Saving the changes.

• Ending the session.

Additionally, within the session, it is also possible to issue a repeat subcommand and
preset commands.

Entering SCAN Mode
From within FOCUS, enter SCAN mode by typing SCAN followed by FILE and the
name of the FOCUS database to be scanned:

SCAN FILE filename

 The SCAN Session

Maintaining Databases 13-13

Locating Records
After entering SCAN, your current position is at the top of the database named. It was
mentioned in the introduction to this chapter that there are various ways to move through
the database. Some SCAN subcommands require that you specify particular data fields
for the operation. LOCATE, for example, requires that you supply the data value for the
target field. Within SCAN you can identify a data field in one of three ways:

• By its full field name as it appears in the Master File.

• By its alias.

• By the shortest unique truncation of either the field name or the alias.

See Subcommand Summary on page 13-18 for complete information about the syntax of
the SCAN subcommands mentioned in this section.

You may create a subset of your database (containing only fields of interest) by issuing
the SHOW subcommand. SHOW automatically returns to the top of the database and
creates a subtree, called a Show List, containing all of the segment data instances that
meet all of your selection criteria.

SCAN offers a variety of techniques for moving from record to record or field to field.
Specifically, these include the following subcommands:

• The NEXT subcommand advances the current position to the next logical record, or
moves the current position forward a specified number of records.

• The JUMP subcommand moves the current position to the logical record with the
next n occurrences of the field named (the default is one).

• The LOCATE subcommand moves the current position to the next logical record
containing the field value specified in your entry (the search begins at the current
position).

• The TLOCATE subcommand starts at the top of the database and establishes the
current position at the first logical record containing the field value specified.

• The TOP subcommand moves the current position to the first logical record in the
database.

• The UP subcommand resets the current position in the logical record to the first
descendant of the field you specify.

• The BACK subcommand resets the current position at a logical record previously
marked with the MARK subcommand.

For details about each of these commands, please refer to Subcommand Summary on page
13-18.

Directly Editing FOCUS Databases With SCAN

13-14 Information Builders

Displaying Field Names and Field Contents
To view up to 64 fields, specify the SHOW subcommand. The SHOW subcommand does
not list records lacking instances (short-path records).

To review field contents, use either the DISPLAY or TYPE subcommand.

TYPE Subcommand
At any point in a SCAN session, you may use the TYPE subcommand to display field
names in a segment path (or those named in the SHOW subcommand, if one is in effect)
and their contents for the current logical record (and/or several consecutive records).

DISPLAY Subcommand
DISPLAY produces a vertical list showing the full field names followed by the data
values for the current logical record. DISPLAY allows you to select the fields to be
displayed, and may include fields residing in segments picked up for the subtree but not
actually named in the SHOW subcommand. This displays only the fields named in the
SHOW subcommand if one is in effect.

Suppressing the Display
When moving through a database in SCAN with NEXT, JUMP, LOCATE, or
TLOCATE, you automatically get a display of the contents of the next record unless you
suppress the display. You do this by putting a period after the move keyword. Therefore,

NEXT.

retrieves, but does not display, the next record.

It is usually preferable to suppress the displays when performing global operations that
affect many records.

 The SCAN Session

Maintaining Databases 13-15

Adding Segment Instances
The INPUT subcommand is used to add new segment instances to the database. New
segment instances are inserted into the database in the correct sort sequence, as long as
you have avoided adding duplicate instances to existing segments. Duplicate instances
may not be found if they lack field values (short-path records). See the INPUT
subcommand in Subcommand Summary on page 13-18 for a description of the syntax and
an example of its use.

Moving Segment Instances
Use the MOVE subcommand to move a segment instance and all of its descendants from
one parent segment to another. The operation requires several steps:

1. Locate the record to be moved and mark it with the MARK statement (see MARK
subcommand in Subcommand Summary on page 13-18).

2. Move the current position to the new parent record (see LOCATE and TLOCATE
subcommands in Subcommand Summary on page 13-18).

3. Issue the MOVE subcommand indicating the field name that identifies the segment
instance to be moved.

The MOVE subcommand summary in Subcommand Summary on page 13-18 describes
how the segment is integrated into the database structure.

Changing Field Contents
CHANGE and REPLACE alter the contents of data fields.

Use CHANGE to substitute one character string for another, and REPLACE to substitute
a new value for a field. CHANGE is issued to change alphanumeric strings within fields.
REPLACE is used with either alphanumeric or numeric fields to replace the entire
contents of the field(s).

Both operations can be applied to one or more instances from the current position to the
end of the database. To change all instances in the database, use TLOCATE to find the
first record before entering the CHANGE or REPLACE subcommand.

See Subcommand Summary on page 13-18 for additional information about CHANGE
and REPLACE.

Directly Editing FOCUS Databases With SCAN

13-16 Information Builders

Deleting Fields and Segments
DELETE removes one or more instances of data in one or more segments containing the
named field (and all descendant segment instances).

Saving Changes Made in SCAN Sessions
The SAVE subcommand writes all pending changes to the FOCUS database and leaves
you in SCAN mode. Most installations recommend that SAVE operations be performed
periodically to protect against accidental loss of update results due to communications
failure or other processing interruptions.

Ending the Session
There are two options for ending the SCAN session: You can exit with or without saving
your changes as described in the following subsections.

Exiting and Saving the Changes
To end the SCAN session, write the changes to the FOCUS database, and return to the
FOCUS command level; use either the FILE subcommand or its synonym, END.

Exiting Without Saving the Changes
To leave SCAN and return to FOCUS without writing pending changes to the FOCUS
database, use the QUIT subcommand.

Caution:

The use of this subcommand does not guarantee that all changes to the database will be
ignored. During SCAN execution, large buffer areas hold database records. Depending
on the operating system in use and the size of these buffer areas, it is possible that a
large SCAN change file could threaten the capacity of the temporary buffer storage, in
which case the operating system might write the pending changes to the database to
clear the buffer. This would update your database.

 The SCAN Session

Maintaining Databases 13-17

Auxiliary SCAN Functions
SCAN provides two convenience features: the first displays or executes a previous
command; the second substitutes a one-character value for a complete SCAN
subcommand.

Displaying a Previous SCAN Subcommand
To display the last subcommand issued, use the ? subcommand.

To reexecute the previous subcommand, use the AGAIN subcommand. This is
particularly useful when finding multiple instances of a field value with LOCATE.

Preset X or Y to Execute a SCAN Subcommand
To set X (or Y) equal to another SCAN subcommand, type the syntax

{X|Y} subcommand

where:

subcommand

Is a SCAN subcommand.

This gives you an alias for a long, frequently-used subcommand. For example, to
substitute Y for a DISPLAY subcommand showing the first and last names of the
employee at the current position in the database, type:

Y DISPLAY FN LN

The next time you type Y and press the Enter key, this DISPLAY subcommand is issued.

Directly Editing FOCUS Databases With SCAN

13-18 Information Builders

Subcommand Summary
SCAN subcommands can be entered as unique truncations or in full. In the summary
below, the capital letters represent the shortest unique truncations. The pages following
this summary contain descriptions of the subcommands in alphabetic order, and provide
additional information and examples.

Subcommand Function

Again Repeat the last subcommand.

BAck Go back to a previously marked logical record (see MArk,
below).

CHAnge Change a character string.

CRTform Display a list of fields on a CRTFORM.

DElete Delete one or more instances of the segment containing the
named field (and all descendant segments).

DIsplay Display the data values for the fields specified.

End Terminate the SCAN session and write the changes to the
database.

File Terminate the SCAN session and write the changes to the
database.

Input Enter a new record.

Jump Jump to the next or nth occurrence of field.

Locate Search for records that match the selection criteria.

MArk Mark a record so that you can return to it later in the SCAN
session.

MOve Relink the segment to another parent.

Next Move n records ahead.

Quit End the session and drop the pending changes.

Replace Replace a field value in one or more instances.

SAve Save all pending changes and continue.

SHow Select a subset of the fields in the database (a logical view—
Show List).

 Subcommand Summary

Maintaining Databases 13-19

Subcommand Function

TLocate Go to top of database, then locate record(s) meeting the
selection criteria.

TOp Reset current position at first logical record in the database.

TYpe Type record(s).

UP Move current position to parent segment’s first descendant.

X Used for command substitution.

Y Same as X above.

? Print the previous subcommand.

 Subcommand Summary

13-20 Info rmation Builders

Command: AGAIN

Syntax: Again

Function: Tells the system to repeat the previous valid command.

 This is particularly useful after LOCATE, as it continues the
search for the next instance of the target value.

Example: show emp_id last_name salary dpt
locate dpt=mis
EID=112847612 LN=SMITH DPT=MIS SAL= 13200.00
again
EID=117593129 LN=JONES DPT=MIS SAL= 18480.00

 LOCATE retrieves the first record following the current position
that matches the test condition. AGAIN repeats the process, as if
the LOCATE statement had been retyped, and the next record
that meets the test condition is displayed.

 The fields displayed above are those named in the previous
SHOW subcommand. The DPT (Department) field is available in
the Show List because it resides in the same segment as the
EMP_ID and LAST_NAME fields.

Similar Commands: ?

 Within SCAN, entering a question mark (?) causes a display of
the last subcommand to be executed. If you wish to execute it
again, reenter the command or use AGAIN.

 Subcommand Summary

Maintaining Databases 13-21

Command: BACK

Syntax: BAck

Function: The BACK subcommand works in conjunction with the previous
MARK subcommand (only one MARK is in effect at a time).
When BACK is issued, control returns to the previous marked
record (see MARK subcommand).

Example: show emp_id last_name first_name salary
next
EID=071382660 LN=STEVENS FN=ALFRED SAL= 11000.00

jump emp_id 2
EID=117593129 LN=JONES FN=DIANE SAL= 18480.00

mark
next 2
EID=119265415 LN=SMITH FN=RICHARD SAL= 9500.00

back
EID=117593129 LN=JONES FN=DIANE SAL= 18480.00

Similar Commands: None.

Directly Editing FOCUS Databases With SCAN

13-22 Information Builders

Command: CHANGE

Syntax: CHAnge field=/oldstring/newstring/,$ [*|n]

 A period (.), colon (:), or a slash (/) may be used as the string
delimiter and must be the first character after the equal sign =.
The same character must then be used to terminate the old and
new strings.

 The replication factor n (where n is number of strings to be
replaced) has a default value of 1. When more than one string is
to be changed, indicate the replication factor as a single digit
following the line terminator characters ,$. To replace all
instances of the string in the remainder of the database, use the
asterisk (*). To replace all instances of the string in the database,
issue TOP before the CHANGE. This resets the current position
at the first logical record.

Function: CHANGE is used to replace specified alphanumeric character
strings with new strings in data fields. Changes may be made
sequentially to every record in the database or to all records that
match a LOCATE criteria.

 Note: CHANGE cannot be used on numeric fields with formats
I,P,F, and D.

Example: Single-Field Change

 To change a single field, first locate it then make the change.
 show emp_id last_name first_name

tlocate ln=stevens
EID=071382660 LN=STEVENS FN=ALFRED
change ln=/stevens/stephens/,$
EID=071382660 LN=STEPHENS FN=ALFRED

 Sequential Changes

 To change all occurrences of the old string to the new string
throughout the database starting at the current position, use the
replication factor, *.

 Subcommand Summary

Maintaining Databases 13-23

 show last_name department salary

locate dpt=mis
LN=SMITH DPT=MIS SAL= 13200.00
change dpt=/mis/mis dept/,$ *
LN=SMITH DPT=MIS DEPT SAL= 13200.00
LN=JONES DPT=MIS DEPT SAL= 18480.00
LN=JONES DPT=MIS DEPT SAL= 17750.00
LN=MCCOY DPT=MIS DEPT SAL= 18480.00
LN=BLACKWOOD DPT=MIS DEPT SAL= 21780.00
LN=GREENSPAN DPT=MIS DEPT SAL= 9000.00
LN=GREENSPAN DPT=MIS DEPT SAL= 8650.00
LN=CROSS DPT=MIS DEPT SAL= 27062.00
LN=CROSS DPT=MIS DEPT SAL= 25775.00
VALUES REPLACED= 6
EOF:

 The VALUE REPLACED parameter displayed at the bottom of
the report shows how many segment instances were changed, not
how many lines SCAN displays after the change.

 Match Logic Changes

 The current position is reached through a LOCATE (or
TLOCATE) subcommand, and the conditions of the LOCATE
are retained and applied in selecting records to be changed.

 tlocate dpt=mis dept, sal lt 15000
LN=SMITH DPT=MIS DEPT SAL= 13200.00
change dpt=/mis dept/mis/ ,$ *
LN=SMITH DPT=MIS SAL= 13200.00
LN=GREENSPAN DPT=MIS SAL= 9000.00
LN=GREENSPAN DPT=MIS SAL= 8650.00
VALUES REPLACED= 2
EOF:

 Here SCAN changes only two segment instances rather than the
six instances in the previous example, but three are shown
because there are two child segments for the GREENSPAN
record.

 Note:

• If CHANGE is immediately preceded by LOCATE or
TLOCATE, only the instances that satisfy the LOCATE
conditions are changed.

• If no record selection criteria is included, the CHANGE
action will change subsequent instances. Changed field
instances may include descendant instances not represented
in the Show List.

Similar Commands: REPLACE is used to replace the entire contents of numeric or
alphanumeric fields.

Directly Editing FOCUS Databases With SCAN

13-24 Information Builders

Command: CRTFORM

Syntax: CRTform * {*|fieldname [*]...fieldname}

 You can enter the full field names, aliases, or the shortest unique
truncations of either. To display all fields between two named
fields, place an asterisk in the list of field names, or just all fields,
use an asterisk in place of the field names.

Function: The CRTFORM subcommand formats the display of selected
data fields. Enter the field names separated by blanks. (The
selection begins at the current position.) The display aligns two
fields per line where possible.

 Use the TYPE subcommand to display the results of a
CRTFORM subcommand.

Examples: Specifying Individual Fields
crtform eid ln fn sal
type

EMP_ID =071382660 LAST_NAME =STEVENS
FIRST_NAME =ALFRED SALARY = 11000.00

 Specifying All Fields Between Two Named Fields
crtform eid * salary
type

EMP_ID =071382660 LAST_NAME = STEVENS
FIRST_NAME =ALFRED HIRE_DATE = 800602
DEPARTMENT =PRODUCTION CURR_SAL = 11000.00
CURR_JOBCODE =A07 ED_HRS = 25.00
BANK_NAME = BANK_CODE =
BANK_ACCT = EFFECT_DATE = 0
DAT_INC =820101 PCT_INC = .10
SALARY =11000.00

Similar Commands: None.

 Subcommand Summary

Maintaining Databases 13-25

Command: DELETE

Syntax: DElete fieldname [factor]

 where:

factor

Is one of the following:
1 is the default value.
* deletes all instances of the field.
n is the number of data instances to be deleted. When more
than one instance is to be deleted, indicate the replication
factor as a numeric value following the line terminator
characters ,$.

Function: The segment containing the field name is deleted and all of its
descendant segments are deleted. Any references to indexed fields
are removed from their associated indexes.

 Note:

• If DELETE is immediately preceded by a LOCATE
subcommand, then only instances that satisfy the LOCATE
conditions are deleted.

• If no record selection criteria is included, the delete action
will remove subsequent instances. Deleted field instances
may include descendant segments that are not represented in
the Show List.

 None of the changes made during a SCAN session take effect
until you save them. When you do write them to the database
using SAVE or FILE (see descriptions of these subcommands on
the following pages), they become permanent; so we recommend
that you closely monitor the effect of your changes as you work in
SCAN. If you make a mistake, it is important to QUIT
immediately to avoid any permanent damage.

Example: show emp_id last_name salary jobcode
next
EID=071382660 LN=STEVENS SAL= 11000.00 JBC=A07
delete jobcode 6
SEGMENTS DELETED= 6

 The next six instances of JOBCODE are removed.

Similar Commands: None.

Directly Editing FOCUS Databases With SCAN

13-26 Information Builders

Command: DISPLAY

Syntax: DIsplay fieldname [fieldname...fieldname]

 The field identifier may be the full field name, alternate alias, or
shortest unique truncation of either. Separate field names from
each other with spaces.

Function: This subcommand displays the values of the named fields in a
neat vertical list, whether the field is in the SHOW list or not. It is
useful to view the values of fields not specified in a SHOW list.
(TYPE presents only the fields named in the SHOW command.)
It is convenient, for example, to move through databases looking
at only the values of a few key fields. Then, when you find the
record you want, use DISPLAY to display all of the fields in the
segment(s) contained in the Show List.

 The DISPLAY subcommand does not remain in effect. It simply
lists the specified values. If you need to issue it repeatedly, store
it with the X or Y subcommand for subsequent execution.

Example: show last_name dat_inc
locate ln =smith
LN=SMITH DI=820101
display last_name first_name salary department
LAST_NAME =SMITH
FIRST_NAME =MARY
SALARY = 13200.00
DEPARTMENT =MIS

 If the DISPLAY subcommand does not produce a list, it indicates
that the fields requested must lie outside the currently retrieved
segment(s) by displaying the message:

NO CURRENT VALUE FOR: field.

Similar Commands: The TYPE subcommand is also used for showing the contents of
the currently active data fields. TYPE presents the data
horizontally, using the shortest name or alias available in the
Master File. DISPLAY presents the information vertically,
showing the full field names.

 CRTFORM is used to format a screen, showing the full field
names and the field contents, blocked two to a line. Use TYPE to
show the contents of the CRTFORM.

 Subcommand Summary

Maintaining Databases 13-27

Command: END

Syntax: End

Function: Terminates the SCAN session and writes all pending
modifications to the FOCUS database.

Example: END

Similar Commands: The FILE subcommand is a synonym for END. This also results
in normal termination of the session.

 The SAVE subcommand also writes the modifications to the
database, but does not terminate the SCAN session. You retain
your position in the database.

 Subcommand Summary

13-28 Information Builders

Command: FILE

Syntax: File

Function: Terminates the SCAN session and writes all pending
modifications to the FOCUS database.

Example: FILE

Similar Commands: The END subcommand is a synonym for FILE. This also results
in normal termination of the session.

 The SAVE subcommand writes the modifications to the database,
but does not terminate the SCAN session. You retain your
position in the database.

 Subcommand Summary

Maintaining Databases 13-29

Command: INPUT

Syntax: Input [field=value,...[,$]]

 The input records are defined as free-format, or
comma-delimited. They are entered in one of two ways:

• The data may be typed on the same line as the command. It
must be typed on one line. In this case, it does not have to be
terminated by a comma and dollar sign (,$).

• Or if the subcommand is issued on a line by itself, then the
new record may be typed on several lines, but it must be
terminated by a comma and dollar sign (,$).

Function: The subcommand opens the database to accept one or more new
segments of data. It creates a segment instance in each segment
for which a field value is specified.

 The new records are inserted after the record currently displayed;
that is, they break the chain. However, if the segment is being
maintained in some sort sequence, a check is subsequently
performed and the new records inserted in their proper positions.

Example: show emp_id last_name salary jobcode
tlocate ln=jones
EID=117593129 LN=JONES SAL= 18480.00 JBC=B03

input salary=19000.00, jobcode=b04
SCAN:

type
EID=117593129 LN=JONES SAL= 19000.00 JBC=B04

Caution:

SCAN rejects records that have key field values that already exist
in the database (duplicate keys). In this example, if you type the
following, you get a warning.
input eid=117593129, salary=19000.00, jobcode=604
DATA KEYS ARE ALREADY IN FILE
SCAN:

 Such warnings are only provided for key fields, however, and if
you inadvertently create a duplicate instance of a segment, it can
have unexpected consequences, particularly if one of the records
is a short-path record. Subsequently, you may see different
versions depending on the fields you name in your SHOW
command.

Similar Commands: None.

Directly Editing FOCUS Databases With SCAN

13-30 Information Builders

Command: JUMP

Syntax: Jump fieldname [n]

Function: Starting from the field in the current record, it moves immediately
to the next occurrence of the same field. This skips over any
intervening records and is a quick way to traverse a database.
Specify n to jump n occurrences.

 If JUMP encounters no additional field occurrences for the same
parent record, it stops at the last record in the current chain and
displays the END-OF-CHAIN message. It does not move to the
start of the next chain.

Example: show emp_id last_name first_name salary
type 7
EID=071382660 LN=STEVENS FN=ALFRED SAL= 11000.00
EID=071382660 LN=STEVENS FN=ALFRED SAL= 10000.00
EID=112847612 LN=SMITH FN=MARY SAL= 13200.00
EID=117593129 LN=JONES FN=DIANE SAL= 18480.00
EID=117593129 LN=JONES FN=DIANE SAL= 17750.00
EID=119265415 LN=SMITH FN=RICHARD SAL= 9500.00
EID=818692173 LN=CROSS FN=BARBARA SAL= 25775.00
EID=119265415 LN=SMITH FN=RICHARD SAL= 9050.00

top
TOF:

next
EID=071382660 LN=STEVENS FN=ALFRED SAL= 11000.00

jump emp_id 2
EID=117593129 LN=JONES FN=DIANE SAL= 18480.00

Similar Commands: The NEXT subcommand is used to advance to the next logical
record.

 Subcommand Summary

Maintaining Databases 13-31

Command: LOCATE

Syntax: Locate field rel value [[AND|,]field rel value [,$]
[*|n]]

 where:

field

Is the field name of the target(s).

rel

Is the test relation (see chart below).

value

Is the object of the comparison.

n

Is the number of occurrences which may exist.
The comma-dollar sign (,$) terminator symbol is not required
if only one record is sought (the default). It is required if you
provide a replication factor (n) larger than 1. If the
replication factor is set to *, then all records meeting the test
conditions are displayed (from the current position to the end
of the database).

The test relation (rel) values are:

Relation Meaning

EQ or = Equal to

NE Not equal to

GE Greater than or equal to

GT Greater than

LE Less than or equal to

LT Less than

CONTAINS Contains

OMITS Omits

Directly Editing FOCUS Databases With SCAN

13-32 Information Builders

 When using more than one test relation, separate them by either
commas or the word AND, as

locate field rel value, field rel value

or:

locate field rel value AND field rel value

 If you supply a list of values with an EQ test, separate the values
with the word OR:

locate field EQ value OR value OR value

Function: Starting at the current position, initiates a search for record(s)
meeting the test condition(s). When an acceptable record is
found, it is displayed. If the end of the database is encountered
during the search, the message EOF: is displayed.

Example: show emp_id last_name first_name salary
locate dpt=mis
EID=112847612 LN=SMITH SAL= 13200.00 JBC=B14

Similar Commands: TLOCATE has exactly the same function, but effectively adds the
TOP function and begins the search at the top of the database.

Directly Editing FOCUS Databases With SCAN

Maintaining Databases 13-33

Command: MARK

Syntax: MArk

Function: The MARK subcommand identifies a logical record so that you
can return to it when you issue the MOVE or BACK
subcommand. Only one record can be marked at a time. MARK is
used to identify data to be moved to a new location in the
database, and to return to a record with the BACK command.

Example: show emp_id last_name first_name salary
next
EID=071382660 LN=STEVENS FN=ALFRED SAL= 11000.00

jump emp_id 2
EID=117593129 LN=JONES FN=DIANE SAL= 18480.00

mark
next 2
EID=119265415 LN=SMITH FN=RICHARD SAL= 9500.00

back
EID=117593129 LN=JONES FN=DIANE SAL= 18480.00

Similar Commands: None.

Directly Editing FOCUS Databases With SCAN

13-34 Information Builders

Command: MOVE

Syntax: MOve fieldname

Function: The MOVE subcommand moves segment instances and all of
their descendant segments from one parent segment to another.

 Identify the record instance of the segment to be moved with the
MARK subcommand. Then locate the new position for the
marked segment instance in any manner (LOCATE, NEXT, etc.).
Follow with the MOVE subcommand naming the instance of the
segment being moved. The moved instance and all of its
descendants are made descendants of the parent at the current
position. If the SEGTYPE is not S or SH, then the segment will
be inserted after the record currently shown. If the SEGTYPE is S
or SH (sorted, sorted high-to-low), the segments will be located in
the proper sort sequence.

Example: show emp_id last_name salary dat_inc
next
EID=071382660 LN=STEVENS DI=820101 SAL= 11000.00

mark
locate ln=greenspan
EID=543729165 LN=GREENSPAN DI=820611 SAL= 9000.00

move dat_inc
EID=543729165 LN=GREENSPAN DI=820101 SAL= 11000.00

 In the example, the date of increase (DAT_INC or DI) and salary
(SAL) are taken from the marked record of Alfred Stevens and
moved to Mary Greenspan’s record.

Similar Commands: None.

Directly Editing FOCUS Databases With SCAN

Maintaining Databases 13-35

Command: NEXT

Syntax: Next [nn]

 The default is one record.

Function: The current position is advanced nn records and the new position
is displayed (where nn is the number of records from 1 to 99). If
the end of the database is reached during the movement to the
new current position, the message EOF: is displayed.

Example: show emp_id last_name first_name salary
type 8
EID=071382660 LN=STEVENS FN=ALFRED SAL= 11000.00
EID=071382660 LN=STEVENS FN=ALFRED SAL= 10000.00
EID=112847612 LN=SMITH FN=MARY SAL= 13200.00
EID=117593129 LN=JONES FN=DIANE SAL= 18480.00
EID=117593129 LN=JONES FN=DIANE SAL= 17750.00
EID=119265415 LN=SMITH FN=RICHARD SAL= 9500.00
EID=119265415 LN=SMITH FN=RICHARD SAL= 9050.00
EID=119329144 LN=BANNING FN=JOHN SAL= 29700.00

top
TOF:

next 4
EID=117593129 LN=JONES FN=DIANE SAL= 18480.00

next 2
EID=119265415 LN=SMITH FN=RICHARD SAL= 9500.00

 NEXT 4 advances the current position to the fourth logical record
and displays the field values at that position. The subsequent
NEXT 2 moves the current position forward two more logical
records.

Similar Commands: None.

 Subcommand Summary

13-36 Information Builders

Command: QUIT

Syntax: Quit

Function: Ends the SCAN session. All pending modifications to the
database (those not yet written permanently to the disk) are
suppressed.

 The use of this subcommand does not guarantee that all changes
to the database will be ignored. During SCAN execution, large
buffer areas hold the pending changes. Depending on the
operating system and buffer sizes, a large SCAN file could
threaten the buffer capacity. This forces the operating system to
write your pending changes to the database to clear the buffer.
This would update your database, even though you had not issued
a SAVE, END or FILE subcommand.

 The FOCUS Absolute File Integrity facility reduces the risk of
making changes you do not want. Also, keeping your own copy of
the database before you start the session gives you a recovery
capability in the event you lose your way in SCAN and create a
database you subsequently decide to discard.

 The QUIT subcommand acts only to prevent transfer of those
records in the buffer to the disk.

 When a change is made to a database immediately prior to issuing
QUIT, the change is usually suppressed. If SCAN activity is high
between modifications to the database, however, the chance of
suppressing all changes is less likely, because the buffer work
areas may, of necessity, have been written to the disk to make
way for more pages of database records.

Example: QUIT

Similar Commands: END and FILE both terminate the session but both write any
pending changes to the database. SAVE also writes the changes to
the database, but leaves you in the SCAN session.

Directly Editing FOCUS Databases With SCAN

Maintaining Databases 13-37

Command: REPLACE

Syntax: Replace [KEY] field=value, field=value, $ [factor]

 where:

factor

Is one of the following:
1 is the default.
* represents all fields.
nn is the number of field values that can be replaced at one
time. If the replication factor nn is greater than 1, then all of
the replaced fields must reside on the same segment.

 If the field whose value is being replaced is used to keep the
segment in the proper sort sequence (that is, it is a key field), then
the word KEY must be placed after the command. Without this
word, a message is displayed indicating that the key field cannot
be replaced.

 Note: The replication factor cannot be used with REPLACE
KEY.

Function: The data values provided replace those in the database for the
record at the current position. The fields replaced may reside on
the same segment or different segments, but must be on the path
defined by the Show List if one is in effect.

 Two types of global REPLACE operations can be specified:

• Sequential replacement: If the current position was not
reached via a prior LOCATE subcommand, the replication
factor applies to this record and the next n-1 records
retrieved.

• Matched replacement: If a prior LOCATE subcommand
established the current position, the search criteria remains in
effect and the replication factor applies to this logical record
and the next n-1 records that also meet the search criteria.

 Subcommand Summary

13-38 Information Builders

Examples: Replacing a Field Value
 show emp_id last_name salary

tlocate eid=112847612
EID=112847612 LN=SMITH SAL= 13200.00
replace salary=16000.00
EID=112847612 LN=SMITH SAL= 16000.00

 Replacing Multiple Field Values
 show emp_id last_name jobcode

next
EID=071382660 LN=STEVENS JBC=A07
replace jobcode=B02,$ *
EID=071382660 LN=STEVENS JBC=B02
EID=071382660 LN=STEVENS JBC=B02
EID=112847612 LN=SMITH JBC=B02
.
.
.
VALUES REPLACED= 19
EOF:

 Replacing a Key Field Value
 show emp_id last_name first_name

tlocate ln=stevens
EID=071382660 LN=STEVENS FN=ALFRED
replace key eid=971382660
EID=971382660 LN=STEVENS FN=ALFRED
KEY VALUE RESEQUENCED...
type *
EID=971382660 LN=STEVENS FN=ALFRED
EOF:

 Notes on replacing key fields:

• The segment is resequenced to preserve the correct sort
order. In this case, we gave Stevens the highest employee
number in the database, so the TYPE * command types one
record and reaches end-of-file.

• Only one key field can be replaced at a time.

• This may result in duplicate keys in the database (you need to
keep track of this).

Similar Commands: CHANGE command.

Directly Editing FOCUS Databases With SCAN

Maintaining Databases 13-39

Command: SAVE

Syntax: SAve

Function: Writes out all modifications to the FOCUS database. The SCAN
session continues at the current position held before the SAVE. If
the FOCUS Absolute File Integrity feature is active, this is the
point at which a new checkpoint is taken.

 To activate the Absolute File Integrity feature, issue the following
command at the FOCUS command level before you create the
database:

SET SHADOW=ON

 If the SET SHADOW command is issued after the database is
created, the command has no effect. See the Describing Data
manual for information about the FOCUS Absolute File Integrity
feature. See the Developing Applications manual for more
information about the SET parameters.

 Periodic use of SAVE during SCAN sessions is recommended.
Otherwise, if communication lines are lost or other processing
interruptions occur, the modifications made since the previous
SAVE must be repeated.

Example: SAVE

 All modifications to the database are written to the disk, and the
SCAN session continues.

Similar Commands: Both END and FILE write your changes to the database and
terminate the SCAN session. QUIT is used to delete any pending
changes to the database and terminate the SCAN session.

 Subcommand Summary

13-40 Information Builders

Command: SHOW

Syntax: SHow [fieldlist]

 where:

fieldlist

Can be one of the following:

fieldname [*] fieldname
* fieldname
fieldname *

 Separate field names with blanks. Field names can be full field
names, aliases, or unique truncations of either.

 On entry into the SCAN environment, all of the data fields in the
first physical top-to-bottom path are displayed as the default
Show List. When SHOW is issued with no list of field names, the
names of all of the fields in the current path are displayed.

 Use an asterisk (*) between two field names to select all fields
between and including them. Use an asterisk and one field name
to select all field names up to and including the named field. Use
one field name and an asterisk to select all field names from that
field on.

Function: SHOW is used to create a subset of the database (called a Show
List, subtree, or a logical view) for editing. It always moves the
current position to the top of the database, and the logical records
are only as deep as the Show List (that is, they consist of only the
segments named in the SHOW subcommand, which had data in
all of the specified fields plus any intermediate segments needed
to connect the segments containing the named fields).

Example: Selecting a Logical View (a Show List)
 show eid last_name salary

type *
EID=071382660 LN=STEVENS SAL= 11000.00
EID=071382660 LN=STEVENS SAL= 10000.00
EID=112847612 LN=SMITH SAL= 13200.00
EID=117593129 LN=JONES SAL= 18480.00
.
.
.
EID=818692173 LN=CROSS SAL= 25775.00
EOF:

 The Show List, or subtree, consists of all segment instances that
have data for all of the fields specified (Employee Identification
Number, Last Name and Salary). Records lacking instances of
any of these fields (for example, short-path records) are not
included in the list.

Directly Editing FOCUS Databases With SCAN

Maintaining Databases 13-41

 Selecting All Fields Between Two Named Fields
show emp_id * bank_name
type 2
EID=071382660 LN=STEVENS FN=ALFRED HDT=800602
DPT=PRODUCTION CSAL=11000.00 CJC=A07 OJT= 25.00 BN=
EID=112847612 LN=SMITH FN=MARY HDT=810701
DPT=MIS CSAL=13200.00 CJC=B14 OJT= 36.00 BN=

 All fields between (and including) EMP_ID and BANK_NAME
are included in the Show List. (Stevens and Smith do not have a
bank for electronic transfer and, therefore, the value for BN is
blank.)

 Selecting All Fields

 To select all fields, use an asterisk instead of field names.

SHOW *

 Note: To examine the contents of the current position in the
Show List, you can use TYPE to print just the fields named in the
SHOW subcommand. Use DISPLAY or CRTFORM if you wish
to see the contents of other fields in the selected segments. (Use
TYPE with CRTFORM to see the display.)

 Subsequent navigation keywords will show the field values for
the current position for each of the fields named in the SHOW
subcommand.

Similar Commands: None.

 Subcommand Summary

13-42 Information Builders

Command: TLOCATE

Syntax: TLocate field rel value [[AND|,]field rel value
[,$][*|nn]]

 where:

field

Is the field name of the target(s).

rel

Is the test relation (see chart below).

value

Is the object of the comparison.

 The comma-dollar sign (,$) terminator character is not required if
only one record is sought. However, it is required if you provide a
replication factor larger than one. If the replication factor is set to
*, then all records meeting the test conditions are displayed from
the current position to the end of the database.

 The test relation (rel) values are:

Relation Meaning

 EQ or = Equal to
NE Not equal to
GE Greater than or equal to
GT Greater than
LE Less than or equal to
LT Less than
CONTAINS Contains
OMITS Omits

 When using more than one test relation, separate them with either
commas or the word AND, as follows

locate field rel value, field rel value

 or:

locate field rel value AND field rel value

 If you supply a list of values with an EQ test, separate the values
with the word OR:

locate field EQ value OR value OR value

Directly Editing FOCUS Databases With SCAN

Maintaining Databases 13-43

Function: TLOCATE is a convenience feature that combines the
capabilities of the LOCATE subcommand with those of TOP.
When issued, the search begins at the top of the database. This
combined functionality allows you to automate processes more
easily using the X and Y subcommands.

 If the subcommand AGAIN is used following TLOCATE, it
locates the same record rather than moving ahead to the next
instance as it would with LOCATE.

Example: show last_name first_name department
tlocate dpt=production
LN=STEVENS FN=ALFRED DPT=PRODUCTION
next 5
LN=IRVING FN=JOAN DPT=PRODUCTION
tlocate dpt=production
LN=STEVENS FN=ALFRED DPT=PRODUCTION

Similar Commands: LOCATE is the same command, but without the TOP function.

Directly Editing FOCUS Databases With SCAN

13-44 Information Builders

Command: TOP

Syntax: TOp

Function: The current position is set at the first logical record in the
database. If the next subcommand is TYPE or NEXT, the first
record is retrieved and displayed.

 When the message EOF: appears after any subcommand, you use
TOP to reset the current position.

Example: show emp_id last_name salary
next 30
EOF:
top
TOF:
next
EID=071382660 LN=STEVENS SAL= 11000.00

 The current position is reset to the top of the database.

Similar Commands: SHOW also takes you to the top of the database, but its primary
purpose is the selection of the logical database view that you wish
to use.

 TLOCATE goes to the top of the database before starting its
search for the field(s) you have specified.

Directly Editing FOCUS Databases With SCAN

Maintaining Databases 13-45

Command: TYPE

Syntax: TYpe [factor]

 where:

factor

Is one of the following:
1 is the default.
n displays the record at the current position plus the next n-1
records, if the replication factor is greater than 1.
* displays the message EOF: after the last record in the
database is displayed. Use TOP to reset the current position
to the top of the database.

Example: show emp_id last_name salary
type 6
EID=071382660 LN=STEVENS SAL= 11000.00
EID=071382660 LN=STEVENS SAL= 10000.00
EID=112847612 LN=SMITH SAL= 13200.00
EID=117593129 LN=JONES SAL= 18480.00
EID=117593129 LN=JONES SAL= 17750.00
EID=119265415 LN=SMITH SAL= 9500.00

 The record at the current position and the next five records are
displayed.

Similar Commands: None.

Directly Editing FOCUS Databases With SCAN

13-46 Information Builders

Command: UP

Syntax: UP fieldname

 where:

fieldname

Is the name of a field in a descendant segment.

Function: The UP subcommand resets the current position to the first
descendant instance under a parent instance. Hence, it moves the
position to the start of the current chain.

Example: show emp_id last_name salary pay_date
next 5
EID=071382660 LN=STEVENS SAL= 10000.00 PD=820630

up pay_date
EID=071382660 LN=STEVENS SAL= 10000.00 PD=820528

 The current position is reset to the first instance of PAY_DATE
information for Stevens.

Similar Commands: None.

Directly Editing FOCUS Databases With SCAN

Maintaining Databases 13-47

Commands: X and Y

Syntax: [x|y] subcommand

Function: The X and Y subcommands are used to store a complete SCAN
subcommand for later execution by simply typing in the
appropriate letter (X or Y).

 To set, but not execute, a value for X or Y, type it as a first letter
in front of any other subcommand. Any print suppression control,
and the replication factors, are picked up from the stored
subcommand.

Example: y display emp_id last_name curr_sal pay_date gross
show emp_id pay_date
next
EID=071382660 PD=820831
y
EMP_ID =071382660
LAST_NAME =STEVENS
CURR_SAL = 11000.00
PAY_DATE =820831
GROSS = 916.67

 A series of operations can be performed by repeatedly entering X
and Y subcommands.

Similar Commands: None.

Directly Editing FOCUS Databases With SCAN

13-48 Information Builders

Command: ?

Syntax: ?

Function: The ? subcommand recalls and displays the last recognized
subcommand issued in the SCAN mode.

Example: Show emp_id last_name salary jobcode
locate dpt=mis
EID=112847612 LN=SMITH SAL= 13200.00 JBC=B14
?
LOCATE DPT=MIS
again
EID=117593129 LN=JONES SAL= 18480.00 JBC=B03

 Here the LOCATE operation returns a record. AGAIN locates the
next record that meets the stated criteria.

Similar Commands: None.

Maintaining Databases 14-1

CHAPTER 14

Directly Editing FOCUS Databases With FSCAN

Topics:

• Introduction

• FSCAN Functions

• Syntax Summary

The full-screen FSCAN facility enables you to edit FOCUS
databases directly on your terminal screen. You can use FSCAN
to add, update, and delete data from FOCUS databases as if the
segments in the FOCUS databases were flat files on a
full-screen editor. You can type over field values, or change
them by issuing commands.

Directly Editing FOCUS Databases With FSCAN

14-2 Information Builders

Introduction
FSCAN enables you to:

• Add records to new or existing FOCUS databases.

• Change field values in FOCUS databases. With FSCAN you can change the values
in key fields (not possible with MODIFY requests).

• Delete records from FOCUS databases.

• Search through FOCUS databases to locate instances of specified character strings or
values.

If your database is protected by shadow paging, the changes you make on FSCAN are not
permanent until you issue a command to do so. You may choose to exit FSCAN without
saving any of the changes.

Entering FSCAN
Enter the full-screen FSCAN facility from FOCUS with

FSCAN FILE filename

where filename is the name of the database you are editing. The database must be a
FOCUS database. You may also enter FSCAN by typing:

FS FILE filename

For example, to edit the EMPLOYEE database, enter:

FSCAN FILE EMPLOYEE

The following screen appears:

1. FSCAN FILE EMPLOYEEFOCUS A1 CHANGES: 0

2. EMP_ID LAST_NAME FIRST_NAME HIRE_DATE DEPARTMENT
------ --------- ---------- --------- ----------

3. == 071382660 STEVENS ALFRED 800602 PRODUCTION
4. == 112847612 SMITH MARY 810701 MIS

== 117593129 JONES DIANE 820501 MIS
== 119265415 SMITH RICHARD 820104 PRODUCTION
== 119329144 BANNING JOHN 820801 PRODUCTION
== 123764317 IRVING JOAN 820104 PRODUCTION
== 126724188 ROMANS ANTHONY 820701 PRODUCTION
== 219984371 MCCOY JOHN 810701 MIS
== 326179357 BLACKWOOD ROSEMARIE 820401 MIS
== 451123478 MCKNIGHT ROGER 820202 PRODUCTION
---------------------------------INPUT---------------------------------

5. ==
6. ==>

7. MORE=>

Introduction

Maintaining Databases 14-3

This screen displays the contents of the root segment of the EMPLOYEE database. Each
record on the screen is one instance in the root segment. The numbers in the diagram
refer to the notes below:

1. The header shows the name of the database and the number of changes made to the
database since the last save.

2. Each field is labeled with a column heading.

3. The first record at the top of the screen is called the current instance. Many
commands operate only on this record. When you first enter FSCAN, this record is
the first instance in the root segment.

4. The equal signs (==) in the left margin of the screen indicate the prefix area. This is
where you enter prefix area commands.

 The key field value in each record appears highlighted.

5. The last line with equal signs is called the input area and is reserved exclusively for
input.

6. The arrow at the lower-left corner of the screen points to the command line. This is
where you enter FSCAN commands.

7. The MORE symbol at the lower-right corner of the screen indicates that each record
extends to the right of the screen.

To exit FSCAN and save the changes you made to the database, enter

End

or:

FILe

To exit FSCAN without saving the changes you made to the database, enter:

QQuit

Note: In MVS, QQUIT only suppresses changes made on FSCAN when you are using
the Absolute File Integrity facility. Otherwise, FSCAN writes all changes to the database.

If you did not make any changes to the database, you can exit

QUit

or by pressing the PF3 or PF15 key.

Directly Editing FOCUS Databases With FSCAN

14-4 Information Builders

Entering FSCAN With a SHOW List
By default, FSCAN makes all fields in the database available to the user. However, it is
possible to restrict the fields available with the SHOW option:

FSCAN FILE filename SHOW
[fieldname......fieldname....|SEG.fieldname]
END

where:

SHOW

Indicates that specific fields will be displayed. The SHOW keyword must appear on
the same line as the FSCAN command.

fieldname...

Are the fields to be displayed.

END

Is required and must be specified on a line by itself.

For example, the commands

FSCAN FILE EMPLOYEE SHOW
EMP_ID LAST_NAME FIRST_NAME SEG.GROSS
END

would provide access to only the selected fields in the root segment and to the whole
segment containing the field GROSS. The above commands would produce the following
display:

FSCAN FILE EMPLOYEEFOCUS A CHANGES :0

EMP_ID LAST_NAME FIRST_NAME
------ --------- --------- ----------
== 071382660 STEVENS ALFRED

== 112847612 SMITH MARY
== 117593129 JONES DIANE
== 119265415 SMITH RICHARD

== 119329144 BANNING JOHN
== 123764317 IRVING JOAN
== 126724188 ROMANS ANTHONY

== 219984371 MCCOY JOHN
== 326179357 BLACKWOOD ROSEMARIE
== 451123478 MCKNIGHT ROGER

== 543729165 GREEENSPAN MARY
------------------------------INPUT--------------------------------------
==

==>

MORE=>

The only child segment that can be displayed is the SALINFO segment, which contains
the field GROSS.

Introduction

Maintaining Databases 14-5

Allowing Uppercase and Lowercase Alpha Fields
By default, FSCAN translates all input and changed alpha fields to uppercase. If
uppercase and lowercase input and updates are to be respected, then enter FSCAN with
the LOWER keyword. The syntax is

FSCAN FILE filename [case]

where:

case

Is one of the following:
UPPER translates all input and changed alpha fields into uppercase. UPPER is the
default.
LOWER preserves uppercase and lowercase input and is analogous to the CRTFORM
LOWER statement in MODIFY.
MIXED is a synonym for LOWER.

The FSCAN Facility and FOCUS Structures
This section is a brief summary of FOCUS structures and how they affect the FSCAN
facility.

FOCUS databases are organized into segments which have the following properties:

• Segments consist of individual data records called segment instances, in which fields
have a one-to-one correspondence with each other.

• Segments relate to each other as parents and children.

• A group of instances in a child segment describes one instance in a parent segment.

• One parent segment may have many child segments, but a child segment may have
only one parent.

• A FOCUS structure has one segment from which all other segments are descended.
This is called the root segment.

The diagram below represents the structure of the EMPLOYEE database:

EMPINFO

PAYINFO ADDRESS SALINFOFUNDTRAN

DEDUCT

Directly Editing FOCUS Databases With FSCAN

14-6 Information Builders

Note the position of the segments in the structure:

• The EMPINFO segment is the root segment. All other segments are descended from
it.

• EMPINFO has four children: the FUNDTRAN, PAYINFO, ADDRESS, and
SALINFO segments.

• The SALINFO segment has one child, the DEDUCT segment.

The FSCAN facility displays instances in one segment at one time. When it displays the
root segment (as it will when you first enter FSCAN), it displays all the instances in the
segment. The following screen illustrates how FSCAN displays the EMPINFO segment.

FSCAN FILE EMPLOYEEFOCUS A1 CHANGES :0

EMP_ID LAST_NAME FIRST_NAME HIRE_DATE DEPARTMENT

------ --------- --------- -------- ----------
== 071382660 STEVENS ALFRED 800602 PRODUCTION
== 112847612 SMITH MARY 810701 MIS

== 117593129 JONES DIANE 820501 MIS
== 119265415 SMITH RICHARD 820104 PRODUCTION
== 119329144 BANNING JOHN 820801 PRODUCTION

== 123764317 IRVING JOAN 820104 PRODUCTION
== 126724188 ROMANS ANTHONY 820701 PRODUCTION
== 219984371 MCCOY JOHN 810701 MIS

== 326179357 BLACKWOOD ROSEMARIE 820401 MIS
== 451123478 MCKNIGHT ROGER 820202 PRODUCTION
---------------------------------INPUT-----------------------------------

==
==>

MORE=>

Note that the screen only displays the first five fields of the first ten instances in the
segment. To view the other fields and instances, use the scrolling facilities described in
Scrolling the Screen on page 14-13.

Also note that you cannot move from one segment to another by simply scrolling. To
move from a parent segment to a child segment and back again, you must use the
PARENT and CHILD commands discussed in Displaying Descendant Segments: The
CHILD, PARENT, and JUMP Commands on page 14-23.

When FSCAN displays a child segment, it displays only those instances relating to an
instance in the parent segment. You can scroll back and forth to view all the instances in
the group, but you cannot scroll to view the child instances of another parent. At the top
of the screen, FSCAN displays up to five keys of the parent instance, and of the parent of
the parent, and so on up to the root segment.

Introduction

Maintaining Databases 14-7

For example, the EMPINFO segment contains the ID numbers and names of employees;
its child (SALINFO) contains monthly pay instances. (Each instance lists how much each
employee was paid each month.) Each group of instances in SALINFO represents all the
monthly pay of one employee recorded in the EMPINFO segment. When FSCAN
displays the SALINFO segment, it displays one group of instances at one time.

This is how FSCAN displays the monthly pay of Alfred Stevens, who is listed in the
EMPINFO segment. Note that Mr. Stevens’ employee ID (the EMPINFO key field)
appears at the top of the screen:

FSCAN FILE EMPLOYEEFOCUS A1 CHANGES :0

EMP_ID : 071382660

PAY_DATE GROSS
-------- -----

== 820831 916.67
== 820730 916.67
== 820630 916.67
== 820528 916.67
== 820430 916.67
== 820331 916.67
== 820226 916.67
== 820129 916.67
== 811231 833.33
---------------------------------INPUT-----------------------------------
==

==>

If you are displaying one child segment and wish to display another one, you must return
to the parent and request the other child segment. For example, if you are examining
Alfred Steven’s monthly pay and wish to view his salary history (contained in the
segment PAYINFO), return to the EMPINFO segment and request PAYINFO
information for Alfred Stevens using the CHILD command described in Displaying
Descendant Segments: The CHILD, PARENT, and JUMP Commands on page 14-23.

Directly Editing FOCUS Databases With FSCAN

14-8 Information Builders

The figure below shows this path schematically. The arrows show the direction you are
traveling to move from the SALINFO segment to the PAYINFO segment:

ALFRED STEVENS

ALFRED STEVENS’
salary history

ALFRED STEVENS’
monthly pay

PAYINFOSALINFO

EMPINFO

Similarly, if you are displaying one group of child instances and wish to display another
group within the same segment but belonging to a different instance in the parent, you
must return to the parent segment and request the child segment for the other instance.

For example, suppose you are examining Alfred Stevens’ monthly pay and wish to view
Mary Smith’s monthly pay. You must return to the EMPINFO segment and select the
SALINFO segment for Mary Smith.

The figure below shows this path schematically. The arrows show the direction you are
traveling to move from Alfred Stevens’ monthly pay instances to Mary Smith’s monthly
pay instances:

ALFRED STEVENS
MARY SMITH

ALFRED STEVENS’
monthly pay

SALINFO

EMPINFO

MARY SMITH’S
monthly pay

Introduction

Maintaining Databases 14-9

General Rules for Using FSCAN
This section addresses general rules for using FSCAN. The following topics are covered:

• Databases on which FSCAN can operate.

• Segments on which FSCAN can operate.

• Fields which FSCAN can display.

• Database integrity considerations.

• DBA considerations.

Databases on Which FSCAN Can Operate
FSCAN can operate on databases having the following attributes:

• The databases are FOCUS databases, not databases of other types.

• The databases are individual databases, not combined structures created by the
COMBINE command.

• The length of the root key field in the database does not exceed 61 bytes and the sum
of the field name length plus the field length does not exceed 73 bytes.

Also, note the following regarding databases:

• FSCAN does not accept alternate file views.

• Databases that you specify with the USE command using the READ option are write
protected.

• Databases that you are viewing on a FOCUS Database Server in Simultaneous Usage
mode are write protected.

Directly Editing FOCUS Databases With FSCAN

14-10 Information Builders

Segments on Which FSCAN Can Operate
The following rules apply to the display and editing of segments in FSCAN:

• FSCAN does not display a segment containing a key field longer than 61 bytes and
the sum of the field name length plus the field length does not exceed 73 bytes, nor
does it display the descendants of that segment.

• When you input a new segment instance, the instance must have a key unique to its
group. (In the root segment, this is all the instances in the segment; in a descendant
segment, this is all the instances that share a parent instance). If you try to input an
instance with a duplicate key, FSCAN will generate an error message.

• If you change a key field value of an instance, the new instance key (the combination
of all key field values in the instance) must be unique to the group. If you try to
change the key to a duplicate, FSCAN will generate an error message.

• If you use FSCAN on segments already containing duplicate keys, the results are
unpredictable. If the root segment has duplicate keys, an attempt to display a screen
with these duplicates results in FSCAN terminating in an error. If a descendant
segment has duplicate keys, an FSCAN error is displayed and you are positioned at
the parent segment.

• When a segment is type S0 or blank, no one field is designated as the key field.
FSCAN considers all fields in such segments to be key fields. This has two
ramifications

• You cannot input a segment instance that is the duplicate of another in the same
group.

• You cannot update a segment instance so that it duplicates another segment
instance in the same group.

Fields Which FSCAN Can Display
FSCAN can display fields containing the following attributes:

• The field length does not exceed 61 bytes and the sum of the field name length plus
the field length does not exceed 73 bytes.

• The fields are real database fields, not DEFINEd fields.

• FSCAN displays group fields as their individual members, not as a group.

Note: Text fields cannot be displayed in FSCAN.

Introduction

Maintaining Databases 14-11

Database Integrity Considerations
How FSCAN treats the changes you make to the database depends on whether the
database is protected by shadow paging.

If you are using shadow paging, FSCAN writes your changes to a shadow database. If
you enter the commands END, FILE, or SAVE, the changes become part of the real
database. If you enter the command QQUIT or if FSCAN terminates abnormally, the
changes disappear and the database is not affected.

If you are not using shadow paging, FSCAN writes your changes directly to the database.
The changes remain even after you enter the QQUIT command.

In CMS, the operating system performs shadow paging automatically. In MVS, FOCUS
performs shadow paging using the Absolute File Integrity facility.

DBA Considerations
If the database is protected by the DBA security facility, then the ACCESS attribute in
the Master File restricts users in the following way:

• Users with read-write access (ACCESS=RW) and write-only access (ACCESS=W)
have unrestricted access to the database, with the exception of what is denied them
by the RESTRICT and NAME attributes.

• Users with update-only access (ACCESS=U) can display the entire database, with
the exception of what is denied them by the RESTRICT and NAME attributes.
However, they cannot input or delete instances and can only update non-key fields.

• Users with read-only access (ACCESS=R) to any part of the database cannot use
FSCAN on the database.

FSCAN honors DBA security restrictions on segments and fields. FSCAN does not
display those segments and fields from which the user is restricted. FSCAN does not
honor DBA field value restrictions and will display all field values regardless of the user.

If the user has no access to a key field in the root segment, that user is blocked from using
FSCAN on the database.

If the user has no access to a segment, that segment is not listed on the menu that appears
when the user enters the CHILD command.

Directly Editing FOCUS Databases With FSCAN

14-12 Information Builders

FSCAN Functions
This section discusses various functions of the FSCAN facility. For an alphabetic
summary of commands, see Syntax Summary on page 14-39.

The FSCAN facility displays one segment at one time. (For the root segment, FSCAN
displays all instances in the segment; for descendant segments, FSCAN displays all
instances sharing the same parent instance.) Each record on the screen is one segment
instance. The first instance at the top of the screen is called the current instance.

The FSCAN facility also displays segments in SINGLE mode, that is, one instance at one
time. SINGLE mode is discussed in Displaying a Single Instance on One Screen: The
SINGLE and MULTIPLE Commands on page 14-25.

Note the different types of commands:

• Prefix area commands are typed in the prefix area on the left of the screen display.
Prefix area commands operate only on the line where they are typed.

• Command-line commands are typed on the command line at the bottom of the
screen. Some commands operate on the entire screen, others operate only on the
current instance at the top of the screen. There are two types of command-line
commands:

• Immediate commands. When you execute an immediate command, the
database remains unchanged even if you typed changes on the screen. There are
five immediate commands:

LEFT
RIGHT
RESET
?
QQUIT

• Non-immediate commands. When you execute a non-immediate command,
any changes you type on the screen will be written to the database even if the
command itself does not modify the database.

The following rules apply to commands:

• You may use unique truncations for commands. When this section specifies a
command syntax, the unique truncation is shown in uppercase.

• Commands that use field names as parameters require the full field name, alias, or
unique truncation.

• You may enter two commands at one time by separating the commands with a
semicolon. For example, to enter the commands NEXT 5 and CHILD at one time,
type:

NEXT 5; CHILD

FSCAN Functions

Maintaining Databases 14-13

This section covers:

• Scrolling the screen.

• Selecting the current instance.

• Displaying descendant segments.

• Using SINGLE mode.

• Modifying the database.

• Saving changes.

• Exiting the FSCAN facility.

• Using the FSCAN HELP facility.

Note that command syntax shows unique truncations of commands in uppercase.

Scrolling the Screen
You may scroll the screen forward and backward, right and left.

Syntax How to Scroll the Screen Forward
To scroll forward one screen in a segment, enter

FOrward

or press the PF8 or PF20 key. Note that the last instance on one screen becomes the first
instance on the next screen.

To scroll the screen n lines forward, enter

Next n

or:

DOwn n

If you do not enter a number for n, the default is 1.

Directly Editing FOCUS Databases With FSCAN

14-14 Information Builders

Example Scrolling Forward
For example, suppose the screen displays the EMPLOYEE root segment as shown below.
When you type the FORWARD command on the command line

FSCAN FILE EMPLOYEEFOCUS A1 CHANGES :0

EMP_ID LAST_NAME FIRST_NAME HIRE_DATE DEPARTMENT

------ --------- ---------- --------- ----------
== 071382660 STEVENS ALFRED 800602 PRODUCTION
== 112847612 SMITH MARY 810701 MIS

== 117593129 JONES DIANE 820501 MIS
== 119265415 SMITH RICHARD 820104 PRODUCTION
== 119329144 BANNING JOHN 820801 PRODUCTION

== 123764317 IRVING JOAN 820104 PRODUCTION
== 126724188 ROMANS ANTHONY 820701 PRODUCTION
== 219984371 MCCOY JOHN 810701 MIS

== 326179357 BLACKWOOD ROSEMARIE 820401 MIS
== 451123478 MCKNIGHT ROGER 820202 PRODUCTION
-----------------------------------INPUT---------------------------------

==
==> forward

MORE=>

and press Enter, the following screen appears:

FSCAN FILE EMPLOYEEFOCUS A1 CHANGES :0

EMP_ID LAST_NAME FIRST_NAME HIRE_DATE DEPARTMENT
------ --------- ---------- --------- ----------

== 451123478 MCKNIGHT ROGER 820202 PRODUCTION
== 543729165 GREENSPAN MARY 820401 MIS
== 818692173 CROSS BARBARA 811102 MIS

-----------------------------------INPUT--------------------------------
==
==>

MORE=>

FSCAN Functions

Maintaining Databases 14-15

Syntax The Backward Command
To scroll the screen backward, enter

Backward

or press the PF7 or PF19 key.

Syntax How to Scroll the Screen to the Right and the Left
To scroll the screen one panel to the right, enter

RIght

or press the PF11 or PF23 key.

To scroll the screen one panel to the left, enter

LEft

or press the PF10 or PF22 key.

The commands RIGHT and LEFT are immediate commands. When you scroll right and
left, FSCAN does not enter changes you typed on the screen until you press Enter after
scrolling.

Example Scrolling the Screen
For example, if you scroll the EMPLOYEE root segment display one panel to the right,
the following screen appears:

FSCAN FILE EMPLOYEEFOCUS A1 CHANGES :0

CURR_SAL CURR_JOBCODE ED_HRS

-------- ------------ ------
== 11000.00 A07 25.00
== 13200.00 B14 36.00

== 18480.00 B03 50.00
== 9500.00 A01 10.00
== 29700.00 A17 .00

== 26862.00 A15 30.00
== 21120.00 B04 5.00
== 18480.00 B02 .00

== 21780.00 B04 75.00
== 16100.00 B02 50.00
------------------------------------INPUT--------------------------------

==
==>

MORE=>

Directly Editing FOCUS Databases With FSCAN

14-16 Information Builders

Selecting a Specific Instance by Defining a Current Instance
This section describes how to move through the database by defining a particular instance
as the current instance. The current instance is always the top instance on the screen.
Certain commands only operate on the current instance.

Example Defining a Current Instance: The “/” Prefix
To define an instance as the current instance, type a slash (/) in the prefix area
corresponding to the instance. For example, suppose you type a slash in the prefix area of
John Banning’s instance, as shown below:

FSCAN FILE EMPLOYEEFOCUS A1 CHANGES :0

EMP_ID LAST_NAME FIRST_NAME HIRE_DATE DEPARTMENT

------ --------- ---------- ---------- ---------
== 071382660 STEVENS ALFRED 800602 PRODUCTION
== 112847612 SMITH MARY 810701 MIS

== 117593129 JONES DIANE 820501 MIS
== 119265415 SMITH RICHARD 820104 PRODUCTION
/= 119329144 BANNING JOHN 820801 PRODUCTION

== 123764317 IRVING JOAN 820104 PRODUCTION
== 126724188 ROMANS ANTHONY 820701 PRODUCTION
== 219984371 MCCOY JOHN 810701 MIS

== 326179357 BLACKWOOD ROSEMARIE 820401 MIS
== 451123478 MCKNIGHT ROGER 820202 PRODUCTION
------------------------------------INPUT-------------------------------

==
==>

MORE=>

FSCAN Functions

Maintaining Databases 14-17

When you press Enter, the following screen appears:

FSCAN FILE EMPLOYEEFOCUS A1 CHANGES :0

EMP_ID LAST_NAME FIRST_NAME HIRE_DATE DEPARTMENT

------ --------- ---------- --------- ----------

== 119329144 BANNING JOHN 820801 PRODUCTION

== 123764317 IRVING JOAN 820104 PRODUCTION

== 126724188 ROMANS ANTHONY 820701 PRODUCTION

== 219984371 MCCOY JOHN 810701 MIS

== 326179357 BLACKWOOD ROSEMARIE 820401 MIS

== 451123478 MCKNIGHT ROGER 820202 PRODUCTION

== 543729165 GREENSPAN MARY 820401 MIS

== 818692173 CROSS BARBARA 811102 MIS

-------------------------------------INPUT-------------------------------

==

==>

MORE=

You may also type a slash before or after the following prefix area commands:

• The K command (K/ or /K). After FSCAN changes the key field and displays the
instance in proper sequence, it makes the instance the current instance.

• The I command (I/ or /I). After FSCAN adds a new instance to the database, it makes
the instance the current instance.

Directly Editing FOCUS Databases With FSCAN

14-18 Information Builders

Syntax How to Define the First and Last Instances of a Segment on
Display: The FIRST, LAST, and TOP Commands
FSCAN displays all instances in a segment that share a common parent instance. For the
root segment, this means all the instances in the segment. To define the first instance in
the group as the current instance, enter:

FIrst

If you are displaying instances in the root segment, FIRST will make the first instance in
the database the current instance. If you are displaying instances in a child segment and
use the FIRST command, the first child instance will become the current instance.

To define the last instance as the current instance, enter:

LAst

For example, if you enter LAST on the EMPLOYEE root segment display, the following
screen appears:

FSCAN FILE EMPLOYEEFOCUS A1 CHANGES :0

EMP_ID LAST_NAME FIRST_NAME HIRE_DATE DEPARTMENT
------ --------- ---------- --------- ----------

== 818692173 CROSS BARBARA 811102 MIS

---------------------------------INPUT----------------------------------

==
==>

MORE=>

To select the first instance in the root segment of the database to be the current instance,
enter:

Top

TOP displays the root segment, scrolled to the leftmost panel, with the first instance the
current instance.

FSCAN Functions

Maintaining Databases 14-19

Syntax How to Locate an Instance Based on Field Values: The
LOCATE Command
LOCATE searches for instances containing field values that fulfill certain conditions. For
example, it can search for an instance with a LAST_NAME value of BANNING or a
CURR_SAL value less than 20,000. LOCATE searches starting with the current instance.

The syntax is (entered on one line)

LOcate field1 rel1 value1 [OR value1a OR value1b OR ...]

[{AND|,} field2 rel2 value2 {AND|,} ...]

where:

fieldn ...

Is a field to be tested.

reln ...

Is one of the following condition relations:
EQ or = Equal to
NE Not equal to
GE Greater than or equal to
GT Greater than
LE Less than or equal to
LT Less than
CONTAINS or CO Contains the character string
OMITS or OM Omits the character string

valuen ...

Is a value for which FSCAN can test. The first instance with a field value that passes
the test becomes the current segment.
If you supply more than one test condition in the command, FSCAN searches for the
instance that fulfills all of the conditions. Separate the test conditions in the
command with the word AND or with a comma (,).

OR

Enables you to test a field for multiple values. If the field contains one of the values,
it meets the test. You can use AND and OR in a single LOCATE command.

The LOCATE command searches starting with the first instance following the current
instance. If LOCATE cannot find the instance, it displays a message and the current
instance does not change.

Directly Editing FOCUS Databases With FSCAN

14-20 Information Builders

Example Locating an Instance Based on Field Values
For example, suppose the first instance in the EMPLOYEE root segment is the current
instance. If you issue the command

LOCATE LAST_NAME EQ SMITH

the following screen appears:

FSCAN FILE EMPLOYEEFOCUS A1 CHANGES :0

EMP_ID LAST_NAME FIRST_NAME HIRE_DATE DEPARTMENT

------ --------- ---------- --------- ----------
== 112847612 SMITH MARY 810701 MIS
== 117593129 JONES DIANE 820501 MIS

== 119265415 SMITH RICHARD 820104 PRODUCTION
== 119329144 BANNING JOHN 820801 PRODUCTION
== 123764317 IRVING JOAN 820104 PRODUCTION

== 126724188 ROMANS ANTHONY 820701 PRODUCTION
== 219984371 MCCOY JOHN 810701 MIS
== 326179357 BLACKWOOD ROSEMARIE 820401 MIS

== 451123478 MCKNIGHT ROGER 820202 PRODUCTION
== 543729165 GREENSPAN MARY 820401 MIS
--------------------------------------INPUT-----------------------------------

==
==>

MORE=>

These are other examples of the LOCATE command:

LOCATE JOBCODE EQ A07 OR A17

This LOCATE searches for the first segment instance that has a JOBCODE value of
either A07 or A17.

LOCATE LAST_NAME CO WOOD

This LOCATE searches for the first segment instance with a LAST_NAME value that
contains the character string WOOD.

LOCATE HIRE_DATE GT 820401 AND JOBCODE IS B02 OR B03

This LOCATE searches for the first segment instance with both a HIRE_DATE value
greater than 820401 and a JOBCODE value that is either B02 or B03.

FSCAN Functions

Maintaining Databases 14-21

Syntax How to Find an Instance in a Group: The FIND Command
The FIND command works within the group of instances being displayed. In the root
segment, this is all instances in the segment; in descendant segments, this is all instances
sharing a common parent instance. FIND searches for instances containing field values
that fulfill certain conditions. For example, it can search for an instance with a
LAST_NAME value of BANNING or a CURR_SAL value less than 20,000. FIND
searches starting with the current instance.

The syntax is (entered on one line)

FIND field1 rel1 value1 [OR value1a OR value1b OR ...]

[{AND|,} field2 rel2 value2 {AND|,} ...]

where:

fieldn ...

Is a field in the segment.

reln ...

Is one of the following condition relations:
EQ or = or IS Equal to
NE Not equal to
GE Greater than or equal to
GT Greater than
LE Less than or equal to
LT Less than
CONTAINS or CO Contains the character string
OMITS or OM Omits the character string

valuen ...

Is a value for which FSCAN can test. The first instance with a field value that passes
the test becomes the current segment.
If you supply more than one test condition in the command, FSCAN searches for the
instance that fulfills all of the conditions. Separate the test conditions in the
command with the word AND or with a comma (,).

OR

Enables you to test a field for multiple values. If the field contains one of the values,
it meets the test. You can use AND and OR in a single FIND command.

The FIND command searches the group starting with the first instance following the
current instance. To search the entire group, issue the FIRST command before issuing
FIND. If FIND cannot find the instance, it displays a message and the current instance
does not change.

Directly Editing FOCUS Databases With FSCAN

14-22 Information Builders

Example Finding an Instance in a Group
For example, suppose the first instance in the EMPLOYEE root segment is the current
instance. If you issue the command

FIND LAST_NAME EQ SMITH

the following screen appears:

FSCAN FILE EMPLOYEEFOCUS A1 CHANGES :0

EMP_ID LAST_NAME FIRST_NAME HIRE_DATE DEPARTMENT

------ --------- ---------- --------- ----------
== 112847612 SMITH MARY 810701 MIS
== 117593129 JONES DIANE 820501 MIS

== 119265415 SMITH RICHARD 820104 PRODUCTION
== 119329144 BANNING JOHN 820801 PRODUCTION
== 123764317 IRVING JOAN 820104 PRODUCTION

== 126724188 ROMANS ANTHONY 820701 PRODUCTION
== 219984371 MCCOY JOHN 810701 MIS
== 326179357 BLACKWOOD ROSEMARIE 820401 MIS

== 451123478 MCKNIGHT ROGER 820202 PRODUCTION
== 543729165 GREENSPAN MARY 820401 MIS
-----------------------------------INPUT--------------------------------

==
==>

MORE=>

These are other examples of the FIND command:

FIND DEPARTMENT EQ MIS OR SALES

This FIND searches for the first segment instance that has a DEPARTMENT value of
either MIS or SALES.

FIND LAST_NAME CO WOOD

This FIND searches for the first segment instance with a LAST_NAME value that
contains the character string WOOD.

FIND HIRE_DATE GT 820401 AND DEPARTMENT EQ MIS OR PRODUCTION

This FIND searches for the first segment instance with both a HIRE_DATE value greater
than 820401 and a DEPARTMENT value that is either MIS or PRODUCTION.

FSCAN Functions

Maintaining Databases 14-23

Displaying Descendant Segments: The CHILD, PARENT, and JUMP
Commands

To display instances in a child segment relating to the current instance, enter

CHIld

or press PF5 or PF17. If the segment on the screen when you enter the command has only
one child segment, FSCAN shows the child segment. If the segment on the screen has
more than one child segment, FSCAN displays a menu of child segments. Select a
segment by entering its number. (Note: The menu does not display segments restricted to
you as a result of DBA restrictions.)

For example, suppose you are displaying the root segment of the EMPLOYEE database
and you want to see the monthly pay of Mary Smith. Monthly pay is contained in the
segment SALINFO, a child of the root segment. First, make Mary Smith’s instance the
current instance. Then, enter the command:

CHILD

The following menu appears:

FSCAN FILE EMPLOYEEFOCUS A1 CHANGES :0

Please enter the number of the child segment you want

1)FUNDTRAN 2)PAYINFO
3)ADDRESS 4)SALINFO

=>
Enter the number of the child you want
Enter 0 to stay at parent.

Directly Editing FOCUS Databases With FSCAN

14-24 Information Builders

Enter the number 4. The following screen appears:

FSCAN FILE EMPLOYEEFOCUS A1 CHANGES :0

EMP_ID : 112847612

PAY_DATE GROSS
-------- -----

== 820831 1100.00
== 820730 1100.00

== 820630 1100.00
== 820528 1100.00
== 820430 1100.00

== 820331 1100.00
== 820226 1100.00
== 820129 1100.00

----------------------------------INPUT----------------------------------
==
==>

Note that the header displays the key field value of the parent instance. Since EMP_ID is
the key field of the root segment, the header displays Mary Smith’s employee ID.

If you already know the number of the segment on the menu, you can skip the menu by
entering

CHIld n

where n is the number of the segment on the menu. For example, you can go directly
from the EMPLOYEE root segment to the monthly pay segment by entering:

CHILD 4

You can display the child instances of any instance on the screen by typing C in the
prefix area next to the instance. You can skip the menu by typing C followed by the
number of the segment on the menu. For example, you can go directly from the
EMPLOYEE root segment to the monthly pay segment by typing C4 in the prefix area.

To return to the parent segment, enter

Parent

or press PF4 or PF16. The current instance in the parent is the same as before you entered
the CHILD command or C prefix area command.

To move to the first child of the next parent instance, enter

JUMP

or press PF12 or PF24 while FSCAN is displaying a child segment. For example, if you
enter JUMP while the PAYINFO segment is being displayed for a particular employee,
the PAYINFO segment for the next employee in the EMP_INFO segment is displayed.
JUMP may be issued anywhere.

FSCAN Functions

Maintaining Databases 14-25

Displaying a Single Instance on One Screen: The SINGLE and
MULTIPLE Commands

To display a single instance on the screen, enter:

SIngle

This places you in SINGLE mode. SINGLE mode enables you to view a single segment
instance on one screen. Only the current instance appears, but all its fields appear on one
screen (unless it has many fields). You may enter all FSCAN commands on the command
line at the bottom of the screen, but there is no prefix area. The key field values appear
highlighted.

All FSCAN commands (but not prefix area commands) operate in SINGLE mode, except
that only one instance is displayed. In particular, note the following:

• If you enter the FORWARD command in SINGLE mode, FSCAN displays the next
instance in the segment. If you enter the BACKWARD command, FSCAN displays
the previous instance.

• If you enter the CHILD command, only one child instance appears at one time. If
you enter the PARENT command, only the parent instance of the current instance
appears on the screen.

You can update and delete an instance in SINGLE mode, but you cannot add another
instance.

You remain in SINGLE mode until you enter the command:

Multiple

MULTIPLE returns you to normal mode, which displays multiple instances at one time.

For example, this is how Diane Jones’ instance looks in SINGLE mode. Note that there is
no input area, and that the arrow at the bottom of the screen points to the command line
where you can enter commands:

FSCAN FILE EMPLOYEEFOCUS A1 CHANGES : 0

EMP_ID : 117593129 LAST_NAME : JONES
FIRST_NAME : DIANE HIRE_DATE : 820501
DEPARTMENT : MIS CURR_SAL : 18480.00

CURR_JOBCODE : B03 ED_HRS : 50.00

==>

Directly Editing FOCUS Databases With FSCAN

14-26 Information Builders

Modifying the Database
You may use FSCAN to modify the database by adding, updating, and deleting segment
instances.

Adding New Segment Instances: The “I” Prefix
To add a new segment instance to the segment displayed on the screen, type the instance
field values in the input area on the bottom of the screen. You can use the Tab key to
jump from field to field. Then type I in the prefix area next to the new instance. When
you press Enter, FSCAN adds the instance to the database, displaying it in proper
sequence based on its key field values.

If the instance you are typing extends beyond the right margin of the screen, use the
scrolling commands discussed in Scrolling the Screen on page 14-13. FSCAN adds the
segment instance when you press Enter or enter any command except RIGHT, LEFT,
RESET, ?, and QQUIT.

Note:

• FSCAN does not accept new instances with key field values that are the same as
another instance.

• FSCAN does not accept new instances with field values that do not conform to the
ACCEPT attribute in the Master File (ACCEPT is explained in the Describing Data
manual).

• If you want the new instance to become the current instance, type I/ in the prefix area
next to the new instance before pressing Enter.

FSCAN Functions

Maintaining Databases 14-27

For example, suppose you want to add Fred Johnson to the EMPLOYEE database, and
you want the new instance to become the current instance. Type his instance in the input
area as shown below (note the I/ in the prefix area):

FSCAN FILE EMPLOYEEFOCUS A1 CHANGES :0

EMP_ID LAST_NAME FIRST_NAME HIRE_DATE DEPARTMENT

------ --------- ---------- --------- ----------
== 117593129 JONES DIANE 820501 MIS
== 119265415 SMITH RICHARD 820104 PRODUCTION

== 119329144 BANNING JOHN 820801 PRODUCTION
== 123764317 IRVING JOAN 820104 PRODUCTION
== 126724188 ROMANS ANTHONY 820701 PRODUCTION

== 219984371 MCCOY JOHN 810701 MIS
== 326179357 BLACKWOOD ROSEMARIE 820401 MIS
== 451123478 MCKNIGHT ROGER 820202 PRODUCTION

== 543729165 GREENSPAN MARY 820401 MIS
== 818692173 CROSS BARBARA 811102 MIS
-------------------------------INPUT-------------------------------------

I/ 123123123 johnson fred 870507 mis

==>

MORE=>

When you press Enter, the screen appears as follows:

FSCAN FILE EMPLOYEEFOCUS A1 CHANGES :1

EMP_ID LAST_NAME FIRST_NAME HIRE_DATE DEPARTMENT

------ --------- --------- --------- ----------

== 123123123 JOHNSON FRED 870507 MIS

== 123764317 IRVING JOAN 820104 PRODUCTION

== 126724188 ROMANS ANTHONY 820701 PRODUCTION

== 219984371 MCCOY JOHN 810701 MIS

== 326179357 BLACKWOOD ROSEMARIE 820401 MIS

== 451123478 MCKNIGHT ROGER 820202 PRODUCTION

== 543729165 GREENSPAN MARY 820401 MIS

== 818692173 CROSS BARBARA 811102 MIS

-------------------------------------INPUT------------------------------------

==

==>

0 Keys Changed 0 Non-Keys Changed

0 Records Deleted 1 Records Input

MORE=>

Directly Editing FOCUS Databases With FSCAN

14-28 Information Builders

If you do not type “I” in the prefix area when you input a new instance, FSCAN displays
an error message. To continue, you must do one of the following

• Enter “I” in the prefix area of the input area.

• Cancel the input by entering the RESET command, typing R in the prefix area, or
pressing the PF2 or PF14 key. This also recovers typed-over field values (see the
following section).

Note that the RESET command entered on the command line is an immediate command.
However, the R prefix-area command is not an immediate command. If you typed
changes on a line not specifying the R prefix, FSCAN enters the changes.

Updating Non-Key Field Values
There are three ways to update non-key field values :

• Type over field values.

• Issue the REPLACE command.

• Issue the CHANGE command.

Note that FSCAN does not accept any new field value that does not conform to the
ACCEPT attribute in the Master File (the ACCEPT attribute is explained in the
Describing Data manual).

Typing Over Field Values
You may update segment instances by typing over their values on the screen. Use the Tab
key to jump from field to field within the same instance.

For example, suppose you want to change Richard Smith’s department from Production
to Sales. Simply type over the DEPARTMENT value and press Enter. The screen appears
as shown on the next page. Note that the message at the bottom of the screen indicates
one changed non-key field.

FSCAN Functions

Maintaining Databases 14-29

The screen is:

FSCAN FILE EMPLOYEEFOCUS A1 CHANGES :0

EMP_ID LAST_NAME FIRST_NAME HIRE_DATE DEPARTMENT
------ --------- ---------- --------- ----------

== 071382660 STEVENS ALFRED 800602 PRODUCTION
== 112847612 SMITH MARY 810701 MIS
== 117593129 JONES DIANE 820501 MIS

== 119265415 SMITH RICHARD 820104 SALES
== 119329144 BANNING JOHN 820801 PRODUCTION
== 123764317 IRVING JOAN 820104 PRODUCTION

== 126724188 ROMANS ANTHONY 820701 PRODUCTION
== 219984371 MCCOY JOHN 810701 MIS
== 326179357 BLACKWOOD ROSEMARIE 820401 MIS

== 451123478 MCKNIGHT ROGER 820202 PRODUCTION
--------------------------------------INPUT----------------------------------
==

==>
0 Keys Changed 1 Non-Keys Changed
0 Records Deleted 0 Records Input

MORE=>

The message at the bottom of the screen indicates the number of field values you changed
since the last time you pressed Enter. The counter at the top of the screen counts the total
number of values you changed since the last time the changes were saved on disk.

If you type over field values and change your mind before you press Enter, you can
restore the original field values by entering R (to specify the RESET command) on the
prefix area next to the instance whose values you are recovering, or by pressing the PF2
or PF14 key. However, if you press Enter before pressing one of these keys, you will not
recover the typed-over values.

Note that the RESET command entered on the command line is an immediate command.
However, the R prefix area command is not an immediate command. If you typed
changes on a line not specifying the R prefix, FSCAN enters the changes.

Directly Editing FOCUS Databases With FSCAN

14-30 Information Builders

Syntax How to Replace Field Values: The REPLACE Command
The REPLACE command replaces one field value with another either for a specific
instance or for all the instances in a group. (In the root segment, this is all the instances in
the segment; in a descendant segment, this is all the instances that share a parent
instance.) The syntax is

REPlace field1 = value1[,field2 = value2, ...] [,$ {*|n}]

where:

fieldn ...

Is a field in the current instance whose value you want to change.

valuen ...

Is a new value for the field.

,$ {*|n}

Enables you to change multiple instances starting from the current instance (the
current instance included). n is the number of instances to be searched for the field
value you want to change. If you want all instances in the group starting from the
current instance changed, use an asterisk (*).

For example, to change Richard Smith’s department from Production to Sales, make
Richard Smith’s instance the current instance. Then enter:

REPLACE DEPARTMENT = SALES

To change the DEPARTMENT value to SALES in the next five instances, enter:

REPLACE DEPARTMENT = SALES,$ 5

To change all DEPARTMENT values in the group to SALES, make the first instance on
display the current instance by entering:

FIRST

Then enter:

REPLACE DEPARTMENT = SALES,$ *

FSCAN Functions

Maintaining Databases 14-31

Syntax How to Change Character Strings Within Field Values: The
CHANGE Command
The CHANGE command changes character strings within field values either for a
specific instance or for all the instances in a group (in the root segment, this is all the
instances in the segment; in a descendant segment, this is all the instances that share a
parent instance). The fields must be alphanumeric. The syntax is

CHAnge field = /oldstring/newstring/ [,$ {*|n}]

where:

field

Is the name of the field in the current instance whose value you want to change. The
field must be alphanumeric and it cannot be a key field.

oldstring

Is the substring of the field value that you want to change.

newstring

Is the character string to replace the substring.

,$ {*|n}

Enables you to change multiple instances counting from the current instance (the
current instance included). n is the number of instances to be searched for the
substring. If you want all instances in the group starting from the current instance
searched, use an asterisk (*).

For example, to change Joan Irving’s department from Production to Products, make Joan
Irving’s instance the current instance. Then enter:

CHANGE DEPARTMENT = /ION/S/

To change the Production department to Products in the next five instances starting from
the current instance, enter:

CHANGE DEPARTMENT = /ION/S/,$ 5

To change this substring in all the instances in the group, make the first instance on
display the current instance by entering:

FIRST

Then enter:

CHANGE DEPARTMENT = /ION/S/ ,$ *

Directly Editing FOCUS Databases With FSCAN

14-32 Information Builders

Changing Key Field Values
FSCAN enables you to change values of key fields, either by typing over the values or by
using the REPLACE KEY command.

Note: FSCAN does not allow you to change a key field to a value that will make the key
field values of one instance the same as another instance.

FSCAN does not accept any new key field value that does not conform to the ACCEPT
attribute in the Master File (the ACCEPT attribute is explained in the Describing Data
manual).

Typing Over Key Field Values: The KEY Command
To change the value of a key field, do the following:

1. Type the new value over the old one.

2. Either type a K in the prefix area next to the instance you are changing or type the
command:

Key

If you want the instance to be the current instance after its key value is changed, type
K/ in the prefix area next to the instance.

3. Press Enter.

After you change the key value, FOCUS moves the instance within the segment so that
the key values remain sorted in their proper sequence. The screen shows this
immediately.

Note: FOCUS does not physically move instances in the root segment, although the
instances appear on the FSCAN screen sorted by their key field values.

For example, suppose you want to change Alfred Stevens’ employee ID from 071382660
to 444555666, and you want his instance to remain the current instance. Type over the
employee ID and type K/ in the prefix area.

FSCAN Functions

Maintaining Databases 14-33

The screen appears as shown below:

FSCAN FILE EMPLOYEEFOCUS A1 CHANGES :2

EMP_ID LAST_NAME FIRST_NAME HIRE_DATE DEPARTMENT
------ --------- ---------- --------- ----------

k/ 444555666 STEVENS ALFRED 800602 PRODUCTION
== 112847612 SMITH MARY 810701 MIS
== 117593129 JONES DIANE 820501 MIS

== 119265415 SMITH RICHARD 820104 PRODUCTION
== 119329144 BANNING JOHN 820801 PRODUCTION
== 123764317 IRVING JOAN 820104 PRODUCTION

== 126724188 ROMANS ANTHONY 820701 PRODUCTION
== 219984371 MCCOY JOHN 810701 MIS
== 326179357 BLACKWOOD ROSEMARIE 820401 MIS

== 451123478 MCKNIGHT ROGER 820202 PRODUCTION
-----------------------------------INPUT-----------------------------------
==

==>
MORE=>

When you press Enter, the screen appears as shown below:

FSCAN FILE EMPLOYEEFOCUS A1 CHANGES :3

EMP_ID LAST_NAME FIRST_NAME HIRE_DATE DEPARTMENT

------ --------- ---------- --------- ----------
== 444555666 STEVENS ALFRED 800602 PRODUCTION
== 451123478 MCKNIGHT ROGER 820202 PRODUCTION

== 543729165 GREENSPAN MARY 820401 MIS
== 818692173 CROSS BARBARA 811102 MIS
-------------------------------------INPUT------------------------------------

==

==>

1 Keys Changed 0 Non-Keys Changed
0 Records Deleted 0 Records Input

MORE=>

Directly Editing FOCUS Databases With FSCAN

14-34 Information Builders

The message at the bottom of the screen indicates the number of key field values you
changed since the last time you pressed Enter.

If you do not enter the KEY command or type K in the prefix area when you change a
key field value, FSCAN displays an error message. Before continuing, you must do one
of the following:

• Enter the KEY command, or enter K in the prefix area.

• Retype the original key value.

• Restore the key field value by entering the RESET command, typing R in the prefix
area, or pressing the PF2 or PF14 key. Other field values you typed over will also be
restored

Note: The RESET command entered on the command line is an immediate command.
However, the R prefix area command is not an immediate command. If you type any
changes on a line that does not specify the R prefix, FSCAN enters the changes.

Syntax How to Change Key Field Values Using the REPLACE KEY
Command
You may also use the REPLACE command to change key fields of the current instance.
The syntax of the REPLACE command to replace key fields is

REPlace KEY key1 = value1[, key2 = value2, ...]

where:

keyn ...

Is the key field you want to change. Remember that an instance may have more than
one key field (as determined by the SEGTYPE attribute in the Master File).

valuen ...

Is the new value for the key field.

For example, to change Alfred Stevens’ employee ID from 444555666 to 071382660,
make his instance the current instance by placing a slash in the prefix area and enter the
following:

REPLACE KEY EMP_ID = 071382660

FSCAN Functions

Maintaining Databases 14-35

Syntax How to Delete Segment Instances: The DELETE Command
To delete the current instance, type a D in the prefix area next to the instance or enter:

DElete

FSCAN displays the complete segment instance alone on the screen and asks if you really
want to delete it. Press Enter to delete the instance or respond:

N Do not delete the current instance. (Returns to the previous screen.)

Q Do not delete the current instance. (If you made no other changes to
the database, entering Q leaves FSCAN and returns to the FOCUS
prompt. Otherwise, it returns to the previous screen.)

When you delete an instance, you delete all its descendant instances as well.

For example, suppose you want to delete information about John Banning from the
database. First, make John Banning’s instance the current instance. Then, enter the
DELETE command. The following screen appears:

FSCAN FILE EMPLOYEEFOCUS A1 CHANGES :4

Delete Confirmation Screen

EMP_ID : 119329144 LAST_NAME : BANNING
FIRST_NAME : JOHN HIRE_DATE : 820801
DEPARTMENT : PRODUCTION CURR_SAL : 29700.00

CURR_JOBCODE : A17 ED_HR : .00

==>
Press ENTER to delete
Enter N(o) to abort
Enter Q(uit) to quit session

Directly Editing FOCUS Databases With FSCAN

14-36 Information Builders

If you press Enter, the screen appears as follows:

FSCAN FILE EMPLOYEEFOCUS A1CHANGES :2

EMP_ID LAST_NAME FIRST_NAME HIRE_DATE DEPARTMENT
------ --------- ---------- --------- ----------

== 123764317 IRVING JOAN 820104 PRODUCTION
== 126724188 ROMANS ANTHONY 820701 PRODUCTION
== 219984371 MCCOY JOHN 810701 MIS

== 326179357 BLACKWOOD ROSEMARIE 820401 MIS
== 451123478 MCKNIGHT ROGER 820202 PRODUCTION
== 543729165 GREENSPAN MARY 820401 MIS

== 818692173 CROSS BARBARA 811102 MIS
-------------------------------------INPUT-----------------------------------
==

==>

0 Keys Changed 0 Non-Keys Changed
1 Records Deleted 0 Records Input

MORE=>

Repeating a Command: ? and =
Two commands help you enter a command repeatedly:

• The ? command displays the last command you entered.

• The = command executes the last command you entered.

Syntax How to Display Previous Commands: The ? Command
To display the last command you entered, enter

?

or press PF6 or PF18. This displays the previous command on the command line. You
may then execute the command by pressing Enter or remove the command from the
command line.

As you enter FSCAN commands on the command line, FSCAN stores them in a stack in
memory. If you enter the ? command repeatedly, FSCAN scrolls through the stack,
displaying the commands in stack from the most recent to the oldest.

The ? command is an immediate command. The database remains unchanged until you
press Enter a second time or enter a non-immediate command. Immediate commands
were explained previously at the beginning of FSCAN Functions on page 14-12.

FSCAN Functions

Maintaining Databases 14-37

Syntax Executing the Previous Command: The = Command
The = command executes the last command you entered. Enter

=

or press PF9 or PF21.

Saving Changes: The SAVE Without Exiting FSCAN Command
To save the changes to the database that you made on FSCAN, enter

SAve

You remain in FSCAN. The counter at the top of the screen that counts changes in the
database is reset to 0.

Exiting FSCAN: The END, FILE, QQUIT, and QUIT Commands
To exit FSCAN and save the changes you made to the database, enter

End

or:

FILe

If bad data is encountered upon trying to save your changes, an error message is
generated.

To exit FSCAN without saving the changes you made to the database, enter:

QQuit

Note: In MVS, QQUIT only suppresses changes made on FSCAN when you are using
the Absolute File Integrity facility. Otherwise, FSCAN writes all changes to the database.

If you did not make any changes to the database, you can exit FSCAN by entering

QUit

or by pressing the PF3 or PF15 key.

Directly Editing FOCUS Databases With FSCAN

14-38 Information Builders

The FSCAN HELP Facility
FSCAN has a HELP facility. To enter HELP, enter the command

Help

or press the PF1 or PF13 key. HELP displays a summary of FSCAN commands and
prefix area commands, as shown in the sample screen below:

FSCAN FILE CAR FOCUS A HELP SCREEN 2 of 3

FSCAN COMMANDS
= - Re-execute the most recent command line.
? - Retrieve the previous command line.
Backward - Go backward one screen.
CHAnge - Change a string within a field:

CHANGE fieldname=/oldstring/newstring/,$
CHIld - Display child instances of this segment.
DElete - Delete a segment instance, and all of its children.
DIsplay - Display the segment containing the specified fieldname.
End/FILe - Save all changes and exit FSCAN.
FINd - Find an instance on this chain which satisfies a test:

FIND fieldname EQ GT CO... value.
FIRst - Go to the first instance on this chain.
FOrward - Go forward one screen.
Jump - Jump to the children of the next parent.
LAst - Go to the last instance on this chain
LEft - Go left one panel.
LOcate - Same as FIND but search is throughout the database.

Exit HELP: PF03/PF15. Forward: PF08/PF20. Backward: PF07/PF19.

You can scroll HELP screens back and forth by pressing the PF8 or PF20 key to go
forward and the PF7 or PF19 key to go backward.

To exit the HELP facility, press the PF3 or PF15 key.

Syntax Summary

Maintaining Databases 14-39

Syntax Summary
This section is a summary of the FSCAN commands, PF keys, and prefix area
commands. References to other sections are included.

Summary of Commands
FSCAN commands are listed here in alphabetical order. The unique truncation of each
command is capitalized.

Backward
Scrolls the display one screen backward.

PF keys: PF7 or PF19.

CHAnge
Changes character strings within field values. The syntax is

CHAnge field =/oldstring/newstring/ [,$ {*|n}]

where:

field

Is the name of the field whose value you want to change. The field must be
alphanumeric and it cannot be a key field.

oldstring

Is the substring of the field value that you want to change.

newstring

Is the character string to replace the substring.

,$ {*|n}

Enables you to change multiple instances counting from the current instance (the
current instance included). n is the number of instances to be searched for the
substring. If you want all instances in the group searched (starting from the current
instance), use an asterisk (*).

You can also change field values by typing over them.

Directly Editing FOCUS Databases With FSCAN

14-40 Information Builders

CHIld
Displays the child instances relating to the current instance. (In SINGLE mode, displays
the first child instance of the current instance.) The syntax is

CHIld [n]

where n is the number of the child segment as assigned by FSCAN. If you omit this
number, FSCAN displays a menu listing the segments and their numbers. Enter a number
to display the segment (Displaying Descendant Segments: The CHILD, PARENT, and
JUMP Commands on page 14-23).

Prefix-area command: C[n]

where n is the number of the child segment as assigned by FSCAN. If you omit this
number, FSCAN displays the menu.

DElete
Deletes the current instance and all descendant instances.

Prefix area command: D

DOwn [n]
Scrolls the display n lines forward. n defaults to 1.

DIsplay Field Name
Displays the segment containing the specified field name.

End
Saves all changes made to the database and exits the FSCAN facility (see Exiting
FSCAN: The END, FILE, QQUIT, and QUIT Commands on page 14-37).

FILe
Saves all changes made to the database and exits the FSCAN facility (see Exiting
FSCAN: The END, FILE, QQUIT, and QUIT Commands on page 14-37).

Syntax Summary

Maintaining Databases 14-41

FINd
Searches a group of instances (in the root segment, this is all instances in the segment; in
descendant segments, this is all instances sharing a common parent instance) for an
instance containing field values that fulfill certain conditions. FIND searches the group
starting from the current instance. If it finds the instance, it makes that instance the
current instance.

The syntax is (entered on one line)

FINd field1 rel1 value1 [OR value1a OR value1b OR ...]

[{AND|,} field2 rel2 value2 {AND|,}]

where:

fieldn ...

Is a field in the segment.

reln ...

Is one of the following relations:
EQ or = Equal to
NE Not equal to
GE Greater than or equal to
GT Greater than
LE Less than or equal to
LT Less than
CONTAINS or CO Contains the character string
OMITS or OM Omits the character string

valuen ...

Is a value for which FSCAN can test. The first instance having the field value that
passes the test becomes the current segment. If there are multiple tests, the first
instance that passes all the tests becomes the current instance.

OR

Allows you to test a field for multiple values. If the field contains one of the values,
it meets the test. You can use AND and OR in the same FIND command.

FIrst
Selects the first instance in a group of instances on display to be the current instance. In
the root segment, the group of instances consists of all instances in the segment; in a
descendant segment, a group consists of all instances that share a common parent
instance.

Directly Editing FOCUS Databases With FSCAN

14-42 Information Builders

FOrward
Scrolls the display one screen forward.

PF keys: PF8 or PF20.

Help
Invokes the FSCAN HELP facility.

PF keys: PF01 or PF11.

Input
Adds a new segment instance.

Prefix area command: I

Note: This command is valid only in the input area as a prefix command.

Jump
Moves to the child of the next parent instance.

PF keys: PF12 or PF24

LAst
Selects the last instance of a group of instances on display. In the root segment, the group
of instances consists of all instances in the segment; in a descendant segment, a group
consists of all instances that share a common parent instance.

LEft
Scrolls the display one panel to the left.

PF keys: PF10 or PF22.

Syntax Summary

Maintaining Databases 14-43

LOcate
Searches for instances containing field values that fulfill certain conditions. LOCATE
searches starting from the current instance. If it finds the instance, it makes that instance
the current instance.

The syntax is (entered on one line)

LOcate field1 rel1 value1 [OR value1a OR value1b OR ...]

[{AND|,} field2 rel2 value2 {AND|,}]

where:

fieldn ...

Is a field to be tested.

reln ...

Is one of the following relations:
EQ or = Equal to
NE Not equal to
GE Greater than or equal to
GT Greater than
LE Less than or equal to
LT Less than
CONTAINS or CO Contains the character string
OMITS or OM Omits the character string

valuen ...

Is a value for which FSCAN can test. The first instance having the field value that
passes the test becomes the current segment. If there are multiple tests, the first
instance that passes all the tests becomes the current instance.

OR

Allows you to test a field for multiple values. If the field contains one of the values,
it meets the test. You can use AND and OR in the same LOCATE command.

Key
Enables you to type over key field values in the current instance.

Prefix-area command: K

where:

K/

Makes the instance the current instance after the key values are changed.

Directly Editing FOCUS Databases With FSCAN

14-44 Information Builders

Multiple
Displays multiple instances, each on a single line. Entering this command after entering
the SINGLE command returns the screen to the normal display (see Displaying a Single
Instance on One Screen: The SINGLE and MULTIPLE Commands on page 14-25).

Next [n]
Scrolls the display n lines forward. n defaults to 1.

Parent
Displays the parent segment. The parent instance becomes the current instance. In
SINGLE mode, PARENT displays the parent instance only.

QUit
Exits the FSCAN facility if you did not make any changes to the database.

PF keys: PF3 or PF15.

QQuit
Exits the FSCAN facility without saving any changes to the database.

REPlace
Replaces field values. The syntax is

REPlace field1 = value1[,field2 = value2 ...] [,$ {*|n}]

where:

fieldn...

Is a field in the instance whose value you want to change.

valuen...

Is the new value for the field.

,$ {*|n}

Enables you to change multiple instances counting from the current instance (the
current instance included). n is the number of instances to be searched for the field
values you want to change. If you want all instances in the group searched (starting
from the current instance), use an asterisk (*).

You can also replace field values by typing over them.

Syntax Summary

Maintaining Databases 14-45

REPlace KEY
Replaces key field values in the current instance. The syntax is

REPlace KEY key1 = value1[, key2 = value2, ...]

where:

keyn ...

Is a key field in the instance whose value you want to change.

valuen ...

Is the new value for the key field.

You can also replace key field values by typing over them.

RESet

Performs the following:

• Clears the input area.

• Recovers all field values on the screen that you typed over, both non-key fields and
key fields. To recover non-key field values, you must enter the RESET command
before you press the Enter key. Otherwise, you will not recover the typed-over
values.

PF keys: PF2 or PF14.

Prefix-area command: R

Note: The R prefix-area command recovers only field values on the line that it is typed.
If you typed changes on a line not specifying the R prefix, FSCAN enters the changes.

RIght
Scrolls the display one panel to the right.

PF keys: PF11 or PF23.

SAve
Saves all changes made to the database without exiting FSCAN.

SIngle
Displays the current instance alone with all field values on one screen. To return to the
normal display, enter the MULTIPLE command.

Directly Editing FOCUS Databases With FSCAN

14-46 Information Builders

Top
Displays the root segment and makes the first instance in the root segment the current
instance, scrolled to the leftmost panel.

?
Displays the previous command in stack.

PF keys: PF6 or PF18.

=
Executes the previous command entered.

PF key: PF9 or PF21.

Summary of PF Keys
The following table is a list of FSCAN PF keys and their corresponding functions.

FSCAN Keys Functions

PF1, PF13 HELP

PF2, PF14 RESET

PF3, PF15 QUIT

PF4, PF16 PARENT

PF5, PF17 CHILD

PF6, PF18 ?

PF7, PF19 BACKWARD

PF8, PF20 FORWARD

PF9, PF21 =

PF10, PF22 LEFT

PF11, PF23 RIGHT

PF12, PF24 JUMP

Syntax Summary

Maintaining Databases 14-47

Summary of Prefix Area Commands
The following is a summary of prefix area commands. You type these commands in the
prefix area that corresponds to the instance you wish to address.

/ Makes the instance the current instance. May be typed after the prefix
area commands K, I, and R.

C Displays child instances (see Displaying Descendant Segments: The
CHILD, PARENT, and JUMP Commands on page 14-23).

D Deletes the instance and all its children.

I Inputs a new instance (valid only in the input area).

I/ Inputs a new instance and makes the instance the current instance (valid
only in the input area).

K Enables you to type over key field values in the instance.

K/ Enables you to type over key field values in the instance, then makes the
instance the current instance.

R Performs the following:

Clears the input area.

Recovers all field values on the screen that you typed over, both non-key
fields and key fields. To recover non-key field values, you must enter the
RESET command before you press the Enter key. Otherwise, you will
not recover the typed-over values.

Note that the R prefix area command recovers only field values on the
line that it is typed. If you typed changes on a line not specifying the R
prefix, FSCAN enters the changes.

Maintaining Databases A-1

APPENDIX A

Master Files and Diagrams

Topics:

• Creating Sample Data Sources

• The EMPLOYEE Data Source

• The JOBFILE Data Source

• The EDUCFILE Data Source

• The SALES Data Source

• The PROD Data Source

• The CAR Data Source

• The LEDGER Data Source

• The FINANCE Data Source

• The REGION Data Source

• The COURSES Data Source

• The EMPDATA Data Source

• The EXPERSON Data Source

• The TRAINING Data Source

• The PAYHIST File

• The COMASTER File

• The VideoTrk and MOVIES Data
Sources

• The VIDEOTR2 Data Source

• The Gotham Grinds Data Sources

This appendix contains data source descriptions and structure
diagrams for the examples used throughout the documentation.

Master Files and Diagrams

A-2 Information Builders

Creating Sample Data Sources
You can create the sample data sources on your user ID by executing the procedures
specified below. These FOCEXECs are supplied with FOCUS. If they are not available
to you or if they produce error messages, contact your systems administrator.

To create these files, first make sure you have read access to the Master Files.

Data Source Load Procedure Name

EMPLOYEE,
EDUCFILE, and
JOBFILE

Under CMS enter:

EX EMPTEST

Under MVS, enter:

EX EMPTSO

These FOCEXECs also test the data sources by generating
sample reports. If you are using Hot Screen, remember to press
either Enter or the PF3 key after each report. If the
EMPLOYEE, EDUCFILE, and JOBFILE data sources already
exist on your user ID, the FOCEXEC will replace the data
sources with new copies. This FOCEXEC assumes that the
high-level qualifier for the FOCUS data sources will be the
same as the high-level qualifier for the MASTER PDS that was
unloaded from the tape.

SALES
PROD

EX SALES
EX PROD

CAR none (created automatically during installation)

LEDGER
FINANCE
REGION
COURSES
EXPERSON

EX LEDGER
EX FINANCE
EX REGION
EX COURSES
EX EXPERSON

EMPDATA
TRAINING

EX LOADEMP
EX LOADTRAI

PAYHIST none (PAYHIST DATA is a sequential data source and is
allocated during the installation process)

COMASTER none (COMASTER is used for debugging other Master Files)

VideoTrk and
MOVIES

EX LOADVTRK

VIDEOTR2 EX LOADVID2

Gotham Grinds EX LOADGG

 The EMPLOYEE Data Source

Maintaining Databases A-3

The EMPLOYEE Data Source
The EMPLOYEE data source contains data about a company’s employees. Its segments
are:

• EMPINFO, which contains employee IDs, names, and positions.

• FUNDTRAN, which specifies employees’ direct deposit accounts. This segment is
unique.

• PAYINFO, which contains the employee’s salary history.

• ADDRESS, which contains employees’ home and bank addresses.

• SALINFO, which contains data on employees’ monthly pay.

• DEDUCT, which contains data on monthly pay deductions.

The EMPLOYEE data source also contains cross-referenced segments belonging to the
JOBFILE and EDUCFILE files, described later in this appendix. The segments are:

• JOBSEG (from JOBFILE), which describes the job positions held by each employee.

• SECSEG (from JOBFILE), which lists the skills required by each position.

• SKILLSEG (from JOBFILE), which specifies the security clearance needed for each
job position.

• ATTNDSEG (from EDUCFILE), which lists the dates that employees attended
in-house courses.

• COURSEG (from EDUCFILE), which lists the courses that the employees attended.

Master Files and Diagrams

A-4 Information Builders

The EMPLOYEE Master File

 The EMPLOYEE Data Source

Maintaining Databases A-5

The EMPLOYEE Structure Diagram
STRUCTURE OF FOCUS FILE EMPLOYEE ON 09/15/00 AT 10.16.27

EMPINFO

01 S1

*EMP_ID **

*LAST_NAME **

*FIRST_NAME **

*HIRE_DATE **

* **

I

+-----------------+-----------------+-----------------+-----------------+

I I I I I

I FUNDTRAN I PAYINFO I ADDRESS I SALINFO I ATTNDSEG

02 I U 03 I SH1 07 I S1 08 I SH1 10 I KM

************** ************** ************** **************

*BANK_NAME * *DAT_INC ** *TYPE ** *PAY_DATE ** :DATE_ATTEND ::

*BANK_CODE * *PCT_INC ** *ADDRESS_LN1 ** *GROSS ** :EMP_ID ::K

*BANK_ACCT * *SALARY ** *ADDRESS_LN2 ** * ** : ::

*EFFECT_DATE * *JOBCODE ** *ADDRESS_LN3 ** * ** : ::

* * * ** * ** * ** : ::

************** *************** *************** *************** :............::

************** ************** **************:

I I I EDUCFILE

I I I

I I I

I JOBSEG I DEDUCT I COURSEG

04 I KU 09 I S1 11 I KLU

.............. **************

:JOBCODE :K *DED_CODE ** :COURSE_CODE :

:JOB_DESC : *DED_AMT ** :COURSE_NAME :

: : * ** : :

: : * ** : :

: : * ** : :

:............: *************** :............:

I JOBFILE ************** EDUCFILE

I

+-----------------+

I I

I SECSEG I SKILLSEG

05 I KLU 06 I KL

..............

:SEC_CLEAR : :SKILLS ::

: : :SKILL_DESC ::

: : : ::

: : : ::

: : : ::

:............: :............::

JOBFILE:

JOBFILE

Master Files and Diagrams

A-6 Information Builders

The JOBFILE Data Source
The JOBFILE data source contains information on a company’s job positions. Its
segments are:

• JOBSEG describes what each position is. The field JOBCODE in this segment is
indexed.

• SKILLSEG lists the skills required by each position.

• SECSEG specifies the security clearance needed, if any. This segment is unique.

The JOBFILE Master File

The JOBFILE Structure Diagram

 The EDUCFILE Data Source

Maintaining Databases A-7

The EDUCFILE Data Source
The EDUCFILE data source contains data on a company’s in-house courses. Its segments
are:

• COURSEG contains data on each course.

• ATTNDSEG specifies which employees attended the courses. Both fields in the
segment are key fields. The field EMP_ID in this segment is indexed.

The EDUCFILE Master File

The EDUCFILE Structure Diagram

Master Files and Diagrams

A-8 Information Builders

The SALES Data Source
The SALES data source records sales data for a dairy company (or a store chain). Its
segments are:

• STOR_SEG lists the stores buying the products.

• DAT_SEG contains the dates of inventory.

• PRODUCT contains sales data for each product on each date. Note the following
about fields in this segment:

• The PROD_CODE field is indexed.

• The RETURNS and DAMAGED fields have the MISSING=ON attribute.

The SALES Master File

 The SALES Data Source

Maintaining Databases A-9

The SALES Structure Diagram

Master Files and Diagrams

A-10 Information Builders

The PROD Data Source
The PROD data source lists products sold by a dairy company. It consists of one
segment, PRODUCT. The field PROD_CODE is indexed.

The PROD Master File

The PROD Structure Diagram

 The CAR Data Source

Maintaining Databases A-11

The CAR Data Source
The CAR data source contains specifications and sales information for rare cars. Its
segments are:

• ORIGIN lists the country that manufactures the car. The field COUNTRY is
indexed.

• COMP contains the car name.
• CARREC contains the car model.
• BODY lists the body type, seats, dealer and retail costs, and units sold.
• SPECS lists car specifications. This segment is unique.
• WARANT lists the type of warranty.
• EQUIP lists standard equipment.

The aliases in the CAR Master File are specified without the ALIAS keyword.

The CAR Master File

Master Files and Diagrams

A-12 Information Builders

The CAR Structure Diagram

 The LEDGER Data Source

Maintaining Databases A-13

The LEDGER Data Source
The LEDGER data source lists accounting information. It consists of one segment, TOP.
This data source is specified primarily for FML examples. Aliases do not exist for the
fields in this Master File, and the commas act as placeholders.

The LEDGER Master File

 The LEDGER Structure Diagram

Master Files and Diagrams

A-14 Information Builders

The FINANCE Data Source
The FINANCE data source contains financial information for balance sheets. It consists
of one segment, TOP. This data source is specified primarily for FML examples. Aliases
do not exist for the fields in this Master File, and the commas act as placeholders.

The FINANCE Master File

The FINANCE Structure Diagram

 The REGION Data Source

Maintaining Databases A-15

The REGION Data Source
The REGION data source lists account information for the east and west regions of the
country. It consists of one segment, TOP. This data source is specified primarily for FML
examples. Aliases do not exist for the fields in this Master File, and the commas act as
placeholders.

The REGION Master File

The REGION Structure Diagram

Master Files and Diagrams

A-16 Information Builders

The COURSES Data Source
The COURSES data source describes education courses. It consists of one segment,
CRSESEG1. The field DESCRIPTION has a format of TEXT (TX).

The COURSES Master File

The COURSES Structure Diagram

 The EMPDATA Data Source

Maintaining Databases A-17

The EMPDATA Data Source
The EMPDATA data source contains organizational data about a company’s employees.
It consists of one segment, EMPDATA. Note the following:

• The PIN field is indexed.

• The AREA field is a temporary one.

The EMPDATA Master File

The EMPDATA Structure Diagram

Master Files and Diagrams

A-18 Information Builders

The EXPERSON Data Source
The EXPERSON data source contains personal data about individual employees. It
consists of one segment, ONESEG.

The EXPERSON Master File

The EXPERSON Structure Diagram

 The TRAINING Data Source

Maintaining Databases A-19

The TRAINING Data Source
The TRAINING data source contains training course data for employees. It consists of
one segment, TRAINING. Note the following:

• The PIN field is indexed.

• The EXPENSES, GRADE, and LOCATION fields have the MISSING=ON
attribute.

The TRAINING Master File

The TRAINING Structure Diagram

Master Files and Diagrams

A-20 Information Builders

The PAYHIST File
The PAYHIST data source contains the employees’ salary history. It consists of one
segment, PAYSEG. The SUFFIX attribute indicates that the data file is a fixed-format
sequential file.

The PAYHIST Master File

The PAYHIST Structure Diagram

 The COMASTER File

Maintaining Databases A-21

The COMASTER File
The COMASTER file is used to display the file structure and contents of each segment in
a data source. Since COMASTER is used for debugging other Master Files, a
corresponding FOCEXEC does not exist for the COMASTER file. Its segments are:

• FILEID lists file information.

• RECID lists segment information.

• FIELDID lists field information.

• DEFREC lists a description record.

• PASSREC lists read/write access.

• CRSEG lists cross-reference information for segments.

• ACCSEG lists DBA information.

Master Files and Diagrams

A-22 Information Builders

The COMASTER Master File

 The COMASTER File

Maintaining Databases A-23

The COMASTER Structure Diagram

Master Files and Diagrams

A-24 Information Builders

The VideoTrk and MOVIES Data Sources
The VideoTrk data source tracks customer, rental, and purchase information for a video
rental business. It can be joined to the MOVIES data source. VideoTrk and MOVIES are
used in examples that illustrate the use of the Maintain facility.

VideoTrk Master File
FILENAME=VIDEOTRK, SUFFIX=FOC
SEGNAME=CUST, SEGTYPE=S1
FIELDNAME=CUSTID, ALIAS=CIN, FORMAT=A4, $
FIELDNAME=LASTNAME, ALIAS=LN, FORMAT=A15, $
FIELDNAME=FIRSTNAME, ALIAS=FN, FORMAT=A10, $
FIELDNAME=EXPDATE, ALIAS=EXDAT, FORMAT=YMD, $
FIELDNAME=PHONE, ALIAS=TEL, FORMAT=A10, $
FIELDNAME=STREET, ALIAS=STR, FORMAT=A20, $
FIELDNAME=CITY, ALIAS=CITY, FORMAT=A20, $
FIELDNAME=STATE, ALIAS=PROV, FORMAT=A4, $
FIELDNAME=ZIP, ALIAS=POSTAL_CODE, FORMAT=A9, $

SEGNAME=TRANSDAT, SEGTYPE=SH1, PARENT=CUST
FIELDNAME=TRANSDATE, ALIAS=OUTDATE, FORMAT=YMD, $

SEGNAME=SALES, SEGTYPE=S2, PARENT=TRANSDAT
FIELDNAME=PRODCODE, ALIAS=PCOD, FORMAT=A6, $
FIELDNAME=TRANSCODE, ALIAS=TCOD, FORMAT=I3, $
FIELDNAME=QUANTITY, ALIAS=NO, FORMAT=I3S, $
FIELDNAME=TRANSTOT, ALIAS=TTOT, FORMAT=F7.2S, $

SEGNAME=RENTALS, SEGTYPE=S2, PARENT=TRANSDAT
FIELDNAME=MOVIECODE, ALIAS=MCOD, FORMAT=A6, INDEX=I, $
FIELDNAME=COPY, ALIAS=COPY, FORMAT=I2, $
FIELDNAME=RETURNDATE, ALIAS=INDATE, FORMAT=YMD, $
FIELDNAME=FEE, ALIAS=FEE, FORMAT=F5.2S, $

MOVIES Master File
FILENAME=MOVIES, SUFFIX=FOC
SEGNAME=MOVINFO, SEGTYPE=S1
FIELDNAME=MOVIECODE, ALIAS=MCOD, FORMAT=A6, INDEX=I, $
FIELDNAME=TITLE, ALIAS=MTL, FORMAT=A39, $
FIELDNAME=CATEGORY, ALIAS=CLASS, FORMAT=A8, $
FIELDNAME=DIRECTOR, ALIAS=DIR, FORMAT=A17, $
FIELDNAME=RATING, ALIAS=RTG, FORMAT=A4, $
FIELDNAME=RELDATE, ALIAS=RDAT, FORMAT=YMD, $
FIELDNAME=WHOLESALEPR, ALIAS=WPRC, FORMAT=F6.2, $
FIELDNAME=LISTPR, ALIAS=LPRC, FORMAT=F6.2, $
FIELDNAME=COPIES, ALIAS=NOC, FORMAT=I3, $

 The VideoTrk and MOVIES Data Sources

Maintaining Databases A-25

VideoTrk Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE VIDEOTRK ON 05/21/99 AT 12.25.19

CUST
01 S1

*CUSTID **
*LASTNAME **
*FIRSTNAME **
*EXPDATE **
* **

I
I
I
I TRANSDAT

02 I SH1

*TRANSDATE **
* **
* **
* **
* **

I
+-----------------+
I I
I SALES I RENTALS

03 I S2 04 I S2
************** **************
*PRODCODE ** *MOVIECODE **I
*TRANSCODE ** *COPY **
*QUANTITY ** *RETURNDATE **
*TRANSTOT ** *FEE **
* ** * **
*************** ***************
************** **************

Master Files and Diagrams

A-26 Information Builders

MOVIES Structure Diagram
SECTION 01

STRUCTURE OF FOCUS FILE MOVIES ON 05/21/99 AT 12.26.05

MOVINFO
01 S1

*MOVIECODE **I
*TITLE **
*CATEGORY **
*DIRECTOR **
* **

The VIDEOTR2 Data Source
The VIDEOTR2 data source tracks customer, rental, and purchase information for a
video rental business. It is similar to VideoTrk but is a partitioned data source with both
a Master and Access File and with a date-time field.

The VIDEOTR2 Master File
FILENAME=VIDEOTR2, SUFFIX=FOC,
ACCESS=VIDEOACX, $
SEGNAME=CUST, SEGTYPE=S1
FIELDNAME=CUSTID, ALIAS=CIN, FORMAT=A4, $
FIELDNAME=LASTNAME, ALIAS=LN, FORMAT=A15, $
FIELDNAME=FIRSTNAME, ALIAS=FN, FORMAT=A10, $
FIELDNAME=EXPDATE, ALIAS=EXDAT, FORMAT=YMD, $
FIELDNAME=PHONE, ALIAS=TEL, FORMAT=A10, $
FIELDNAME=STREET, ALIAS=STR, FORMAT=A20, $
FIELDNAME=CITY, ALIAS=CITY, FORMAT=A20, $
FIELDNAME=STATE, ALIAS=PROV, FORMAT=A4, $
FIELDNAME=ZIP, ALIAS=POSTAL_CODE, FORMAT=A9, $
FIELDNAME=EMAIL, ALIAS=EMAIL, FORMAT=A18, $
SEGNAME=TRANSDAT, SEGTYPE=SH1, PARENT=CUST
FIELDNAME=TRANSDATE, ALIAS=OUTDATE, FORMAT=HYYMDI, $
SEGNAME=SALES, SEGTYPE=S2, PARENT=TRANSDAT
FIELDNAME=TRANSCODE, ALIAS=TCOD, FORMAT=I3, $
FIELDNAME=QUANTITY, ALIAS=NO, FORMAT=I3S, $
FIELDNAME=TRANSTOT, ALIAS=TTOT, FORMAT=F7.2S, $
SEGNAME=RENTALS, SEGTYPE=S2, PARENT=TRANSDAT
FIELDNAME=MOVIECODE, ALIAS=MCOD, FORMAT=A6, INDEX=I, $
FIELDNAME=COPY, ALIAS=COPY, FORMAT=I2, $
FIELDNAME=RETURNDATE, ALIAS=INDATE, FORMAT=YMD, $
FIELDNAME=FEE, ALIAS=FEE, FORMAT=F5.2S, $
DEFINE DATE/I4 = HPART(TRANSDATE, 'YEAR', 'I4');

 The VIDEOTR2 Data Source

Maintaining Databases A-27

The VIDEOTR2 Access File
On CMS,

MASTER VIDEOTR2
DATANAME 'VIDPART1 FOCUS A'
WHERE DATE EQ 1991;

DATANAME 'VIDPART2 FOCUS A'
WHERE DATE FROM 1996 TO 1998;

DATANAME 'VIDPART3 FOCUS A'
WHERE DATE FROM 1999 TO 2000;

On MVS, the data set names include your user ID as the high-level qualifier:

MASTER VIDEOTR2
DATANAME userid.VIDPART1.FOCUS
WHERE DATE EQ 1991;

DATANAME userid.VIDPART2.FOCUS
WHERE DATE FROM 1996 TO 1998;

DATANAME userid.VIDPART2.FOCUS
WHERE DATE FROM 1999 TO 2000;

Master Files and Diagrams

A-28 Information Builders

The VIDEOTR2 Structure Diagram
STRUCTURE OF FOCUS FILE VIDEOTR2 ON 09/27/00 AT 16.45.48

CUST
01 S1

*CUSTID **
*LASTNAME **
*FIRSTNAME **
*EXPDATE **
* **

I
I
I
I TRANSDAT

02 I SH1

*TRANSDATE **
* **
* **
* **
* **

I
+-----------------+
I I
I SALES I RENTALS

03 I S2 04 I S2
************** **************
*TRANSCODE ** *MOVIECODE **I
*QUANTITY ** *COPY **
*TRANSTOT ** *RETURNDATE **
* ** *FEE **
* ** * **
*************** ***************
************** **************

 The Gotham Grinds Data Sources

Maintaining Databases A-29

The Gotham Grinds Data Sources
Gotham Grinds is a group of data sources that contain information about a specialty items
company.

The GGDEMOG Data Source
The GGDEMOG data source contains demographic information about the customers of
Gotham Grinds, a company that sells specialty items like coffee, gourmet snacks, and
gifts. It consists of one segment, DEMOG01.

The GGDEMOG Master File

Master Files and Diagrams

A-30 Information Builders

The GGDEMOG Structure Diagram

The GGORDER Data Source
The GGORDER data source contains order information for Gotham Grinds. It consists of
two segments, ORDER01 and ORDER02, respectively.

The GGORDER Master File

 The Gotham Grinds Data Sources

Maintaining Databases A-31

The GGORDER Structure Diagram

The GGPRODS Data Source
The GGPRODS data source contains product information for Gotham Grinds. It consists
of one segment, PRODS01.

The GGPRODS Master File

Master Files and Diagrams

A-32 Information Builders

The GGPRODS Structure Diagram

The GGSALES Data Source
The GGSALES data source contains sales information for Gotham Grinds. It consists of
one segment, SALES01.

The GGSALES Master File

 The Gotham Grinds Data Sources

Maintaining Databases A-33

The GGSALES Structure Diagram

The GGSTORES Data Source
The GGSTORES data source contains information for each of Gotham Grinds’ 12 stores
in the United States. It consists of one segment, STORES01.

The GGSTORES Master File

Master Files and Diagrams

A-34 Information Builders

The GGSTORES Structure Diagram

Maintaining Databases B-1

APPENDIX B

Error Messages

Topics:

• Accessing Error Files

• Displaying Messages Online

If you need to see the text or explanation for any error message,
you can display it online in your FOCUS session or find it in a
standard FOCUS ERRORS file. All of the FOCUS error
messages are stored in eight system ERRORS files.

Error Messages

B-2 Information Builders

Accessing Error Files
For CMS, the ERRORS files are:

• FOT004 ERRORS

• FOG004 ERRORS

• FOM004 ERRORS

• FOS004 ERRORS

• FOA004 ERRORS

• FSQLXLT ERRORS

• FOCSTY ERRORS

• FOB004 ERRORS

For MVS, these files are the following members in the ERRORS PDS:

• FOT004

• FOG004

• FOM004

• FOS004

• FOA004

• FSQLXLT

• FOCSTY

• FOB004

 Displaying Messages Online

Maintaining Databases B-3

Displaying Messages Online
To display a message online, issue the following query command at the FOCUS
command level

? n

where n is the message number.

The message number and text will display along with a detailed explanation of the
message (if one exists). For example, issuing the following command:

? 210

displays the following

(FOC210) THE DATA VALUE HAS A FORMAT ERROR:

An alphabetic character has been found where all numerical digits are
required.

Maintaining Databases I-1

Index

Symbols
&FOCDISORG, 12-8

(backslash) escape character (Maintain), 8-15

/ (prefix-area command), 14-16
FSCAN, 14-16

/ spot markers, 11-8
FIDEL, 11-8, 11-12

? COMBINE, 10-189, 10-196

? command, 14-36
display previous command, 14-36

? FILE, 10-213
restart when system fails, 10-213
structural integrity of databases, 12-36

? subcommand
SCAN, 13-18

<0X (spot marker), 11-8, 11-12

= command, 14-36
FSCAN, 14-36

A
ABS, 9-8

ABS function, 9-8

Absolute File Integrity, 10-11, 10-206, 10-207
FSCAN, 14-2, 14-9, 14-11

absolute value, 9-8

ACCEPT, 14-28
FSCAN, 14-28
HELPMESSAGE, 10-129
transaction type, 10-123

Accept List dialog box, 5-57

Access Files
VIDEOTR2, A-27

ACTIVATE, 10-11, 10-198, 10-200
MOVE, 10-200
RETAIN, 10-200
syntax, 10-198, 10-200

active and inactive fields (MODIFY), 10-198

AGAIN subcommand, 13-18

AGAIN subcommand in SCAN, 13-18

ALIAS attribute, 6-3
restrictions, 6-3

alphabet, 6-3
valid characters, 6-3

alphanumeric character strings, 9-2

alphanumeric expressions (Maintain), 8-2, 8-14
backslash (\) character, 8-15
concatenating strings, 8-15
escape character, 8-15
evaluating, 8-15

alphanumeric fields, 9-2

alphanumeric format (MODIFY), 10-26
fixed-format data sources, 10-26
sources, 10-26

alternate file views, 14-9
FSCAN, 14-9
MODIFY, 10-70, 10-83

anchor segment, 2-6

applications, 2-27
event-driven processing, 2-27
executing, 3-11

AUTOCOMMIT (Maintain), 2-46

B
BACK subcommand, 13-18

BACK subcommand in SCAN, 13-18

BACKGROUND_COLOR, 7-116

Index

I-2 Information Builders

backslash (\) character, 8-15

BACKWARD, 14-13, 14-15
FSCAN, 14-13, 14-15

BEGIN command (Maintain), 7-7
nested, 7-8

blanks, trimming, 9-33

block mode, 2-26

blocks of code, 7-2

Boolean expressions (Maintain), 8-17
syntax, 8-18

borders, 5-8
Winform Painter, 5-8

Browser dialog box, 5-67

browsers (winforms), 3-15, 5-67
creating, 5-67
editing, 5-27, 5-29
length of row field, 5-67
stack to browse, 5-67

built-in functions (Maintain), 9-1, 9-2, 9-8
accessing, 9-6
characters, 9-2
date and time, 9-4
decoding, 9-4
gids, 9-5
numeric, 9-5
specifying arguments, 9-8

business logic, 1-7

buttons (winforms), 4-33, 5-69
adding, 4-33
creating, 5-69
default button, 4-10
defined, 4-10
editing, 5-27, 5-30
justifying text, 5-69
name, 5-69
PF keys, 5-69
radio, 5-6
shortcut key, 5-69
shortcuts, 5-44
text, 5-69

buttons (winforms) (continued)
triggers, 5-69
using, 4-10

C
C (prefix-area command), 14-23

FSCAN, 14-23

calculations on dates, 8-9

CALL command, 1-8, 2-17, 7-9, 7-56
passing variables, 2-18

canvas (Winform Painter), 5-12

CAR data source, A-11

CASE command (Maintain), 7-12

case logic (MODIFY), 10-131, 10-156
applications, 10-145
bad values, 10-145, 10-154
ENDCASE, 10-131
GOTO, 10-136
IF, 10-136, 10-140
incoming values, 10-145, 10-153
MATCH, 10-136, 10-143
NEXT, 10-145, 10-146
offering user selections, 10-145, 10-150
ON INVALID, 10-136, 10-145
PERFORM, 10-136, 10-137
repeating groups, 10-31
REPOSITION, 10-145, 10-146
restrictions, 10-146
rules governing branching, 10-136, 10-142
rules governing cases, 10-133
START, 10-135
syntax, 10-131
TRACE, 10-155
transaction data sources, 10-145, 10-151
unique segments, 10-145, 10-148
validation tests, 10-136, 10-145

case sensitivity, 6-2

 Index

Maintaining Databases I-3

cases (Maintain), 5-89
branching to PERFORM, 7-14
converting, 9-15, 9-18, 9-33, 9-34
copying in Winform Painter, 5-86, 5-89
defining, 7-12
deleting in Winform Painter, 5-86
editing in Winform Painter, 5-86
invoking PERFORM, 7-81
invoking COMPUTE, 7-22
invoking functions, 7-14
naming, 6-3
opening in Winform Painter, 5-86, 5-87
renaming in Winform Painter, 5-86, 5-89
return values, 7-14
top case, 7-15
top function, 7-15

Cases menu, 5-86

CHANGE, 14-31
FSCAN, 14-31
SCAN, 13-15

change verification, 2-41, 2-43
DB2 data sources, 2-46

ChangeColBcolor, 7-116, 9-9

ChangeColFcolor, 7-116, 9-9

character string, 9-13

character string (Maintain), 9-16
justifying, 9-16, 9-23
left-justifying, 9-16
right-justifying, 9-23

characters, 6-3
built-in functions (Maintain), 9-2
names (Maintain), 6-3
strings (Maintain), 8-15

CHECK, 10-206
checkpoint facility, 10-206
MODIFY, 10-206
REBUILD CHECK, 12-21, 12-32, 12-33

check boxes (winforms), 4-10, 5-5, 5-72
creating, 5-72
editing, 5-27, 5-30
name, 5-72
text, 5-72
triggers, 5-72
variable for checked status, 5-72

checkpoint facility, 10-11, 10-206
comparing CHECK and COMMIT, 10-213
placement in case logic requests, 10-133

CHILD (FSCAN), 14-5, 14-23, 14-25
SINGLE mode, 14-25

child procedures, 2-20
accessing data sources, 2-20

classes, 2-51, 2-52
class editor, 2-55
defining, 2-55, 7-34
DESCRIBE command, 2-55, 7-34
inheritance, 2-52
libraries, 2-56
member functions, 2-52
member variables, 2-52
subclasses, 2-52
superclasses, 2-52

CLEAR, 10-188
COMBINE, 10-188

client/server deployment, 1-2

CLOSE in WINFORM command, 7-111

close_winform sysytem action, 5-47

CO (FSCAN), 14-16, 14-19, 14-21, 14-39

colors, 5-39
changing in grids, 9-9
entry fields, 4-18
setting via WINFORM SET, 7-116
support for, 5-8
Winform Painter, 5-8

Index

I-4 Information Builders

columns (Maintain), 2-6
determining number in grid, 9-10
protecting, 4-29
redefining, 2-18
temporary, 2-9, 7-18, 7-21
user-defined, 2-9
virtual, 2-9, 7-18, 7-21

COMASTER data source, A-21

COMBINE, 10-11, 10-188, 10-189, 10-196
? COMBINE, 10-189, 10-196
clearing, 10-189
combining structures, 10-189, 10-195
compared to JOIN, 10-189, 10-196
files with different DBA passwords, 10-189
PREFIX, 10-189, 10-193
syntax, 10-190
Syntax, 10-190
TAG, 10-189, 10-190, 10-192

COMBINE command (FSCAN), 14-9

combo boxes (winforms), 4-6, 5-7, 5-77
accepts, 5-77
creating, 5-77
data, 5-77
editing, 5-27, 5-28, 5-32
field (source of list), 5-77
height of list, 5-77
name, 5-77
stack, 5-77
triggers, 5-77
using, 4-6
validating data, 5-77
width of list, 5-77

comma-delimited data sources (MODIFY), 10-22,
10-35

activating fields, 10-198, 10-200
date formats, 10-35
default, 10-35
identifying fields, 10-37
identifying values, 10-37
log files, 10-123
MATCH, 10-40
missing values, 10-39
NEXT, 10-40

comma-delimited data sources (MODIFY)
(continued)

ON ddname option, 10-35
PROMPT, 10-41, 10-50

command buttons (winforms), 4-6, 5-7
creating, 4-33
default, 4-6
defined, 4-6
using, 4-6

command reference, 7-1

comments, 6-8
Maintain language, 6-8
Maintain procedures, 6-6, 6-8

COMMIT command (Maintain), 2-34, 2-41, 3-11,
7-16

DB2 data sources, 2-46
defining a logical transation, 2-32

COMMIT command (MODIFY), 10-11, 10-206,
10-207, 10-213

Absolute File Integrity, 10-213
compared to CHECK, 10-213
MATCH, 10-213, 10-214
NEXT, 10-213, 10-214
system failure, 10-213, 10-214

COMPILE (Maintain), 1-8, 7-17

COMPILE (MODIFY), 10-11, 10-197
RUN, 10-197

COMPILE command, 7-17

compiled calculations (MODIFY), 10-90

COMPUTE (FIDEL), 11-43

COMPUTE (Maintain), 2-9, 2-13, 7-18
conditional commands, 7-47
creating user-defined fields, 7-21
defining stack columns, 2-9
syntax, 7-18

 Index

Maintaining Databases I-5

COMPUTE (MODIFY), 10-11, 10-90
changing incoming data, 10-95
compilation, 10-90
deactivating, 10-205
DECODE, 10-11
FIND, 10-105, 10-106
LOOKUP, 10-105
MATCH, 10-90, 10-95
multiple statements, 10-90, 10-93
NEXT, 10-90, 10-95
non-data source fields, 10-90, 10-96
placement, 10-90, 10-93
types of fields, 10-90

concurrent processing (Maintain), 2-41, 2-42, 2-46
change verification, 2-42
FOCUS Database Server, 2-42

concurrent transactions (Maintain), 2-39

conditional actions (Maintain), 7-5

conditional expressions, 8-20
IF, 10-136, 10-140
Maintain, 8-2
syntax, 8-20
VALIDATE, 10-97, 10-100

conditional fields, 10-32
adding segment instances, 10-32
FIDEL, 11-43
fixed-format transaction data sources, 10-32
text, 10-26

conditional operators, 14-39
LOCATE, 14-16, 14-19, 14-21, 14-39

CONTAINS (FSCAN), 14-16, 14-19, 14-21, 14-39

CONTAINS (Maintain), 8-17

Continental Decimal Notation (CDN), 8-7

CONTINUE TO, 10-70, 10-71
NEXT, 10-85, 10-88

control box (Winform Painter), 5-5

controls (winforms), 5-52
browser, 5-67
buttons, 5-69
checkes box, 5-72
combo boxes, 5-77
command buttons, 5-69
creating, 5-51
editing, 5-12
entry fields, 5-52
frames, 5-68
grids, 5-63
list boxes, 5-74
radio button group, 5-80
text, 5-62

conversions, 12-42
legacy date fields, 12-40, 12-42, 12-44

COPY command, 7-23
manipulating stacks, 7-23

COURSES data source, A-16

CREATE command, 12-2

Create Field dialog box, 5-52

cross-referenced data sources, 2-6
Maintain, 2-6

CRTFORM, 11-1
active fields, 10-198, 10-199
automatic, 11-48
case logic, 11-59, 11-66
CLEAR/NOCLEAR, 11-73, 11-74
conditional fields, 11-43
cursor position, 11-33
defining messages, 10-129
different from -CRTFORM, 11-8, 11-9
display fields, 11-14
displaying messages, 10-129
FIDEL and DM, 11-4
FIDEL and MODIFY, 11-2
FIXFORM, 11-47
generating with Screen Painter, 11-84
groups of fields, 11-61, 11-66, 11-71
handling errors, 11-69
HELPMESSAGE, 10-129
labeled fields, 11-28

Index

I-6 Information Builders

CRTFORM (continued)
LINE, 11-53
log files, 10-123, 11-73
LOWER, 11-8, 11-14
MATCH or NEXT with MODIFY, 11-14
mixed screens, 11-47
multiple record processing, 10-157, 10-164,

11-53, 11-61, 11-62
PF keys, 11-20
REPEAT, 10-157, 10-168, 11-61, 11-62
SCAN, 13-18
screen attributes, 11-25, 11-30, 11-41
screen size, 11-73, 11-75
spot markers, 11-8, 11-12
turnaround fields, 11-14
TYPE option, 11-8, 11-9, 11-77
VALIDATE, 11-69, 11-70

-CRTFORM, 11-2, 11-48
BEGIN, 11-4
different from CRTFORM, 11-8, 11-9
END, 11-4
limits, 11-7
LOWER, 11-8, 11-14
syntax, 11-8, 11-9
TYPE option, 11-8, 11-9
UPPER, 11-8, 11-14
variable fields, 11-78

CRTFORM subcommand, 13-18

CRTFORM subcommand in SCAN, 13-18

CurGrdColNum, 7-116, 9-10

CurGrdRowNum, 7-116, 9-10

Current Area, 2-14

CURRENT in COPY command, 7-23

current instance, 14-16
FSCAN, 14-16

current position, 13-4
SCAN, 13-4

CURSOR, 10-157, 10-165

cursor position, 11-33
CURSORINDEX, 10-157, 10-165, 11-33

CURSORAT, 11-36

CurStkColNum, 7-116, 9-10

CurStkRowNum, 7-116, 9-10

D
data, 11-14

COMBINE, 10-189, 10-196
entry fields, 11-14
from multiple sources, 10-189, 10-196

data continuity, 2-21

data entry, 11-1
screen design, 11-1

data source operations, 3-11

data source paths, 7-67
reading data from multiple paths, 7-67

data sources, 1-4
accessing in child procedures, 2-20
change verification, 2-41, 2-43
copying data between, 7-66
DB2 row locks, 2-46, 2-50
DELETE command, 7-30
evaluating success, 2-30
fixed-format, 10-34
INCLUDE command, 7-48, 7-51
joining, 2-28
logical transactions (Maintain), 2-32
navigating, 7-69, 7-91
NEXT command, 7-66, 7-69
operations, 2-3
paths, 7-61
position, 2-20, 2-34, 3-6, 3-7
reading, 1-4, 2-6, 2-28
repositioning, 2-29
REVISE command, 7-93
sharing, 2-41, 2-42
transaction processing, 2-32
UPDATE (Maintain), 7-107
writing, 1-5, 2-6, 2-29
writing to, 7-30, 7-48, 7-93

 Index

Maintaining Databases I-7

DATA statement, 10-56
case logic requests, 10-133
ON ddname option, 10-56
VIA program option, 10-56

data types, 2-52
classes, 2-52
synonyms, 7-35

database stacks, 2-2

databases, 3-11
creating, 12-2
creating an external index, 12-30, 12-31
date stamps, 12-38
file pointers, 12-32
indexes, 12-21
rebuilding (FOCUS), 12-4
security (FSCAN), 14-9, 14-11
time stamps, 12-38
transactions, 3-11

date built-in functions (Maintain), 9-4

date constant, 8-11

date expressions (Maintain), 8-2, 8-8
calculating, 8-9
components, 8-8, 8-11
field format, 8-10
field formats, 8-9
manipulating, 8-8
operand format, 8-12

DATE NEW (REBUILD), 12-40, 12-42
updated Master File, 12-44

date stamps, 9-13, 9-14, 9-32, 12-38
REBUILD TIMESTAMP, 12-38

dates, 8-9, 10-29
base date, 10-29
calculations, 8-9
combining variables, 8-12
comma-delimited data sources, 10-35
converting legacy dates to date format, 12-40
describing in MODIFY, 10-29
extracting component, 8-11
internal format, 10-29
manipulating, 8-10

dates (continued)
MODIFY transactions, 10-26
natural literal, 10-29

DB2 data sources, 2-46
concurrent transactions, 2-46
reading, 1-4
transaction processing, 2-46
writing, 1-5

DB2 row locks, 2-46, 2-50

DBA, 1-4, 1-5
COMBINE, 10-189

DEACTIVATE, 10-11, 10-205
COMPUTES, 10-205
INVALID, 10-205
RETAIN, 10-205
syntax, 10-205

deactivating fields, 10-205

DECLARE command, 7-27
declaring objects, 2-57

DECODE, 9-11

DECODE (MODIFY), 10-11, 10-97, 10-104

default button, 5-69

DEFINE attribute, 2-9, 7-18, 7-21

DELETE (FSCAN), 14-26, 14-35

DELETE (Maintain), 2-29, 3-11, 7-30
data source position, 7-33
unique segments, 7-33

DELETE (MODIFY), 10-63, 10-67
descendant segments, 10-70, 10-75
NEXT, 10-145, 10-146
segment instances, 10-67

DELETE subcommand in SCAN, 13-18

descendant segments, 10-70, 10-75
3-level data sources, 10-70, 10-79
matching across segments, 10-70, 10-75
MODIFY, 10-70, 10-75
multi-path data sources, 10-70, 10-80
updating, 10-70, 10-75

Index

I-8 Information Builders

DESCRIBE command, 7-34

design screen, 5-12
parts, 5-12

destination stacks, 5-39

Destination Stacks list box, 4-10

DFC, 7-18
COMPUTE (Maintain), 7-18

dialog boxes (Winform Painter), 5-2

Dialogue Manager, 11-4
defining variable field length, 11-7
FIDEL, 11-4
variables in procedures, 10-212

display fields, 11-14
FIDEL, 11-14

display options, 13-18
TYPE, 13-18
with SHOW, 13-18

DISPLAY subcommand, 13-14

DISPLAY subcommand in SCAN, 13-18

double-precision (MODIFY), 10-26
fixed-format data sources, 10-26

DOWN, 14-13
FSCAN, 14-13

drop boxes (Winform Painter), 5-8

DUMP (REBUILD REORG), 12-13

DUPL transaction type, 10-123

duplicate field names (MODIFY), 10-22

duplicate names, 6-3

E
ECHO (MODIFY), 10-11, 10-208

EDIT, 8-16
replacement by MASK, 9-18

edit menu (Winform Painter), 5-26, 5-34
copying objects, 5-34
deleting objects, 5-34
moving objects, 5-33
resizing objects, 5-34

EDUCFILE data source, A-7

embedded data, 11-8
FIDEL, 11-8, 11-12
MODIFY, 10-115, 10-118

EMPDATA data source, A-17

EMPLOYEE data source, A-3

END (Maintain), 3-5, 7-36
GOTO command, 7-41

END (MODIFY, FSCAN and SCAN), 10-4
ending a prompting session, 10-41, 10-46
FSCAN, 14-37
position in request, 10-14

END subcommand in SCAN, 13-18

ENDBEGIN command (Maintain), 7-7

ENDCASE (Maintain), 7-12

ENDCASE (MODIFY), 10-131
CASE, 10-131
GOTO, 10-136
IF, 10-136, 10-140
PERFORM, 10-136, 10-137

ENDDESCRIBE, 7-34
DESCRIBE command, 7-34

ENDREPEAT (Maintain), 7-84
REPEAT, 7-84

ENDREPEAT (MODIFY), 10-157
GOTO, 10-157, 10-159
REPEAT, 10-157, 10-159

 Index

Maintaining Databases I-9

entry fields (winforms), 4-18, 5-3
accepts, 5-56
blink, 5-52
bold, 5-52
colors, 5-52, 5-61
creating, 4-18
default value, 5-52, 5-54
descriptive text, 5-55
destination, 5-52, 5-54
display length, 5-52, 5-55
invisible, 5-52
name, 5-52
object names, 5-52, 5-54
prompt, 5-52
protecting key fields, 5-55
reverse, 5-52
source, 5-52
triggers, 5-52, 5-59
underline, 5-52
uppercase, 5-55
validating data, 5-52

EQ operator, 14-16
FSCAN, 14-16, 14-19, 14-21, 14-39

error messages (MODIFY), 10-1
controlling display, 10-127
HELPMESSAGE, 10-129
logging, 10-123
user-specified, 10-115, 10-122

escape character, 8-15

event handlers, 7-15
check boxes, 5-72, 5-77
combo boxes, 5-77
entry fields, 5-52
grids, 5-63
list boxes, 5-74
radio button group, 5-80
restrictions, 7-15
specifying, 5-44
text, 5-44
Winform Painter, 5-44

event-driven development, 1-2, 1-6, 2-23

event-driven processing (Maintain), 1-2, 2-23, 2-27

EX command (Maintain), 7-37

EXIT (MODIFY), 10-133
GOTO, 10-136
IF, 10-136, 10-140
PERFORM, 10-136, 10-137

EXITREPEAT (MODIFY), 10-157, 10-159

EXPERSON data source, A-18

expressions (Maintain), 8-1
alphanumeric, 8-14
conditional, 8-20
date, 8-8
default values, 8-21
DIV, 8-3, 8-4
limits, 8-2
logical, 8-17
MOD, 8-3, 8-4
null values, 8-21
types, 8-2

external index, 12-26
activating, 12-30
concatenated databases, 12-29
defined fields, 12-29
REBUILD, 12-26

EXTERNAL INDEX (REBUILD), 12-26
activating, 12-30
concatenated databases, 12-29
defined fields, 12-29

EXTTERM, 11-25
screen attributes, 10-122

F
FIDEL, 11-1

automatic CRTFORMs, 11-48
COMPUTE, 11-44
-CRTFORM, 11-4
CRTFORM *, 11-48
CRTFORM limits, 11-6
cursor position, 11-33
data entry fields, 11-14
defining fields, 11-28
display fields, 11-14

Index

I-10 Information Builders

FIDEL (continued)
DM, 11-4
field attributes, 11-8, 11-9
field lengths, 11-8, 11-9
field positioning, 11-8, 11-12
field prefixes, 11-14
FIXFORM, 11-47
format errors, 11-14
HOLD buffer, 11-61, 11-62
invoking, 11-2
labeling fields, 11-28
lowercase entry, 11-8, 11-14
MODIFY, 11-2, 11-42
MODIFY/DM differences, 11-8, 11-9
PF keys, 11-6, 11-21
REPEAT, 11-61, 11-62
repeating fields, 11-61
repeating groups, 11-61, 11-62, 11-71
screen atributes, 11-25
screen elements, 11-8
Screen Painter, 11-84
SCREENINDEX, 11-61, 11-62
SET &CURSOR, 11-33
spot markers, 11-8, 11-12
syntax, 11-8
turnaround fields, 11-14

FIDEL fields, 11-9
assigning screen attributes, 11-25
automatic generation, 11-48
changing dynamically, 11-30
coloring, 11-25
conditional/non-conditional, 11-43
definitions, 11-8, 11-9
flashing, 11-25
intensifying, 11-25
labels, 11-9
nodisplay, 11-25
non-conditional, 11-43
positioning, 11-12
prefixes, 11-8, 11-9

FIDEL PF keys, 11-20
defaults, 11-6
resetting, 11-20, 11-22

FIDEL screen, 11-30
changing attributes, 11-30
elements, 11-8
lowercase entry in, 11-14
operating conventions, 11-6
Painter, 11-84
scrolling, 11-6
transmitting, 11-6

field attributes, 11-8
FIDEL, 11-8, 11-9

field formats (MODIFY), 10-26
COMPUTE, 10-90, 10-93
VALIDATE, 10-97

field lengths, 11-8
FIDEL, 11-8, 11-9

field names (FSCAN), 14-12
truncation, 14-12

field names (Maintain), 6-3
qualified, 6-3

field prefixes, 11-14
FIDEL, 11-14

field type (MODIFY), 10-26
fixed-format data sources, 10-26

fields (Maintain), 2-9
passing, 2-18
qualified names, 6-3
temporary, 2-9, 7-18, 7-21
virtual, 2-9, 7-18, 7-21

fields (MODIFY), 10-4
conditional, 10-26, 11-43
display, 11-14
HOLDCOUNT, 10-169, 10-170
HOLDINDEX, 10-169, 10-170
naming, 6-3
non-conditional, 11-43
null data, 7-115
SCREENINDEX, 10-169, 10-170
turnaround, 11-14

 Index

Maintaining Databases I-11

FILE command, 7-54
FSCAN, 14-37
MAINTAIN, 7-54
SCAN, 13-18

file menu (Winform Painter), 5-15
import, 5-19
new, 5-16
open, 5-17
preferences, 5-22
Regen, 5-21
save, 5-18
Select Master, 5-21

FINANCE data source, A-14

FIND, 14-16
FSCAN, 14-16, 14-21, 14-22
MODIFY, 10-97, 10-101, 10-105, 10-106,

10-107
NOT FIND, 10-105, 10-106
validating data, 10-107

FIRST (FSCAN), 14-16, 14-18

first record, 14-16
FSCAN, 14-16, 14-18

fixed-format data sources (MODIFY), 10-21, 10-24
activating fields, 10-198, 10-200
conditional fields, 10-26
log files, 10-123
moving backward through a record, 10-25
skipping columns in a record, 10-24
syntax, 10-22
transaction field formats, 10-26
Xn notation, 10-24
X-n notation, 10-25

FIXFORM, 11-47
FIDEL, 11-47
MODIFY, 10-21

FIXFORM from HOLD (MODIFY), 10-22

floating point fields, 10-26
MODIFY fixed-format data sources, 10-26

flow of control (Maintain), 1-2, 2-16
branching, 2-16
CASE, 7-12
forms, 7-114
GOTO, 7-41
IF command, 7-45
looping, 2-16, 7-84
nesting, 2-16
ON MATCH, 7-77
ON NEXT, 7-78
ON NOMATCH, 7-79
ON NONEXT, 7-80
PERFORM, 7-81
REPEAT, 7-84
triggering, 2-16
WINFORM command, 7-114

FocCount, 2-11, 3-15, 7-38

FocCurrent, 7-9, 7-16, 7-38

FocError, 7-9, 7-39

FocErrorRow, 2-30, 7-9, 7-39

FOCEXEC, 1-7, 5-9
business logic, 1-7

FocFetch, 7-39

FocIndex, 2-11, 3-15, 7-40

FOCURRENT variable (MODIFY), 10-9
SU facility, 10-9

FOCUS data sources, 10-188
combining (MODIFY), 10-188, 10-189, 10-195
rebuilding (Maintain), 12-4

FOCUS Database Server, 2-41, 2-44

FOR command, 2-4

FOREGROUND_COLOR, 7-116

FORMAT, 10-123
transaction type, 10-123

formats, 10-26
MODIFY fixed-format data sources, 10-26
MODIFY temporary fields, 10-90

Index

I-12 Information Builders

forms (Maintain), 7-111
default values, 7-115
dynamically changing properties, 7-116
flow of control, 7-114
null data, 7-115
WINFORM command, 7-111

forms menu (Winform Painter), 5-35
actions, 5-47
copy to, 5-35
deleting winforms, 5-38
moving, 5-50
New option, 5-36
properties, 5-39
renaming winforms, 5-38
size, 5-49
switching winforms, 5-36
triggers, 5-46
zoom, 5-50

FORWARD in FSCAN, 14-13

frames, 5-68

FREEFORM, 10-35

free-format data sources (MODIFY), 10-35
activating fields, 10-198, 10-200
date formats, 10-35
default, 10-35
FREEFORM, 10-37
identifying fields, 10-37
identifying values, 10-37
log files, 10-123
MATCH, 10-40
missing values, 10-39
NEXT, 10-40
ON ddname option, 10-35
PROMPT, 10-41, 10-50

FSCAN, 13-3, 14-1
? command, 14-36
= command, 14-36, 14-37
Absolute File Integrity, 14-2, 14-9, 14-11
alternate file views, 14-9
changing field values, 14-30, 14-31
changing key field values, 14-32
changing substrings, 14-31
child segments, 14-5, 14-23

FSCAN (continued)
COMBINE, 14-9
commands, 14-12
conditional relations, 14-16, 14-19, 14-21, 14-39
continuing FSCAN session, 14-37
database integrity, 14-9, 14-11
DBA considerations, 14-9, 14-11
DEFINE fields, 14-10
DELETE, 14-26, 14-35
deleting segment instances, 14-35
displayable fields, 14-5, 14-36
displaying fields, 14-10
displaying previous commands, 14-36
displaying root segment, 14-5
displaying segments, 14-9
END, 14-37, 14-39
ending session, 14-2, 14-37
entering, 14-2
executing previous command, 14-36, 14-37
exiting, 14-37
external data sources, 14-9
FILE, 14-37, 14-39
finding an instance in a group, 14-21
general rules, 14-9
HELP, 14-38
limitations, 14-9, 14-11
lowercase alpha fields, 14-2, 14-5, 14-9
mixed case alpha fields, 14-2, 14-5, 14-9
MULTIPLE, 14-39
multiple commands, 14-12
navigating FOCUS structures, 14-5
NE operator, 14-16
PF keys summary, 14-46
prefix commands, 14-16
prefix-area summary, 14-47
QQUIT, 14-37
QUIT, 14-37
recovering key values, 14-32
recovering typed-over values, 14-28
reissuing previous commands, 14-36
repeating commands, 14-36
root segment, 14-2, 14-16, 14-18
saving changes, 14-37
screen layout, 14-2
scrolling the screen, 14-13
segments with duplicate keys, 14-9

 Index

Maintaining Databases I-13

FSCAN (continued)
selecting by field values, 14-16, 14-19
selecting the current instance, 14-16, 14-22
shadow paging, 14-9, 14-11
show list, 14-2, 14-4
SINGLE mode, 14-25
SU mode, 14-9
summary of commands, 14-39
syntax summary, 14-39
truncating commands, 14-12
typing over fields, 14-28
updating non-key field values, 14-31
uppercase alpha fields, 14-2, 14-5, 14-9
usable databases, 14-9
USE command, 14-9

FSCAN function keys, 14-39
modifications, 14-39

FSCANSAVE, 14-37

function keys, 5-14
Winform Painter, 5-14

functions (Maintain), 7-12
built-in, 9-1, 9-2, 9-8
defining, 7-12
event handlers, 7-15
invoking COMPUTE, 7-22
invoking PERFORM, 7-81, 7-82
naming, 6-3
return values, 7-14
top, 7-15

functions (MODIFY), 10-97
DECODE, 10-97, 10-101
FIND, 10-97, 10-101, 10-105, 10-106
LOOKUP, 10-105, 10-108

Fusion databases, 12-47
converting from FOCUS, 12-47
multi-dimensional indexes, 12-47

G
GE, 14-39

FSCAN, 14-16, 14-19, 14-21, 14-39

Gen Master, 5-85

Gen Segment, 5-83

GetBody function, 4-44

GETHOLD, 10-169, 10-176

GGDEMOG data source, A-29

GGORDER data source, A-30

GGPRODS data source, A-31

GGSALES data source, A-32

GGSTORES data source, A-33

global declarations (Maintain), 7-29

global variables (Maintain), 7-29

Gotham Grinds data sources, A-29
GGDEMOG, A-29
GGORDER, A-30
GGPRODS, A-31
GGSALES, A-32
GGSTORES, A-33

GOTO (Maintain), 7-41
data source commands, 7-43
ENDCASE, 7-41, 7-43
ENDREPEAT, 7-41
EXIT, 7-41
EXITREPEAT, 7-41
top, 7-41
used with PERFORM, 7-44, 7-82

GOTO (MODIFY), 10-136
ENDREPEAT, 10-157, 10-159
EXIT, 10-85, 10-86, 10-136
EXITREPEAT, 10-157, 10-159
MATCH and NEXT, 10-136, 10-143
ON INVALID, 10-97, 10-102
rules governing branching, 10-136, 10-142
syntax, 10-136

Graphical User Interface, 5-1

greatest integer, 9-14

Index

I-14 Information Builders

grids (winforms), 3-18, 4-27, 9-5
accepts, 5-63
adding, 4-27
adding columns, 4-28
borders, 5-63
changing color, 9-9
changing stacks, 4-29
column titles, 5-63
column width, 5-63
columns, 5-63
creating, 5-63
deleting columns, 5-63, 5-66
destination of data, 5-63, 5-66
determining current row or column number, 9-10
editing, 5-27, 5-29
editing columns, 5-63
headers, 5-63
preventing the adding of rows, 9-25, 9-26
source of data, 5-63
triggers, 5-63
uppercase, 5-63
validating data, 5-63

grids dialog box, 5-63

GT, 14-39
FSCAN, 14-16, 14-19, 14-21, 14-39

GUI (graphical user interfaces), 1-2

H
HELP, 14-38

FSCAN, 14-38
key (MODIFY), 10-129, 10-130

Help menu, 5-90

HELPMESSAGE, 10-129
CRTFORMs, 10-129

HHMMSS, 9-12

HIDE in WINFORM command, 7-111

HIGHEST in STACK SORT command, 7-102

HOLD command, 10-161
Buffer, 11-61, 11-62
MODIFY, 10-157, 10-159, 10-161

HOLDCOUNT variable, 10-157, 10-163, 10-166,
11-61, 11-62

Host Language Interface (HLI), 10-18, 13-3

I
identifiers (Maintain), 6-5

reserved words, 6-5
specifying, 6-3

IF command (Maintain), 7-45, 7-47
BEGIN, 7-46
conditional expressions, 8-20
nesting, 7-46

IF command (MODIFY), 10-136, 10-140
MATCH and NEXT, 10-136, 10-143
rules governing branching, 10-136, 10-142

IMPORT, 7-60
MODULE command, 7-60

INCLUDE (Maintain), 2-29, 3-11, 7-48
data source position, 7-51
null data, 7-51
unique segments, 7-48

INCLUDE (MODIFY), 10-63, 10-64
descendant segments, 10-70, 10-75
NEXT, 10-85, 10-86
type S0 segments, 10-70, 10-81
WITH-UNIQUES method, 10-70, 10-73

INDEX (REBUILD), 12-21

indexed fields, 10-105
FIND, 10-105, 10-106

indexes, 12-21
concatenated databases, 12-29
defined fields, 12-29
external, 12-26
multi-dimensional, 12-47
REBUILD EXTERNAL INDEX, 12-26
REBUILD INDEX, 12-21

INFER command, 2-6, 7-52

inheritance, 2-52

Initial_HHMMSS, 9-13

 Index

Maintaining Databases I-15

Initial_TODAY, 9-13, 9-14

initialization, 10-169
Scratch Pad Area, 10-169, 10-170

INPUT, 14-16
area, 14-2
FSCAN, 14-16, 14-26

INPUT subcommand in SCAN, 13-18

INT function, 9-14

integer fields, 10-26
fixed-format data sources, 10-26
MODIFY fixed-format data sources, 10-29

internal date format, 10-29

INVALID transaction type, 10-205

J
JOBFILE data source, A-6

JOIN command, 10-105
COMBINE, 10-189, 10-196
LOOKUP, 10-6, 10-105, 10-108

joins, 2-6

JUMP, 13-18
in FSCAN, 14-23
in SCAN, 13-18

K
K (prefix-area command), 14-16

FSCAN, 14-16, 14-32

KEEP option, 2-21
in GOTO command, 7-41

key fields, 14-34
REPLACE KEY, 14-34

key fields (FSCAN), 14-32

key fields (Maintain), 5-55
protected in Winforms, 5 -55

key fields (MODIFY), 10-70
segments with multiple keys, 10-70, 10-82
segments with no keys, 10-70, 10-80
updating, 10-58

key fields (Winforms), 2-6
requirements, 2-6

L
labels, 10-131

case logic (MODIFY), 10-131, 10-135
FIDEL, 11-8, 11-9, 11-28

LAST, 14-16
FSCAN, 14-16, 14-18

LCWORD function/subroutine, 9-15

LCWORD2, 9-15

LE operator, 14-16
FSCAN, 14-16, 14-19, 14-21, 14-39

LEDGER data source, A-13

LEFT command, 14-13
FSCAN, 14-13, 14-15

legacy date fields, 12-40, 12-42
converting to date format, 12-42

LENGTH, 9-16

libraries (Maintain), 2-55, 7-6
class definitions, 2-55
importing, 2-55, 7-60
nesting, 2-55, 7-60
search criteria, 7-60
top function, 7-60

limits (FSCAN), 14-9, 14-11

limits (MODIFY), 10-19, 10-189
combined structures, 10-189, 10-196
fixed-formats, 10-22
length of TYPE lines, 10-115, 10-116
messages displayed in a case, 10-133
number of cases, 10-133
PROMPT text, 10-41, 10-45

Index

I-16 Information Builders

list boxes (winforms), 4-6, 5-4, 5-74
defined, 4-6
editing, 5-27, 5-31
field (source of list), 5-74
name, 5-74
size to fit, 5-74
stack (source of list), 5-74
title, 5-74
triggers, 5-74

LJUST, 9-16

LOAD (REBUILD REORG), 12-13

load procedures, A-2

local variables (Maintain), 7-29

LOCATE command, 14-19
FSCAN, 14-16, 14-19, 14-20

LOCATE subcommand, 13-13

LOCATE subcommand in SCAN, 13-18

LOG, 9-17, 10-11, 10-123, 11-73

log files (Maintain), 7-99
SAY command, 7-99
segment and stack values, 7-100
TYPE command, 7-103

logarithm, 9-17

logging transacions (MODIFY), 10-123

logging transactions (MODIFY), 10-123
ACCEPT, 10-123
controlling rejection messages, 10-127
CRTFORM, 10-123
DUPL, 10-123
FIXFORM, 10-123
FORMAT, 10-123
FREEFORM, 10-123
INVALID, 10-123
MSG, 10-123
NOMATCH, 10-123
placing in case logic requests, 10-133
PROMPT, 10-123
record length of log file, 10-123
TRANS, 10-123
transaction types, 10-123

logical expressions (Maintain), 8-2, 8-17
Boolean, 8-17, 8-18
operators, 8-18, 8-19
relational, 8-17

logical transactions (Maintain), 2-32, 2-34, 3-11
broadcast commit, 2-34, 2-38
concurrent, 2-39
data source position, 2-34, 2-35
evaluating success, 2-38
failure, 2-34
FocCurrent variable, 2-38
multiple data source types, 2-34, 2-38
rolling back, 2-34
size, 2-34
spanning procedures, 2-34

LOOKUP, 10-11, 10-105, 10-108
data source values used for searching, 10-110
deactivated fields, 10-198, 10-199
next highest or lowest value, 10-105, 10-112
segment types accessible, 10-105, 10-108
VALIDATE, 10-105, 10-114

loops (Maintain), 7-3
branching out of a loop, 7-90
repeating a variable number of times, 7-86
simple, 7-86
terminating, 7-90

LOWER, 9-18

lowercase, 11-8
converting to (Maintain), 9-18
entry in FIDEL, 11-8, 11-14
FSCAN, 14-2, 14-5
syntax, 6-2

LT, 14-19
FSCAN, 14-16, 14-19, 14-21, 14-39

M
Maintain, 1-2

calling procedures, 2-17
functions, 7-2
performance, 1-8
restricting access to data, 1-4

 Index

Maintaining Databases I-17

MAINTAIN command, 3-5, 7 -54
calling a procedure from another procedure, 7-56
passing variables between procedures, 7-56
specifying files, 7-55

Maintain features, 1-2

Maintain language, 7-1
assigning values, 7-4
blocks of code, 7-2
case libraries, 7-6
case sensitivity, 6-2
class libraries, 7-6
command reference, 7-1
comments, 6-6, 6-8
conditional actions, 7-5
creating variables, 7-4
defining cases, 7-2
defining classes, 7-4
defining Maintain functions, 7-2
defining procedures, 7-2
executing procedures, 7-3
expressions, 8-1
line comments, 6-8
manipulating stacks, 7-4
messages, 7-6
multi-line commands, 6-6
naming rules, 6-3
procedure contents, 6-6
reading data, 7-5
reserved words, 6-5
rules, 6-1
semicolons, 6-7
stream comments, 6 -8
terminating, 6-7
transferring control, 7-2
Winforms, 7-3
writing transactions, 7-5

Maintain procedures, 6-8
blank lines, 6-6
comments, 6-8
contents, 6-6

MARK subcommand in SCAN, 13-18

MASK, 9-18, 9-19

Master Files, 1-4, 5 -9
samples, A-2

MATCH (MODIFY), 10-58
3-level FOCUS structure, 10-70, 10-79
actions, 10-63, 10-68
ACTIVATE and DEACTIVATE, 10-205
activating fields, 10-68, 10-69
active and inactive fields, 10-198
adding new segment instances, 10-70, 10-75
adding segment instances, 10-63, 10-64
alternate file views, 10-70, 10-83
case logic, 10-131
COMMIT, 10-206, 10-207
COMPUTE, 10-90
CONTINUE, 10-70, 10-75
CONTINUE TO, 10-70, 10-71
CRTFORM, 10-19, 11-2
deactivating fields, 10-68, 10-69
defaults, 10-58, 10-62
defining stack columns, 2-6
deleting descendant segments, 10-70, 10-75
deleting segment instances, 10-63, 10-67
descendant segments, 10-70, 10-75
FIXFORM, 10-34
FREEFORM, 10-35
GOTO, PERFORM, and IF, 10-136, 10-143
INCLUDE, 10-63
MATCH/ON NOMATCH, 10-58, 10-61
matching across segments, 10-70, 10-75
multi-path data sources, 10-70, 10-80
multiple key segments, 10-70, 10-82
NEXT, 10-85, 10-88
non-key segments, 10-70, 10-80
PROMPT, 10-41, 10-49
REPEAT, 10-157, 10-159
sibling segments, 10-70, 10-80
syntax, 10-59
syntax summary, 10-217
TYPE, 10-115, 10-116
unique segments, 10-68, 10-70, 10-71
updating key fields, 10-58
updating segment instances, 10-63, 10-65
VALIDATE, 10-97
WITH-UNIQUES, 10-70, 10-73, 10-85

Index

I-18 Information Builders

MATCH command (Maintain), 2-6, 2-28, 7-57,
7-59

REPOSITION, 7 -91
using, 7-57
with NEXT, 7-68

MAX function, 9-20

MDINDEX (REBUILD), 12-47

member functions and variables, 2-51
defining DESCRIBE command, 7-34
inheritance, 2-51

memory management, 2-21

menu bar (Winform Painter), 5-12

menus, 4-15

MIGRATE subcommand, 12-47

MIN function, 9-20

MISSING, 7-18
attribute, 7-18, 7-114, 8-21
COMPUTE command, 7-18
constant, 8-21
DECLARE command, 7-27
VALIDATE, 10-97, 10-104

missing data (Maintain)
INCLUDE, 7-51

missing data (MODIFY), 10-32
comma-delimited data, 10-39
fixed-format data sources, 10-26
prompted data, 10-41
validation tests, 10-97, 10-103

missing data(Maintain), 7-51

mixed case, 14-9
converting to (Maintain), 9-15

mixed case (FSCAN), 14-2, 14-5, 14-9

MNTUWS, 9-6

MODIFY, 2-44, 10-1
? COMBINE, 10-189, 10-196
Absolute File Integrity, 10-11, 10-206, 10-207,

10-213
activating fields, 10-11, 10-198, 10-200
advanced facilities, 10-11, 10-188
cancelling transactions, 10-41, 10-46
case logic, 10-131
checkpoint, 10-11, 10-206
COMBINE, 10-189, 10-196
COMMIT, 10-213
compiled requests, 10-11, 10-197
COMPUTE, 10-90
correcting field values, 10-41, 10-47
cross-referenced segments, 10-105, 10-108
CRTFORM, 10-51
DATA, 10-56, 10-133
deactivating fields, 10-11, 10-205
DECODE, 10-97, 10-104
deleting descending segment instances, 10-70,

10-75
descendant segments, 10-70, 10-75
describing, 10-29
describing incoming data, 10-19
displaying messages, 10-115, 10-129
ECHO, 10-208
entering no data, 10-41, 10-48
executing procedures, 10-14
FIDEL, 11-2, 11-42
FIND, 10-97, 10-101, 10-105, 10-106
fixed data sources, 10-21
FIXFORM from HOLD, 10-22
HELPMESSAGE, 10-129
incoming data, 10-19
log files storing transactions, 10-123
logging transactions, 10-11, 10-123, 11-73
LOOKUP, 10-6, 10-105, 10-108
maintenance methods, 10-18
managing transactions, 10-213
MATCH, 10-58
multiple data sources, 10-189, 10-196
multiple record processing, 10-156
NEXT, 10-85
online execution, 10-16
positioning text, 10-120

 Index

Maintaining Databases I-19

MODIFY (continued)
procedure execution, 10-208, 10-212
prompting, 10-198, 10-200
prompting deactivating fields, 10-205
prompting for repeating groups, 10-41, 10-43
prompting for transactions, 10-41
prompting text, 10-41, 10-45
query commands, 10-213
repeating a previous response, 10-41, 10-48
repeating groups, 10-41, 10-48
request syntax, 10-217
ROLLBACK, 10-213
Scratch Pad Area, 10-156, 10-169, 10-185
SET FIELDNAME, 10-189, 10-191
SET TEXTFIELD, 10-52, 10-54
sharing data sources, 2-45
SORTHOLD, 10-169, 10-185
sorting, 10-185
START, 10-56
statistical variables, 10-212
syntax, 10-13
TAG, 10-189, 10-192
TED, 10-52
text field, 10-52, 10-55
TRACE facility, 10-155
transaction fields in combined data sources,

10-189, 10-192
TYPE, 10-115
unique segments, 10-68, 10-70, 10-71, 10-85,

10-88
VALIDATE, 10-97
WITH-UNIQUES, 10-70, 10-73, 10-85, 10-89

modular processing, 1-2

modular processing (Maintain), 7-9
CALL command, 7-9

MODULE command, 2-56, 7-60

modules (Maintain), 7-60
importing, 2-56, 7-60
search criteria, 7-60

MOVE, 10-200
MODIFY, 10-200

MOVE subcommand in SCAN, 13-18

MOVIES data source, A-24

MSETUP, 5-22

multi-dimensional indexes, 12-47
REBUILD MDINDEX, 12-47

multi-line commands, 6-6

multi-path data sources, 10-70
MODIFY, 10-70, 10-80

MULTIPLE in FSCAN, 14-25

multiple record processing (MODIFY), 10-11,
10-156

collection phase, 10-157, 10-159
CURSOR, 10-157, 10-165
CURSORINDEX variable, 10-157, 10-165
display phase, 10-157, 10-164, 10-169, 10-174
GETHOLD, 10-169, 10-176
HOLD, 10-157, 10-161
HOLDCOUNT, 10-157, 10-163, 10-169, 10-170
HOLDINDEX, 10-169, 10-170
initialization, 10-169, 10-170
manual collection phase, 10-169, 10-171
manual methods, 10-169, 10-179
modification phase, 10-157, 10-166, 10-169,

10-176
REPEAT, 10-156, 10-157, 10-159
REPEATCOUNT, 10-157, 10-163
REPOSITION, 10-169, 10-170
Scratch Pad Area, 10-156, 10-157, 10-164
SCREENINDEX, 10-169, 10-170, 10-174
segments on different paths, 10-169, 10-179
segments on same path, 10-169, 10-182
selection phase, 10-157
validating data, 10-157, 10-165
vollection phase, 10-169, 10-171

multiple-key segments, 10-70, 10-82

N
names (Maintain), 6-3

reserved words, 6-5
specifying, 6-3
valid characters, 6-3

natural logarithm, 9-17

Index

I-20 Information Builders

NEEDS (Maintain), 7-18
COMPUTE command, 7-18
DECLARE command, 7-18

NEXT (FSCAN), 14-13

NEXT (Maintain), 2-6
defining stack columns, 2-6
set-based processing, 2-28

NEXT (MODIFY), 10-85, 10-145, 10-146
actions, 10-68, 10-70
ACTIVATE and DEACTIVATE, 10-198,

10-199
active and inactive fields, 10-198
adding segment instances, 10-86, 10-145, 10-146
case logic, 10-145, 10-146
CONTINUE TO, 10-85, 10-88
GOTO and IF, 10-136, 10-143
GOTO EXIT, 10-85, 10-86
GOTO, PERFORM, and IF, 10-136, 10-143
LOOKUP, 10-105, 10-108
looping, 10-145, 10-146
non-vase logic requests, 10-86, 10-87
PROMPT, 10-41, 10-49
REPEAT, 10-157, 10-159
REPOSITION, 10-145, 10-146
restrictions, 10-85, 10-86, 10-145, 10-146
syntax, 10-86
TYPE, 10-118
unique segments, 10-85, 10-88
VALIDATE, 10-97, 10-103

NEXT (SCAN), 13-18

NEXT command, 2-6

NEXT command (Maintain), 2-28, 7-61
after MATCH, 7-68
collecting values, 3-9
data source navigation, 7-69, 7-70, 7-71, 7-73
INTO, 7-61
loading multi-path data, 7-67
REPOSITION, 7-91
restrictions about WHERE, 7-64
retrieving multiple rows, 7-67
set-based processing, 3-6
short path instances, 7-71
unique segments, 7-76

NEXT command (Maintain) (continued)
using selection logic to retrieve rows, 7-68
WHERE, 7-64

NextCar function, 4-43

NOMATCH transaction type (MODIFY), 10-123
rejection message, 10-127

non-conditional fields, 10-26, 11-43

non-key segments, 10-70, 10-80

NOT FIND, 10-105, 10-106

null values (Maintain), 7-18
COMPUTE, 7-18
expressions, 8-21
forms, 7-115
INCLUDE, 7-51
testing, 8-22

numeric built-in functions (Maintain), 9-5

numeric expressions (Maintain), 8-2
components, 8-3
Continental Decimal Notation, 8-7
different operand format, 8-7
evaluating, 8-5
identical operand formats, 8-6
operators, 8-3
order of evaluation, 8-5
truncating decimal values, 8-7

O
object names, 4-18

object orientation, 2-51

object-oriented development, 1-2

objects, 2-51
browser, 5-27
buttons, 5-27
check box, 5-27
combo box, 5-27
COMPUTE command, 7-18
DECLARE command, 7-27
declaring, 2-57
definition, 2-52

 Index

Maintaining Databases I-21

objects (continued)
developing, 2-51
field, 5-27
list box, 5-27
radio buttons, 5-27
text, 5-27
variable editor, 2-57

objects menu, 5-51

OMITS, 14-16
FSCAN, 14-16, 14-19, 14-21

ON INVALID, 10-97, 10-102
case logic, 10-136, 10-145
TYPE, 10-115, 10-116

ON MATCH (Maintain), 7-77

ON MATCH (MODIFY), 10-58
actions, 10-58, 10-59, 10-63, 10-68
COMMIT, 10-213
CONTINUE, 10-70, 10-75
CONTINUE TO, 10-70, 10-71
defaults, 10-58, 10-62, 10-70, 10-75
ROLLBACK, 10-213, 10-214
TED, 10-52

ON MATCH/NOMATCH (MODIFY), 10-58,
10-61

ON NEXT (Maintain), 7-78

ON NEXT (MODIFY), 10-85, 10-86
adding segment instances, 10-85, 10-86, 10-145,

10-146
COMMIT, 10-213, 10-214
CONTINUE TO, 10-85, 10-88
ROLLBACK, 10-213, 10-214
TED, 10-52

ON NOMATCH (Maintain), 7-79
syntax, 7-79

ON NOMATCH (MODIFY), 10-59
COMMIT, 10-214
defaults, 10-58, 10-62, 10-70, 10-75
ROLLBACK, 10-213, 10-214
TED, 10-52

ON NONEXT (Maintain), 7-80

ON NONEXT (MODIFY), 10-85, 10-86
illegal actions, 10-85, 10-86
ROLLBACK, 10-213, 10-214
TED, 10-52

operators, 14-39
FSCAN, 14-16, 14-19, 14-21, 14-39

OR (Maintain), 8-17

OVRLAY, 9-21

P
packed decimal fields, 10-26

MODIFY, 10-26
MODIFY fixed-format data sources, 10-26

PARENT segment, 14-23
FSCAN, 14-23
SINGLE mode, 14-25

PATHCHECK environment variable, 2-43

PAYHIST data source, A-20

PERFORM (Maintain), 7-14, 7-81
nesting PERFORM commands, 7-82
used with GOTO, 7-44, 7-82
with data source commands, 7-82

PERFORM (MODIFY), 10-136, 10-137
MATCH and NEXT, 10-136, 10-143

PF keys, 5-69

PF keys (FIDEL), 11-20
branching, 11-23
COMPUTE, 11-23
default settings, 11-6, 11-20, 11-21
defining, 11-20, 11-22
query command, 11-20
resetting, 11-20, 11-22
-SET, 11-23
SET PF, 11-20, 11-22

Index

I-22 Information Builders

PF keys (FSCAN), 10-130, 11-20, 14-39
HELPMESSAGE text, 10-129, 10-130
MODIFY, 11-20, 11-22
PF1, 14-38
PF10, 14-13, 14-15
PF11, 14-13, 14-15
PF12, 14-23
PF2, 14-32
PF3, 14-37
PF4, 14-23
PF5, 14-23
PF6, 14-36
PF7, 14-13, 14-15
PF9, 14-36, 14-37
summary, 14-46

PF keys dialog box, 5-69

phonetic comparison, 9-26

pictorial View, 5-22

pointer chains, 12-32, 12-36

POSIT, 9-22

PREFIX, 10-189
COMBINE, 10-189, 10-193

prefix-area commands (FSCAN), 14-16
/, 14-16
C (CHILD), 14-23
D (DELETE), 14-26, 14-35
I/, 14-16
K (KEY), 14-32
K/, 14-16, 14-32
summary, 14-47

presentation logic, 1-7
WINFORM command, 7-111

PrevCar function, 4-42

procedures
load, A-2

procedures (Maintain), 1-6, 2-17
CALL command, 2-17
coding, 3-1
data continuity, 2-21
editing in Winform Painter, 5-86
EX, 7-37
executing, 1-8, 7-37
flow of control, 2-16
memory management, 2-21
passing variables, 2-18
remote, 2-17
RUN, 7-98
storing, 1-7
uncompiled, 7-37

process-driven development, 1-6

PROD data source, A-10

PROMPT (MODIFY), 10-41, 10-43
correcting field values, 10-41, 10-47
FREEFORM, 10-41, 10-50
MATCH, 10-41, 10-49
NEXT, 10-41, 10-49
typing ahead, 10-41, 10-47

properties (Winforms), 7-116
changing dynamically, 7-116

pull-down menus, 5-12

Q
QQUIT command, 14-37

FSCAN, 14-9, 14-11, 14-37

qualified names, 6-3

query commands, 10-213

QUIT, 14-37
FSCAN, 14-37
MODIFY, 10-41, 10-46

QUIT subcommand in SCAN, 13-18

 Index

Maintaining Databases I-23

R
radio button group (winforms), 5-80

borders, 5-80
creating, 5-80
editing, 5-27, 5-33
field (source of buttons), 5-80
justifying text, 5-80
name, 5-80
number of button columns, 5-80
stack, 5-80
title, 5-80
triggers, 5-80
width of button columns, 5-80

radio buttons (winforms), 5-6

REBUILD command, 12-4
actions, 12-47
CHECK, 12-32
DATE NEW, 12-40
DBA passwords, 12-4, 12-5
EXTERNAL INDEX, 12-26, 12-30, 12-31
INDEX, 12-21
interactive use, 12-4, 12-6
MDINDEX, 12-47
message frequency, 12-7
MIGRATE, 12-47
prerequisites, 12-4, 12-5
REBUILD subcommand, 12-8
REORG subcommand, 12-13, 12-14
SET REBUILDMSG, 12-7
TABLEF, 12-36
TIMESTAMP, 12-38
updated Master File, 12-44

REBUILDMSG, 12-7

RECOMPILE command, 7-83

record-at-a-time processing (Maintain), 1-2

records (Maintain), 2-3
selecting, 2-3

REDEFINES (MODIFY), 10-92

Regen, 5-21

REGION data source, A-15

rejection messages (MODIFY), 10-127
syntax, 10-127

relational expressions (Maintain), 8-17
syntax, 8-17

remote procedures, 2-18
CALL, 2-18
passing variables, 2-18

REORG (REBUILD), 12-8
PERCENT, 12-8

REPEAT (Maintain), 2-12, 7-84
branching out of a loop, 7-90
establishing counters, 7-87
nested loops, 7-87, 7-89
simple loop, 7-86
terminating a loop, 7-90
UNTIL, 7-87
WHILE, 7-87

REPEAT (MODIFY), 10-157
FIDEL, 11-61, 11-62
GOTO ENDREPEAT, 10-157, 10-159
GOTO EXITREPEAT, 10-157, 10-159
MATCH and NEXT, 10-157, 10-159
modification phase, 10-157, 10-166
retrieving REPEAT, 10-157, 10-161
stacking REPEAT, 10-157, 10-159
syntax, 10-157, 10-159

REPEATCOUNT, 10-157, 10-163

repeating groups, 10-41
FIDEL, 11-61, 11-62
fixed-format transaction data sources, 10-31
PROMPT, 10-41, 10-43

REPLACE KEY (FSCAN), 14-34

REPLACE subcommand in SCAN, 13-18

report procedures, 2-45

REPOSITION (MODIFY), 10-145, 10-146, 10-169,
10-170

REPOSITION command (Maintain), 2-20, 3-6, 3-7,
7-91

reserved words (Maintain), 6-5

Index

I-24 Information Builders

RESET (FSCAN), 14-28
recovering key values, 14-32
recovering non-key values, 14-28

RETAIN, 10-200
DEACTIVATE, 10-205

retrieval logic, 14-9
FSCAN, 14-9

return codes, 10-105
FIND, 10-105, 10-106, 10-107
LOOKUP, 10-105, 10-108, 10-112

return points, 10-136
case logic, 10-136, 10-137

RETURNS, 7-12
CASE command (Maintain), 7-12

REVISE command, 7-93
unique segments, 7-93

REVISE command (Maintain), 2-29

RIGHT command (FSCAN), 14-13, 14-15

RJUST, 9-23

ROLLBACK (Maintain), 2-34, 3-11, 7-96
DB2 data sources, 2-46

ROLLBACK (MODIFY), 10-11, 10-206, 10-207,
10-213

Absolute File Integrity, 10-213
example, 10-214
MATCH, 10-213, 10-214
NEXT, 10-213, 10-214

root segments, 14-16
combined structures, 10-189, 10-195
FSCAN, 14-5, 14-16, 14-18

ruler (Winform Painter), 5-12

RUN, 7-98, 10-197
Maintain, 7-98
MODIFY, 10-197

S
safeguarding transactions (MODIFY), 10-206

SALES data source, A-8

sample data sources
CAR, A-11
COMASTER, A-21
COURSES, A-16
creating, A-2
EDUCFILE, A-7
EMPDATA, A-17
EMPLOYEE, A-3
EXPERSON, A-18
FINANCE, A-14
Gotham Grinds data sources, A-29
JOBFILE, A-6
LEDGER, A-13
MOVIES, A-24
PAYHIST, A-20
PROD, A-10
REGION, A-15
SALES, A-8
TRAINING, A-19
VIDEOTR2, A-26
VideoTrk, A-24

SAVE, 14-37
FSCAN, 14-37
SCAN, 13-18

SAVE subcommand in SCAN, 13-18

SAY command, 7-99
choosing between SAY and TYPE, 7-100

SCAN, 13-1
adding segment instances, 13-15
auxiliary functions, 13-17
changing field contents, 13-15
deleting fields, 13-16
deleting segment instances, 13-18
deleting segments, 13-16
displaying fieldnames, 13-14
displaying previous command, 13-17
displaying values, 13-14
FSCAN, 13-3
locating records, 13-13

 Index

Maintaining Databases I-25

SCAN (continued)
maintenance facilities, 13-3
moving segment instances, 13-15, 13-18
moving through databases, 13-7
navigating FOCUS data sources, 13-18
replacing data, 13-18
replacing values, 13-18
restrictions, 13-16
returning to a record, 13-18
saving changes, 13-16
subcommands, 13-17, 13-18
suppressing displays, 13-14
syntax summary, 13-18

Scratch Pad Area, 10-156, 10-157, 10-164
definition, 10-156
initialization, 10-169

screen (FIDEL), 11-25. See also CRTFORM and
-CRTFORM

attributes, 11-25
design, 11-1
elements, 11-8
management concepts, 11-5

screen attributes (FIDEL), 11-25
dynamically changing, 11-30
syntax, 11-25
with prefixes, 11-25

Screen Painter, 11-84

scroll bars (Winform Painter), 5-4

SEG prefix, 7-100
SAY command, 7-100

segments (Maintain), 7-93
unique, 7-93

segments (MODIFY), 10-70
descendant segments, 10-70, 10-75
multiple-key segments, 10-70, 10-79
non-key segments, 10-70, 10-80
sibling segments, 10-70, 10-80
unique segments, 10-68, 10-70, 10-71
WITH-UNIQUES, 10-70, 10-73, 10-85, 10-89

SEGTYPE attribute, 10-70
MODIFY, 10-68, 10-70, 10-71, 10-80, 10-82,

10-145, 10-148
NEXT, 10-85, 10-88

Select Master, 5-21

SELECTS, 9-24, 9-25

semicolons, 6-7
Maintain language, 6-7
terminating Maintain commands, 6-7

SET &CURSOR, 11-33
FIDEL, 11-33

SET parameters, 10-115
EXTTERM, 10-115, 10-122
FIELDNAME, 10-189, 10-191
NODATA, 8-21
PATHCHECK, 2-41, 2-43
REBUILDMSG, 12-7
TEXTFIELD, 10-52, 10-54

set-based processing (Maintain), 1-2, 2-2, 2-3, 2-28,
3-6

types, 2-3

SetStackMode, 7-116, 9-25, 9-26

short path records, 13-4
SCAN, 13-4

short paths, 7-71
NEXT, 7-71

shortcut key (Winform Painter), 4-6, 4-15, 5-12,
5-69

show lists, 13-4
FSCAN, 14-2, 14-4
SCAN, 13-4

SHOW subcommand in SCAN, 13-18

sibling segments (MODIFY), 10-70, 10-80

SINGLE mode, 14-25
BACKWARD, 14-25
FORWARD, 14-25
FSCAN, 14-25

single-precision decimal fields, 10-26

Index

I-26 Information Builders

SORTHOLD, 10-169, 10-185

SOUNDEX, 9-26

source machine, 10-8

source stacks, 5-39

Source Stacks list box, 4-10

spot markers, 10-118
FIDEL, 11-8, 11-12
MODIFY, 10-118, 10-120

SQRT, 9-27

STACK, 7-23
COPY command, 7-23

STACK CLEAR, 7-101

stack editors, 3-18

STACK prefix, 7-100
SAY command, 7-100

STACK SORT, 7-102

stack variables, 7-38
FocCount, 7-38
FocIndex, 7-40

stacks, 2-2, 2-4
anchor segment, 2-6
buttons, 5-39
cells, 2-2
clearing, 2-15, 7-101
columns, 2-6
commands, 2-6
COMPUTE command, 2-13
copying data, 2-10
copying rows, 7-23
creating, 2-6
Current Area, 2-14
defining, 2-6
displaying, 2-13
editing, 2-13
FocCount variable, 2-11
FocIndex variable, 2-11
grids, 2-13, 3-18
index, 2-11
INFER, 7-52

stacks (continued)
looping through, 2-12
manipulating, 2-3, 7-4
naming, 6-3
non-data source columns, 7-53
REPEAT, 2-12
rows, 2-11, 3-15
sorting, 2-13
sorting rows, 7-102
STACK CLEAR, 7-101
STACK SORT command, 7-102
target segment, 2-6
user-defined columns, 2-9

START, 10-56
case logic requests, 10-133, 10-135
rules, 10-133

statistical variables, 10-212
MODIFY, 10-212

STOP (MODIFY), 10-56
case logic requests, 10-133

STOP in WINFORM command, 7-111

STRAN, 9-27, 9-28

STRCMP, 9-28

STRICMP, 9-29

string built-in functions (Maintain), 9-2

STRNCMP, 9-29, 9-30

STRTOKEN, 9-30

structure diagrams, A-2

SU facility (Simultaneous Usage), 10-8
features, 10-9
FOCURRENT variable, 10-9
FSCAN, 14-9
source machine, 10-8
with MODIFY request, 10-8

subclasses, 2-52

substitutions (SCAN), 13-15
character, 13-15
command, 13-15
string, 13-15

 Index

Maintaining Databases I-27

SUBSTR, 9-31, 9-32

substrings (Maintain), 9-2
adding, 9-18, 9-19, 9-20
comparing, 9-29, 9-30
extracting, 9-18, 9-19, 9-20, 9-31, 9-32
finding position, 9-22
overlaying, 9-21
substituting, 9-27, 9-28

superclasses, 2-52

synonyms (Maintain), 7-35
data types, 7-35
field names, 7-35

syntax conventions, 6-6
case, 6-2
multi-line commands, 6-6
valid characters, 6-3

syntax summary, 13-18
FIDEL, 11-8, 11-9
FSCAN, 14-39
MODIFY, 10-217
SCAN, 13-18

system, 5-47

system actions, 5-47
order, 5-44

system variables (Maintain), 7-5
FocCurrent, 7-38
FocError, 7-39
FocErrorRow, 7-39
FocFetch, 7-39

T
TABLEF command, 12-36

REBUILD, 12-36
structural integrity of databases, 12-36

TAG, 10-190
COMBINE, 10-189, 10-192
qualifier for field names, 10-189, 10-190

TAKES (Maintain), 7-12

target segment, 2-6
stacks, 2-6

TED (text editor), 10-52
MODIFY, 10-52, 10-55

temporary columns, 2-18
redefining, 2-18
virtual columns, 7-18, 7-21

temporary fields (FSCAN), 14-10

temporary fields (Maintain), 2-9, 2-18, 7-18, 7-21
redefining, 2-18
virtual fields, 7-18, 7-21

temporary fields (MODIFY), 10-90
COMPUTE, 10-90
VALIDATE, 10-90, 10-97

terminal configuration, 2-26

terminal emulation, 5-22
setting, 4-4
supporting color, 5-22
supporting solid borders, 5-22

text (winforms), 5-62
editing, 5-27, 5-28

Text dialog box, 5-62

text fields, 10-22, 10-26
editing with TED, 10-52
FSCAN, 14-10
MODIFY, 10-26, 10-51, 10-52

THEN in IF command (Maintain), 7-45

time built-in functions (Maintain), 9-4

time stamps, 9-12, 9-13, 12-38
REBUILD TIMESTAMP, 12-38

TLOCATE subcommand in SCAN, 13-18

TO in SAY command, 7-99

TODAY, 9-32

TODAY2, 9-32

TOP (FSCAN), 14-16, 14-18

Index

I-28 Information Builders

TOP (MODIFY), 10-131
case logic, 10-131
rules, 10-133

top function, 4-40, 7-15
explicit, 7-15
implicit, 7-15
libraries, 7-60

TOP subcommand in SCAN, 13-18

TRACE, 10-155

trailing blanks, trimming (Maintain), 9-33

TRAINING data source, A-19

TRANS transaction type, 10-123, 10-127

transaction data sources (Maintain), 7-66

transaction integrity (Maintain), 1-2, 2-41
across procedures, 2-34
change verification, 2-41, 2-43
locking, 2-46

transaction processing (Maintain), 2-32, 3-11
broadcast commit, 2-34
broadcast rollback, 7-97
change verification, 2-41
collecting values, 3-9, 7-111
COMMIT command, 7-16
concurrent transactions, 2-39
DELETE command, 7-30
INCLUDE command, 7-48
multiple data source types, 2-34
multiple DBMSs, 7-97
reading multiple-path data sources, 7-67
REVISE command, 7-93
ROLLBACK command, 7-96
spanning procedures, 2-34
UPDATE command, 7-107
USE command, 2-41, 2-44
writing, 2-3

transaction variables (Maintain), 7-38
FocCurrent, 7-9, 7-38
FocError, 7-9, 7-39
FocErrorRow, 7-9, 7-39
FocFetch, 7-39
UPDATE command, 7-109

transactions (Maintain), 2-3, 2-33
integrity, 2-33

transactions (MODIFY), 10-21
combined structures, 10-189, 10-192
data sources, 10-34
fixed-format, 10-21
modes, 10-123
safeguarding, 10-206, 10-213
types, 10-123

triggers, 2-27, 3-15, 5-44
adding, 4-33
buttons, 5-69
check boxes, 5-72
coding, 4-38
combo boxes, 5-77
control-level, 5-44
creating, 4-33
defined, 2-23
entry fields, 5-52
form-level, 5-44
grids, 5-63
list boxes, 5-74
order, 5-44
processing, 1-2
radio button group, 5-80
shortcuts, 5-44
specifying, 5-46
text, 5-62
winforms, 5-46

TRIM, 9-33

TRIMLEN, 9-33

turnaround fields, 11-14

TYPE (Maintain), 7-103
choosing between SAY and TYPE, 7-100
horizontal spacing, 7-104
including variables in a message, 7-104
justifying variables, 7-105
multi-line message strings, 7-105
truncating, 7-105
vertical spacing, 7-104
writing information to a file, 7-106

 Index

Maintaining Databases I-29

TYPE (MODIFY), 10-11, 10-115
case logic requests, 10-133
CRTFORMs, 10-129
customized log files, 10-118
embedding data fields, 10-115, 10-118
HELPMESSAGE, 10-115, 10-129
MATCH, 10-115, 10-116
NEXT, 10-115, 10-116
ON INVALID, 10-97, 10-102
screen attributes, 10-122
spot markers, 10-120

TYPE subcommand in SCAN, 13-18

U
UNHIDE in WINFORM command, 7-111

unique segments (Maintain), 7-76
DELETE, 7-33
INCLUDE, 7-48
REVISE, 7-93
UPDATE, 7-110

unique segments (MODIFY), 10-68, 10-70, 10-71
case logic, 10-145, 10-148
CONTINUE TO, 10-70, 10-71, 10-85, 10-88
NEXT, 10-85, 10-88
WITH-UNIQUES, 10-85, 10-89

UP subcommand in SCAN, 13-18

UPCASE, 9-33, 9-34

UPDATE (Maintain), 2-29, 3-11, 7-107
data source position, 7-110
transaction variables, 7-109
unique segments, 7-110
using stacks, 7-109

UPDATE (MODIFY), 10-63, 10-65
descendant segments, 10-70, 10-75
NEXT, 10-145, 10-146

uppercase, 6-2
converting data (Maintain), 9-33
FSCAN, 14-2, 14-5
syntax, 6-2

USE command, 14-9
read-only databases (FSCAN), 14-9

USE command (Maintain), 2-41, 2-44

user-defined columns, 2-9

V
VALIDATE (MODIFY), 10-11, 10-97, 10-103

ACCEPT, 10-97
compiled calculations, 10-90
DECODE, 10-97, 10-104
FIDEL, 11-42
FIND, 10-107
LOOKUP, 10-105, 10-114
MATCH, 10-97, 10-103
MISSING, 10-97, 10-103
multiple record processing, 10-157, 10-168
NEXT, 10-97, 10-103
ON INVALID, 10-97, 10-102
PROMPT, 10-97
repeating groups, 10-97
testing incoming data, 10-97, 10-100
validating values from a list, 10-97, 10-104

variables (Maintain), 7-18
assigning values, 7-18
COMPUTE command, 7-18
DECLARE command, 7-27
declaring, 7-18
local vs. global, 7-29
member, 2-52
memory management, 2-21
passing between procedures, 2-18

variables (MODIFY and FIDEL), 11-1
(-CRTFORM), 11-1
FOCURRENT, 10-9

VIA option, 10-56
DATA statement, 10-13, 10-56

VIDEOTR2 Access File, A-27

VIDEOTR2 data source, A-26

VideoTrk data source, A-24

Index

I-30 Information Builders

W
web deployment, 1-2

WHERE (Maintain), 7-64
in COPY command, 7-23
in NEXT command, 7-61
restriction on subscripted variables, 7-64

WINFORM command, 7-111
flow of control, 7-114
SHOW subcommand, 7-111

Winform Painter, 4-2, 5-1
accessing, 4-2, 5-9
adding columns, 4-28
adding fields, 4-18
adjusting display, 4-4
block mode, 2-24
browsers, 5-67
buttons, 4-33
canvas, 5-12
check boxes, 5-5
combo boxes, 5-7
command buttons, 5-7
control box, 5-5
copying winforms, 5-37
creating winforms, 5-35
deleting winforms, 5-38
design screen, 5-11, 5-12
dialog boxes, 5-2
drop boxes, 5-8
edit menu, 5-26
editing controls, 5-12
editing fields, 4-26
Editor, 5-22, 5-25
entry fields, 4-18, 5-3, 5-52
exiting, 4-17, 4-18, 5-10
files, 5-9
FOCEXECs, 5-9
forms menu, 5-35
frames, 5-68
function keys, 5-14, 5-90
Gen Master, 5-85
Gen Segment, 5-83
grids, 4-27, 5-63
Help menu, 5-90

Winform Painter (continued)
list boxes, 5-4
master files, 5-9
menu bar, 5-12
menus, 4-15
moving, 5-50
moving fields, 4-26
objects menu, 5-51
pictorial View, 5-22
preferences, 5-22
Properties dialog box, 4-10, 5-39
radio button group, 5-80
radio buttons, 5-6
renaming winforms, 5-38
resizing controls, 4-26
ruler, 5-12
saving work, 5-10
scroll bars, 5-4
shortcut key, 5-12
supporting borders, 5-8
supporting colors, 5-8
switching Winforms, 5-36
system actions, 5-47
terminal emulation, 5-22
text, 4-31, 5-62
triggers, 4-33
WINFORMS file, 5-9
XEDIT, 5-25
zooming, 5-50

Winform Properties dialog box, 4-10

winforms, 2-3, 2-23, 7-3
block mode, 2-26
borders, 5-39
browsers, 5-67
browsing stacks, 3-15
buttons, 5-69
check boxes, 5-72
colors, 5-39
combo boxes, 5-77
copying, 5-37
creating objects, 5-51
designing, 2-25
destination stacks, 5-39
entry fields, 4-6, 5-52
event handlers, 5-46

 Index

Maintaining Databases I-31

winforms (continued)
event-driven development, 2-23
event-driven processing, 2-27
frames, 5-68
Gen Master, 5-85
Gen Segment, 5-83
graphical user interface, 1-2
grids, 5-63
invoking procedures, 2-24
list box, 5-74
moving, 5-50
names, 5-39
online help, 2-24
parts, 2-24
pop-up, 5-39
properties, 5-39
protected fields, 5-55
radio button group, 5-80
resizing, 5-49
scroll bars, 5-4
shortcuts, 5-44
size, 5-49
solid borders, 5-22
source stacks, 5-39
stacks, 5-39
system actions, 5-44, 5-47
terminal configuration, 2-26
terminal emulation, 5-22
text, 4-31, 5-62
titles, 5-39

winforms (continued)
triggers, 2-23, 2-27, 5-44, 5-46
validating data, 5-52, 5-56
zooming, 5-50

WINFORMS file, 1-7, 5-9
CMS, 1-7
MVS, 1-7
presentation logic, 1-7

WITH-UNIQUES, 10-70, 10-73
NEXT, 10-85, 10-89

write command, 2-30

X
X subcommand, 13-17

SCAN, 13-18

Y
Y subcommand, 13-17

SCAN, 13-18

YRT, 7-18
COMPUTE (Maintain), 7-18
DECLARE command, 7-27

Z
zoned decimal fields (MODIFY), 10-26

fixed-format data sources, 10-26

Reader Comments
In an ongoing effort to produce effective documentation, the Documentation Services staff at Information
Builders welcomes any opinion you can offer regarding this manual.

Please use this form to relay suggestions for improving this publication or to alert us to corrections. Identify
specific pages where applicable. You can contact us through the following methods:

Mail: Documentation Services – Customer Support
Information Builders, Inc.
Two Penn Plaza
New York, NY 10121-2898

Fax: (212) 967-0460

E-mail: books_info@ibi.com

Web form: http://www.informationbuilders.com/bookstore/derf.html

Name: ___

Company: __

Address: ___

Telephone: ___ Date: _____________________________

E-mail: __

Comments:

Information Builders, Two Penn Plaza, New York, NY 10121-2898 (212) 736-4433
FOCUS for S/390 Maintaining Databases DN1001059.1101
Version 7 Release 2

Reader Comments

Information Builders, Two Penn Plaza, New York, NY 10121-2898 (212) 736-4433
FOCUS for S/390 Maintaining Databases DN1001059.1101
Version 7 Release 2

	Preface
	Contents
	1. Introduction to Maintain
	Using Maintain to Manage Data
	Accessing Data Sources
	Reading From Data Sources
	Writing to Data Sources

	Working With Maintain Procedures
	Developing Procedures
	Storing Procedures
	Executing Procedures

	Maintain Performance

	2. Maintain Concepts
	Set-based Processing
	Which Processes Are Set˚based?
	How Does Maintain Process Data in Sets?
	Creating and Defining Database Stacks: An Overview
	Creating a Database Stack
	Defining a Database Stack’s Data Source Columns
	Creating a Database Stack’s User-defined Columns
	Copying Data Into and Out of a Database Stack
	Referring to Specific Stack Rows Using an Index
	Looping Through a Stack
	Sorting a Stack
	Editing Stack Values
	The Default Database Stack: The Current Area
	Maximizing Database Stack Performance

	Controlling a Procedure’s Flow
	Executing Other Maintain Procedures
	Passing Variables Between Procedures
	Accessing Data Sources in the Child Procedure
	Data Source Position
	Optimizing Performance: Data Continuity and Memory Management

	Winforms and Event-driven Processing
	How to Use Winforms
	Designing Event-driven Applications
	Creating Event-driven Applications

	Reading From a Data Source
	Repositioning Your Location in a Data Source

	Writing to a Data Source
	Evaluating the Success of a Simple Data Source Command
	Evaluating the Success of a Stack-based Write Command

	Transaction Processing
	Why Is Transaction Integrity Important?
	Defining a Transaction
	Evaluating If a Transaction Was Successful
	Concurrent Transaction Processing
	Ensuring Transaction Integrity for FOCUS Data Sources
	Ensuring Transaction Integrity for DB2 Data Sources

	Classes and Objects
	What Are Classes and Objects?
	Defining Classes
	Reusing Classes in Class Libraries
	Declaring Objects

	3. Tutorial: Coding a Procedure
	Two Ways to Follow the Tutorial
	Building the Sample Application
	Step 1: Beginning and Ending the Procedure
	Goal
	Methods: MAINTAIN and END Commands
	Solution

	Step 2: Selecting Records
	Goal
	Methods: NEXT and MATCH
	Solution

	Step 3: Collecting Transaction Values
	Goal
	Methods: WINFORM and NEXT
	Solution

	Step 4: Writing Transactions to the Data Source
	Goal
	Methods: Write Commands, COMMIT, and ROLLBACK
	Solution

	Step 5: Issuing the Procedure
	Goal
	Methods: CALL, COMPILE, RUN
	Solution

	Step 6: Browsing Through a Stack and Using Triggers
	Goal
	Methods: Winform Painter, Triggers, IF, FocIndex, FocCount
	Solution

	Step 7: Displaying and Editing an Entire Stack in a Winform
	Goal
	Methods: Multiple Stacks and Stack Editors (Grids)
	Solution

	4. Tutorial: Painting a Procedure
	Step 1: Creating a New Winform
	Description of the Application
	How to Open the Painter
	Adjusting Winform Appearance
	Naming the Procedure
	Selecting Master Files
	Defining the Winform’s Properties
	Using the Painter’s Menus
	Saving Your Work and Exiting

	Step 2: Adding Fields
	Adding the First Field
	Adding Additional Fields
	Editing, Moving, and Resizing Controls

	Step 3: Adding a Grid
	Adding Columns
	Changing Stacks
	Protecting and Unprotecting Columns

	Step 4: Adding Text
	Step 5: Adding Buttons and Triggers
	Adding the First Button and Trigger
	Adding Additional Buttons and Triggers

	Step 6: Coding Triggers and Other Functions
	Painter-generated Code
	Top Function
	PrevCar Function
	NextCar Function
	GetBody Function

	Step 7: Running the Maintain Request

	5. Using the Winform Painter
	Using the Painter
	Using Dialog Boxes
	Using Entry Fields
	Using List Boxes
	Using Check Boxes
	Using the Control Box
	Using Radio Buttons
	Using Command Buttons
	Using Combo Boxes
	Using Drop Boxes
	Supporting Colors
	Supporting Borders
	Files Used by the Winform Painter
	How to Access the Painter
	Saving and Exiting Your Work

	Using the Design Screen
	Parts of the Design Screen
	Function Key Reference

	File Menu
	New
	Open
	Save
	Save As
	Import
	Regen
	Select Master
	Preferences
	Exit

	Edit Menu
	Edit Object
	Move
	Copy
	Resize
	Delete

	Forms Menu
	New
	Switch To
	Copy To
	Rename
	Delete
	Properties
	Using Triggers, Button Short Cuts, and System Actions
	Triggers
	Actions
	Size
	Zoom
	Move

	Objects Menu
	Field
	Text
	Grid
	Browser
	Frame
	Button
	Checkbox
	Listbox
	Combobox
	Radio Group
	Gen Segment
	Gen Master

	Cases Menu
	Help Menu

	6. Language Rules Reference
	Case Sensitivity
	Specifying Names
	Reserved Words
	What Can You Include in a Procedure?
	Multi˚Line Commands
	Terminating a Command’s Syntax
	Adding Comments

	7. Command Reference
	Language Summary
	Defining a Procedure
	Defining a Maintain Function (a Case)
	Blocks of Code
	Transferring Control
	Executing Procedures
	Loops
	Winforms
	Defining Classes
	Creating Variables
	Assigning Values
	Manipulating Stacks
	Selecting and Reading Records
	Conditional Actions
	Writing Transactions
	Using Libraries of Classes and Functions
	Messages and Logs

	BEGIN
	CALL
	CASE
	Invoking a Function: Flow of Control
	Using a Function’s Return Value
	Effects of Function Parameters
	The Top Function

	COMMIT
	COMPILE
	COMPUTE
	Using COMPUTE to Invoke Functions

	COPY
	DECLARE
	Local and Global Declarations

	DELETE
	DESCRIBE
	END
	EX
	FocCount
	FocCurrent
	FocError
	FocErrorRow
	FocFetch
	FocIndex
	GOTO
	Using GOTO With Data Source Commands
	GOTO and ENDCASE
	GOTO and PERFORM

	IF
	Coding Conditional COMPUTE Commands

	INCLUDE
	Data Source Position
	Null Data

	INFER
	Defining Non˚Data Source Columns

	MAINTAIN
	Specifying Data Sources With the MAINTAIN Command
	Calling a Procedure From Another Procedure

	MATCH
	How the MATCH Command Works

	MODULE
	NEXT
	Subscripted Variables in WHERE Expressions
	Copying Data Between Data Sources
	Loading Multi˚Path Transaction Data
	Retrieving Multiple Rows: The FOR Phrase
	Using Selection Logic to Retrieve Rows
	NEXT After a MATCH
	Data Source Navigation Using NEXT: Overview
	Unique Segments

	ON MATCH
	ON NEXT
	ON NOMATCH
	ON NONEXT
	PERFORM
	Using PERFORM to Invoke Maintain Functions
	Using PERFORM With Data Source Commands
	Nesting PERFORM Commands
	Avoiding GOTO With PERFORM

	RECOMPILE
	REPEAT
	Branching Within a Loop

	REPOSITION
	REVISE
	ROLLBACK
	DBMS Combinations

	RUN
	SAY
	Writing Segment and Stack Values
	Choosing Between the SAY and TYPE Commands

	STACK CLEAR
	STACK SORT
	TYPE
	Including Variables in a Message
	Embedding Horizontal Spacing Information
	Embedding Vertical Spacing Information
	Coding Multi˚Line Message Strings
	Justifying Variables and Truncating Spaces
	Writing Information to a File

	UPDATE
	Update and Transaction Variables
	Data Source Position
	Unique Segments

	WINFORM
	Managing the Flow of Control in a Winform
	Displaying Default Values in a Winform
	Dynamically Changing Winform Control Properties

	8. Expressions Reference
	Types of Expressions You Can Write
	Expressions and Variable Formats

	Writing Numeric Expressions
	Order of Evaluation
	Evaluating Numeric Expressions
	Identical Operand Formats
	Different Operand Formats
	Continental Decimal Notation

	Writing Date Expressions
	Formats for Date Values
	Evaluating Date Expressions
	Selecting the Format of the Result Variable
	Manipulating Dates in Date Format
	Using a Date Constant in an Expression
	Extracting a Date Component
	Combining Variables With Different Components in an Expression
	Different Operand Date Formats
	Using Addition and Subtraction in a Date Expression

	Writing Alphanumeric Expressions
	Concatenating Character Strings
	Evaluating Alphanumeric Expressions

	Writing Logical Expressions
	Relational Expressions
	Boolean Expressions
	Evaluating Logical Expressions

	Writing Conditional Expressions
	Handling Null Values in Expressions
	Assigning Null Values: The MISSING Constant
	Conversion in Mixed˚Format Null Expressions
	Testing Null Values

	9. Built-in Functions Reference
	Types of Functions
	Character Built˚in Functions
	Date and Time Built˚in Functions
	Decoding Built˚in Functions
	Grid Built˚in Functions
	Numeric Built˚in Functions

	Accessing Built˚in Functions
	Specifying Arguments for Built˚in Functions
	Alphabetical List of Built˚in Functions
	ABS: Calculating Absolute Value
	ChangeColBcolor and ChangeColFcolor: Setting the Colors of a Grid Column
	CurStkRowNum, CurStkColNum, CurGrdRowNum, CurGrdColNum: Determining the Current Row or Column Number in a Grid
	DECODE: Changing Coded Values to Associated Values
	HHMMSS: Returning the Current Time
	Initial_HHMMSS: Returning the Time the Application Was Started
	Initial_TODAY: Returning the Date the Application Was Started
	INT: Finding the Greatest Integer
	LCWORD, LCWORD2: Converting a String to Mixed Case
	LENGTH: Determining the Length of a String
	LJUST: Left˚justifying a String
	LOG: Calculating the Natural Logarithm
	LOWER: Converting Text to Lowercase
	MASK: Extracting or Adding Characters
	MAX and MIN: Finding the Maximum or Minimum Value
	OVRLAY: Overlaying a Substring Within a String
	POSIT: Finding Substring Position
	RJUST: Right˚justifying a String
	SELECTS: Decoding a Value From a Stack
	SetStackMode: Preventing End Users From Adding Rows to Grids
	SOUNDEX: Comparing Strings Phonetically
	SQRT: Calculating the Square Root
	STRAN: Substituting One Substring for Another
	STRCMP: Comparing Strings Using the EBCDIC or ASCII Collating Sequence
	STRICMP: Comparing Strings Using the EBCDIC or ASCII Collating Sequence, But Ignoring Case Differences
	STRNCMP: Comparing Substrings Using the EBCDIC or ASCII Collating Sequence
	STRTOKEN: Returning Substrings Based on Delimiters
	SUBSTR: Extracting a Substring
	TODAY and TODAY2: Returning the Current Date
	TRIM: Trimming Trailing Blanks
	TRIMLEN: Determining the Length of a String Excluding Trailing Blanks
	UPCASE: Converting Text to Uppercase

	10. Modifying Data Sources With MODIFY
	Introduction
	Additional MODIFY Facilities
	Multiple User Access
	Managing Your Data: Advanced Features
	MODIFY Command Syntax
	Executing MODIFY Requests
	Other Ways of Maintaining FOCUS Data Sources
	The EMPLOYEE Data Source

	Describing Incoming Data
	Reading Fixed˚Format Data: The FIXFORM Statement
	Reading in Comma˚delimited Data: The FREEFORM Statement
	Prompting for Data One Field at a Time: The PROMPT Statement
	Invoking the FIDEL Facility: The CRTFORM Statement
	Entering Text Data via TED
	Specifying the Source of Data: The DATA Statement
	Reading Selected Portions of Transaction Data Sources: The START and STOP Statements

	Modifying Data: MATCH and NEXT
	The MATCH Statement
	Adding, Updating, and Deleting Segment Instances
	Performing Other Tasks Using MATCH
	Modifying Segments in FOCUS Structures
	Selecting the Instance After the Current Position: The NEXT Statement

	Computations: COMPUTE and VALIDATE
	Computing Values: The COMPUTE Statement
	Validating Transaction Values: The VALIDATE Statement
	Special Functions

	Messages: TYPE, LOG, and HELPMESSAGE
	Displaying Specific Messages: The TYPE Statement
	Logging Transactions: The LOG Statement
	Displaying Messages: The HELPMESSAGE Attribute

	Case Logic
	Rules Governing Cases
	Executing a Case at the Beginning of a Request Only: The START Case
	Branching to Different Cases: The GOTO, PERFORM, and IF Statements
	Case Logic Applications
	Tracing Case Logic: The TRACE Facility

	Multiple Record Processing
	The REPEAT Method
	Manual Methods

	Advanced Facilities
	Modifying Multiple Data Sources in One Request: The COMBINE Command
	Compiling MODIFY Requests: The COMPILE Command
	Active and Inactive Fields
	Protecting Against System Failures
	Displaying MODIFY Request Logic: The ECHO Facility
	Dialogue Manager Statistical Variables
	MODIFY Query Commands
	Managing MODIFY Transactions: COMMIT and ROLLBACK

	MODIFY Syntax Summary
	MODIFY Request Syntax
	Transaction Statement Syntax
	MATCH and NEXT Statement Actions

	11. Designing Screens With FIDEL
	Introduction
	Using FIDEL With MODIFY
	Using FIDEL With Dialogue Manager
	Screen Management Concepts and Facilities
	Using FIDEL Screens: Operating Conventions

	Describing the CRT Screen
	Specifying Elements of the CRTFORM
	Data Entry, Display and Turnaround Fields
	Controlling the Use of PF Keys
	Specifying Screen Attributes
	Using Labeled Fields
	Specifying Cursor Position
	Determining Current Cursor Position for Branching Purposes
	Annotated Example: MODIFY
	Annotated Example: Dialogue Manager

	Using FIDEL in MODIFY
	Conditional and Non˚Conditional Fields
	Using FIXFORM and FIDEL in a Single MODIFY
	Generating Automatic CRTFORMs
	Using Multiple CRTFORMs: LINE
	CRTFORMs and Case Logic
	Specifying Groups of Fields
	Handling Errors
	Logging Transactions
	Additional Screen Control Options

	Using FIDEL in Dialogue Manager
	Allocating Space on the Screen for Variable Fields
	Starting and Ending CRTFORMS: BEGIN/END
	Clearing the Screen in Dialogue Manager
	Changing the Size of the Message Area: ˚CRTFORM TYPE
	Annotated Example: ˚CRTFORM

	Using the FOCUS Screen Painter
	Entering Screen Painter
	Entering Data Onto the Screen
	Identifying Fields: ASSIGN
	Viewing the Screen: FIDEL
	Generating CRTFORMs Automatically
	Terminating Screen Painter

	12. Creating and Rebuilding Databases
	Creating New Databases: The CREATE Command
	Rebuilding Databases: The REBUILD Command
	Controlling the Frequency of REBUILD Messages

	Optimizing File Size: The REBUILD Subcommand
	Changing Database Structure: The REORG Subcommand
	Indexing Fields: The INDEX Subcommand
	Creating an External Index: The EXTERNAL INDEX Subcommand
	Concatenating Index Databases
	Positioning Indexed Fields
	Activating an External Index

	Checking Database Integrity: The CHECK Subcommand
	Confirming Structural Integrity Using ? FILE and TABLEF

	Changing the Database Creation Date and Time: The TIMESTAMP Subcommand
	Converting Legacy Dates: The DATE NEW Subcommand
	How DATE NEW Converts Legacy Dates
	What DATE NEW Does Not Convert
	Using the New Master File Created by DATE NEW
	Action Taken on a Date Field During REBUILD/DATE NEW

	Migrating to a Fusion Database: The MIGRATE Subcommand
	Creating a Fusion Multi˚Dimensional Index: The MDINDEX Subcommand

	13. Directly Editing FOCUS Databases With SCAN
	Introduction
	SCAN vs. MODIFY, MAINTAIN, HLI, and FSCAN
	Current Position Concept
	What You See in SCAN Display Lines
	Ways to Move Through Databases

	The SCAN Session
	Entering SCAN Mode
	Locating Records
	Displaying Field Names and Field Contents
	Adding Segment Instances
	Moving Segment Instances
	Changing Field Contents
	Deleting Fields and Segments
	Saving Changes Made in SCAN Sessions
	Ending the Session
	Auxiliary SCAN Functions

	Subcommand Summary

	14. Directly Editing FOCUS Databases With FSCAN
	Introduction
	Entering FSCAN
	The FSCAN Facility and FOCUS Structures
	General Rules for Using FSCAN

	FSCAN Functions
	Scrolling the Screen
	Selecting a Specific Instance by Defining a Current Instance
	Displaying Descendant Segments: The CHILD, PARENT, and JUMP Commands
	Displaying a Single Instance on One Screen: The SINGLE and MULTIPLE Commands
	Modifying the Database
	Repeating a Command: ? and =
	Saving Changes: The SAVE Without Exiting FSCAN Command
	Exiting FSCAN: The END, FILE, QQUIT, and QUIT Commands
	The FSCAN HELP Facility

	Syntax Summary
	Summary of Commands
	Summary of PF Keys
	Summary of Prefix Area Commands

	Appendix A. Master Files and Diagrams
	Creating Sample Data Sources
	The EMPLOYEE Data Source
	The EMPLOYEE Master File
	The EMPLOYEE Structure Diagram

	The JOBFILE Data Source
	The JOBFILE Master File
	The JOBFILE Structure Diagram

	The EDUCFILE Data Source
	The EDUCFILE Master File
	The EDUCFILE Structure Diagram

	The SALES Data Source
	The SALES Master File
	The SALES Structure Diagram

	The PROD Data Source
	The PROD Master File
	The PROD Structure Diagram

	The CAR Data Source
	The CAR Master File
	The CAR Structure Diagram

	The LEDGER Data Source
	The LEDGER Master File
	The LEDGER Structure Diagram

	The FINANCE Data Source
	The FINANCE Master File
	The FINANCE Structure Diagram

	The REGION Data Source
	The REGION Master File
	The REGION Structure Diagram

	The COURSES Data Source
	The COURSES Master File
	The COURSES Structure Diagram

	The EMPDATA Data Source
	The EMPDATA Master File
	The EMPDATA Structure Diagram

	The EXPERSON Data Source
	The EXPERSON Master File
	The EXPERSON Structure Diagram

	The TRAINING Data Source
	The TRAINING Master File
	The TRAINING Structure Diagram

	The PAYHIST File
	The PAYHIST Master File
	The PAYHIST Structure Diagram

	The COMASTER File
	The COMASTER Master File
	The COMASTER Structure Diagram

	The VideoTrk and MOVIES Data Sources
	VideoTrk Master File
	MOVIES Master File
	VideoTrk Structure Diagram
	MOVIES Structure Diagram

	The VIDEOTR2 Data Source
	The VIDEOTR2 Master File
	The VIDEOTR2 Access File
	The VIDEOTR2 Structure Diagram

	The Gotham Grinds Data Sources
	The GGDEMOG Data Source
	The GGORDER Data Source
	The GGPRODS Data Source
	The GGSALES Data Source
	The GGSTORES Data Source

	Appendix B. Error Messages
	Accessing Error Files
	Displaying Messages Online

	Index

